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Quantum theory of transient transport in semiconductors: A Monte Carlo approach
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A new Monte Carlo method is presented for the evaluation of the density matrix from the solu-
tion of the Liouville —von Neumann equation for an ensemble of noninteracting electrons in a semi-
conductor crystal. The method is applied to the study of the electron transient response to a high
external electric field in Si and to the relaxation of photoexcited electrons in GaAs in absence of
external electric fields. The phonon population is always assumed at equilibrium, but no assump-
tions are made about the strength of the electron-phonon interaction. Results show that typical
quantum features such as energy-nonconserving transitions, intracollisional field effect, and multiple
collisions change the very first transient of the system with respect to a semiclassical description.

I. INTRODUCTION

The Monte Carlo method' applied to the analysis of
charge transport in semiconductors has for almost 20
years allowed the investigation of the transport properties
of a large variety of physical systems. Once the band
structure and the scattering mechanisms of the material
under investigation are known, this numerical technique
permits a direct simulation of the behavior of the electron
gas in the presence of scattering agents such as phonons
and impurities. In recent years the method has also been
successfully applied to problems of device design and per-
formance that would not be otherwise attainable with
traditional numerical or analytical techniques.

However, the very fast evolution of miniaturization
semiconductor technology is leading very rapidly to-
wards experimental conditions where typical lengths are
of the order of the carrier coherence length, and typical
times are comparable with carrier relaxation times. In
particular, in modern laser spectroscopy a time resolution
has been achieved of the order of 10 fs. If we analyze the
behavior of the system at a time of this order after it has
been "prepared, " transitions may take place that would
not be allowed by energy conservation. In other words,
the quantum interference phenomena that produce the
energy conservation are not yet complete at such short
observation times.

It is clear that the classical transport theory, based on
the Boltzmann equation, is not adequate for the descrip-
tion of the physical processes that are taking place on this
time scale. In fact, semiclassical transport is based on the
hypothesis, among others, that each scattering event is
completed when the next one starts. For the validity of
such an assumption it is necessary that the coupling be-
tween electrons and the scattering agents is sufficiently
weak so that a first-order perturbation theory can be ap-
plied; this must be done in the limit of "completed col-
lisions" so that energy conservation holds at each interac-
tion process.

Several possible approaches have been presented for at-
tacking the problem of quantum charge transport. Seri-
ous approximations are usually necessary for obtaining

manageable theoretical formulations, and very often the
basic equations of the theory cannot be solved.

This situation is very similar to that in the field of non-
linear charge transport before the appearance of the
Monte Carlo method that now allows the exact solution
of the Boltzmann equation to be found for all physical
conditions and materials. Thus it is very desirable to find
an equivalent numerical method also for the case of quan-
tum transport.

A new quantum Monte Carlo (QMC) procedure is
presented here for the solution of the Liouville equation
for the electronic density matrix in semiconductors. The
method allows evaluation of the electronic density matrix
as a function of time without any assumptions on the in-
tensity and the duration of the electron-phonon interac-
tion, nor on the strength of the applied field. The quan-
turn equation is solved through a random generation of
all possible quantum interactions at the various perturba-
tive orders, in the same way as the usual classical Monte
Carlo (CMC) generates classical scattering events. The
principles of the method will be presented in Secs. II and
III.

In the semiclassical limit (Sec. IV) our quantum treat-
ment recovers the semiclassical Boltzmann equation, and
the numerical procedure results in a new Monte Carlo
procedure for the solution of semiclassical transport de-
scribed by that equation.

Results of the application of the present QMC method
are presented in Sec. V. Section V A contains an analysis
of transient transport of electrons in Si in the presence of
an arbitrary high electric field, and in Sec.. V B the
method is applied to the problem of energy relaxation of
photoexcited electrons in GaAs in the absence of electric
field.

Partial accounts of this project have been presented re-
cently. ' Some numerical errors present in these prelimi-
nary data have been corrected here.

II. PHYSICAL SYSTEM
AND THEORETICAL APPROACH

In order to study the properties of charge transport in
a quantum scheme, let us consider an electron gas in a
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H, =—,V
2m

(2)

is the term corresponding to an electron in a perfect crys-
tal (m * is eft'ective mass),

Hz =eE r

describes the electric field, and

H =g A'co a ta
q

(4)

describes the free-phonon system in the second-
quantization formalism (a and a are the creation and
annihilation operators of a phonon mode q). The
electron-phonon interaction Hamiltonian H, h has the
general form

H, ~h=g ifiF(q)(a e'q' ae '"')=—H,b+H,

where H» and H, refer to phonon absorption and emis-
sion, respectively, and F(q) is a function of the phonon
momentum q. Its explicit form depends on the particular
scattering mechanisms considered by the model. Both
Hz and H, & are turned on at t =0.

We have not explicitly introduced any interactions
among phonons and between phonons and the thermal
bath. In the numerical procedure, however, we will as-
sume that these interactions can maintain an equilibrium
phonon population during the evolution of the system.

We use the set of time-dependent basis vectors
~ ko, [ n },t ) represented by

1—e' "'"(' ex)p i f

draco(—

k(r))
~ [n },t )q

semiconductor crystal, coupled to the phonon gas. Car-
riers are assumed to not be interacting with each other,
so that the interaction of one carrier with the phonons
will represent the behavior of the whole electron gas.
The electron band structure is introduced in the
efFective-mass approximation, with a simple spherical and
parabolic band.

The system is assumed to be homogeneous, and its
Hamiltonian is given by

H. +HE+H, +H.-,h Ho+H. - h

where H0=H, +HE+H is considered to be the unper-
turbed Harniltonian since, in the efFective-mass approxi-
mation, its eigenfunctions and eigenvalues are known;

[where k(t) =ko —eEt/A' and co(k(t)) =A'k /2m *],which
are the solutions of the unperturbed Hamiltonian H0.
They are direct products of electronic accelerated plane
waves normalized to 1 over the crystal volume V, and the
phonon states

~ [ n
q },t ) with n

q
phonons in mode q with

frequency cu„. The use of this basis is equivalent to work-
ing in the interaction representation.

The state ~qI ) of the system can be expanded over this
set as

Iq')=X X c«o [nq} t)~ko, [nq},t) .
ko In

If we now consider the density matrix of the system in
the representation of the set in Eq. (6)

p(ko[nq}, ko[n' },t)=(c(ko, [n },t)c*(ko, [n' I, t)),
(&)

(where ( ) is an ensemble average), the Liouville —Von
Neumann equation that describes its time evolution con-
tains only the perturbation Hamiltonian:

i fi p(X,X', t) = [H, i,(t),p(t)]» ~, ,
a

where we have used the compact symbolic notation
X =(ko, [n }).

A formal integration leads to

p(X X', t) =p(XX', 0)+ dt, [&, h(t, ),p(t, )]~X,
0

(10)
where &, h=(1/i A)H, h We are .here interested in the
evaluation of expectation values of electron quantities
which are diagonal in the electronic part of the states in
Eq. (6); thus we can focus our attention on the diagonal
elements p(X, t)=p(X, X, t) of p.

Furthermore, we will assume a diagonal initial condi-
tion for p decoupled in electron and phonon coordinates.
This initial condition may not always correspond to a
real physical situation, but it can be made plausible by as-
suming that the interaction is turned on at t =0. The
electron part is taken as some distribution function fo
which depends on the particular problem under investi-
gation, while the phonon part is assumed as the probabili-
ty P,q( [nq } ) of finding each mode q occupied by nq pho-
nons at equilibrium:

p(ko [n, },0)=fo(ko)P„([n,})
A perturbative expansion of Eq. (10) is easily obtained

by iterative substitution of its right-hand side into the
equation itself:

p(X, t)=p(X, O)+ f dti[&, ph(ti), p(0)]x~+ f dti f dt2[&, h(t, ), [&, h(t2), p(0)]]x~+ . . .
0 0 0

=p"'(X, t)+ ap' "(X,t)+ ap"'(X, t)+ (12)

The zeroth-order term p' '(X, t) in the expansion (corre-
sponding to the case of no coupling between electrons
and phonons) is equal to the initial condition p(X, O).
Since X contains the wave vectors k0 at t =0, this contri-

I

bution corresponds to the-translatIon determined by the
ballistic motion of the electrons under the sole action of
the electric field without any interactions with the lattice
vibrations.
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The matrix element of &, ~h between X and X' con-
tains only the mode q related to k and k' by momentum
conservation, and it is given by one of the two following
expressions:

&» and &, are different from zero only if the number
of phonons in the mode q is changed by a unity going
from X to X, since it contains only linear terms in a and

aq.
The explicit form of the first-order correction is

bp'"(X, t)= f dti g[&, ph(X, X', ti)p' '(X',X,O)
0

where

X(n' +1)' 5(n, nq+1),

[k'(t) —k(t)] Et' .
2m

e
a(ko, ko, t) = (coo ~o) t+, (ko ko) 'Et2'

= [co(t) co'(t)]t—

(13) &—, ph(X', X, t i )

Xp' '(X,X', 0)] . (15)
From what we have seen regarding the matrix elements
of &, ~h, it is clear that the above first-order term gives
no contribution to the diagonal elements of p since we as-
sumed diagonal initial conditions.

The second-order term can be rewritten, using the
property

h(X, X', t)= %,* h(X—', X,t), (16)

as

bp'"'(X, t)= f dt, f dt, g[&, ,„(X,X', t, )%, ,„(X',X, t, )p(X,O)+&,*,„(X,X', t, )&,*,„(X',X, t, )p(X, O)
0 0

+&,* „(X,X', t, )&, h(X, X', t2)p(X', 0)+&, h(X, X', ti )&,* h(X, X', t~)p(X', 0)] .

There is a simple and useful way of reading the above
equation. At t =0 the only nonzero values of p are the
diagonal elements; by application of &, zh (or &,*&h) the
first (or the second) argument of p is changed from the
second argument of &, „hto the first one; at t the two ar-
guments of p are again equal (to X). Since each applica-
tion of &, h changes the phonon state by one unit, in or-
der to start from a diagonal element and end up to anoth-
er diagonal element, a mode q which has been absorbed
(or emitted) by one argument must be absorbed (or emit-
ted) also by the other argument or reemitted (or reab-
sorbed) by the same argument. Using the language of
field theory, we refer to the first kind of processes as
"real" emissions and absorptions, while the other ones

are referred to as "virtual processes. "
Thus, taking into account the separation of &, ~h into

absorption and emission terms in Eq. (5), the contribu-
tions to be included at the second order in &, h are
those illustrated in Fig. 1.

%'ith the above interpretation it is very simple to gen-
eralize the results to higher-order terms of the perturba-
tive expansion. For example, Fig. 2 is the diagrammatic
representation of one of the fourth-order contributions of
the following form:

&,* (X,X', t, )&„(X,X"',t, )&, (X"',X",t, )

X&, (X",X', t4)p(X', 0) . (18)

X'

t2

X

t2
X

t2
X X' X

X' X X'

X' X' X X

X

t2
X

t2
X

t2 t2
X

FICr. 1. Diagrams representing the second-order contributions to the density matrix. The horizontal axes represent the time for
the two arguments of the density matrix, and arrows indicate phonon absorption and emission processes.
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x'
'W

t2

operation does not commute with the interaction Hamil-
tonian. The reduction of the total density matrix to the
electron density matrix can instead be performed in the
present iterative procedure, as shown in Sec. III A.

III. NUMERICAL PROCEDURE

x' x

The numerical QMC algorithm devised for the solution
of Eq. (9) is essentially based on random generations of all
possible processes associated with the different perturba-
tive corrections.

FIG. 2. Diagram representing the fourth-order contribution
to the density matrix of the type shown in Eq. (18).

p"(k, k', t)= g p(k, In ),k', In&I, t) .
Inq

(19)

The evolution equation for p" still contains the dynarni-
cal variables of the many-body system. In fact it is not
possible to obtain a closed equation for p" by taking the
trace of Eq. (9) for the full density matrix since the trace

In this graphic representation each of the two lines
represents a term in the perturbative expansion of the
evolution operator of the system in the interaction repre-
sentation.

Let us now recall that we start from a diagonal p and
we are interested in the evaluation of diagonal elements
of p. Thus the final values for the arguments of the densi-
ty matrix must correspond to equal phonon states, as do
their initial values. As a consequence, nonvanishing con-
tributions come only from "paired" vertices, which cor-
respond to complete real and virtual processes. Each
process in the graphs shown in Figs. 1 and 2 corresponds
to a single scattering event in classical transport.

From the analysis of these graphs of the perturbation
expansion for p, we can focus our attention to some im-
portant aspects of the quantum description. The quan-
tum transitions have a finite duration, during which car-
riers experience the action of the electric field. This
effect, called the intracollisional field effect (ICFE), is ob-
viously not present in the semiclassical description where
collisions are usually considered instantaneous. Only
after a certain time we obtain again a diagonal state that
corresponds to a semiclassical state of the system; during
the interaction the system is in a quantum state given by
a superposition of k states which does not correspond to
any semiclassical situation. Furthermore, while one pro-
cess is happening, a new one can start, giving rise to mul-
tiple collisions and vertex corrections.

To recover the classical golden rule for a single scatter-
ing process it should be necessary to integrate one of the
two times of the process, without interfering with other
processes, over an interval large enough to obtain the
Dirac 5 of energy conservation in the transition probabil-
ity. In addition, the effect of the field on the phase of the
integrand must be neglected.

Let us now consider the reduced electronic density ma-
trix as the trace over phonon states of the total density
matrix:

A. Fundamentals of the method

A sum S =g, x, can be evaluated with the Monte Car-
lo technique by considering the estimator x, /p, , where
the p, are arbitrary probabilities between zero and one
normalized to unity. This estimator is then averaged
over random generations of the i index selected with
probabilities p;. In fact,

p =5 (20)

where y is the set of coordinates which describe a point
in the domain I . In this case the estimator to be used is
again f (y)/p(y) where p(y) is the probability density of
selecting the point y. Ifp (y ) is uniform over I, then

y dy=V y (22)r
where the average is performed over many choices of the
variable y with uniform probability in the domain I, and
Vis the volume of this domain.

The procedures discussed above are here used to obtain
an estimate of the sum in Eq. (12) that contains, in the
various perturbative corrections, sums of the type de-
scribed above and integrals of the general form

(23)

with t ) t, ) t2) )t„)0. In this case Eq. (22) is
applicable with

nf
(24)

The numerical procedure starts with random selections
with suitable probabilities of (i) the order of the perturba-
tive correction to be estimated; (ii) a given sequence of
processes that corresponds to one of the possible contri-
butions to the corresponding integrand; (iii) the "initial"
and "final" times of the considered processes which cor-
respond to the times at which the integrand functions are
sampled; (iv) the wave vectors q of the phonons involved
in each quantum process considered.

Then, starting from the value k(t) at which p will be
evaluated, both indices of the density matrix are translat-
ed backwards in time, if we are in presence of electric

This procedure can be easily extended to the evaluation
of integrals of the type

(21)
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fields, down to the time of the latest vertex. At this point
the matrix element &, h of the interaction is evaluated,
and the current value of k is changed accordingly. This
last step of the procedure is repeated until the time of the
initial condition is reached.

Due to momentum conservation of the &, ~h matrix
elements, these selections determine the argument k;„ofp
at t =0.

The quantity

h(t, ) &, ph(t„)
p(k;„,I nq, „I,t =0) (25)

is then evaluated, where P is the probability of all the
selections which have been made [given by the product of
the probabilities of the single choices]. An average of the
estimator in Eq. (25) is finally obtained through many
iterations of the procedure, and it gives an estimate of p
at time t.

In this way we obtain the density matrix through a
random generation of quantum processes as we obtain
the carrier distribution function and transport quantities
from a random choice of carrier histories in the tradition-
al CMC technique.

B. Phonon average

A crucial point that requires further analysis is how we
perform the average over phonon variables. As we al-
ready pointed out, we assume an initial condition for p
which is the product of an electron distribution function
times the equilibrium phonon distribution; further the in-
teraction Hamiltonian is linear in the creation and an-
nihilation operators of modes q.

In the numerical procedure we saw that a sequence of
processes is generated starting from an initial state
(k;„,Inq;„J,0) which ends on the state (k, In I, t). This
sequence corresponds to a sequence of phonon wave vec-
tors q which are absorbed or emitted on the first or on
the second index of the density matrix. Since we are not
interested in hot-phonon effects the electron always in-
teracts with an equilibrium phonon bath. We can also as-
sume that each phonon mode is chosen only once in a
given sequence of processes.

If a phonon q is absorbed in a real transition and the
corresponding occupation number at time t is n, the oc-
cupation number of the initial state must be n&+1, and
the matrix element of the interaction Hamiltonian con-
tains the factor (n +1)'~ . In order to finish the process
&,b must act on the other index of the density matrix in
the same way, thus bringing the multiplicative factor
n +1 to the numerical estimator.

In the case of virtual absorption only one index is
changed from (k, n ) to (k'=k+q, nq

—1) with an ab-
sorption, and then from (k', nq

—1) to (k, n ) at a succes-
sive time through an emission of the same phonon. The
net result after the completion of the process is the pres-
ence of a multiplicative factor n to the numerical esti-
mator. Analogous considerations show that for the case
of real or virtual emissions the multiplicative factor is n~
or n + 1, respectively.

At the end of the random generation we obtain for the

2n-order correction an estimator that, once averaged over
the phonon states, gives to bp"" "'(k, t) the form

bp"' "'(k, t)=(const)X g f (k;„)P,(In I;„)QN

(26)

where t n
q I;„arethe occupation numbers of the modes q

in the initial state and X is a multiplicative factor that
takes the values n or n + 1, as seen above, for the pho-
non modes q involved into the generated sequence, and 1

for all the other phonon modes not involved in the pro-
cess. Now we know that P ( t n I;„)is given by the prod-
uctQP, (n ).

If a phonon q is not chosen, then the sum over all pos-
sible occupation numbers n of P,q(nq;„) must be equal
to unity,

gP, (n;„)=1,
q

(27)

n

qPeq( q ) q ~ Bose

(real absorptions) (28)

( virtual absorption s ) (29)

where n ~B„,is the equilibrium occupation number given

by the Bose distribution.
In the case of emission,

g n P, (n —1)=n ~ii„,+I
q

(real emissions ) (30)

g(nq+ 1)P,q(nq ) = nq ~B„,+ 1

q

(virtual emissions) . (31)

In both cases we can eventually use the Bose distribu-
tion for the evaluation of the term without introducing
any approximations on the electron-phonon coupling but
for the assumption that the phonon gas is constantly kept
in equilibrium conditions. In full analogy with the semi-
classical treatment the recipe consists in using n ~B„,in
the case of absorptions, and n

~ qB+I in the case of
emissions.

C. Improvements of the method

The QMC method described in the previous sections
yields a numerical estimate of the solution of Eq. (9)
through a direct generation of quantum interactions at all
perturbative orders and through a numerical evaluation

and this factor does not contribute to the product in Eq.
(26).

If instead we consider a q chosen in the random gen-
eration, we have two possible cases. In the case of ab-
sorption,

g(n +l)P, (nq+1)=n
n
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t 1 i [2b(tl —t2)+a(t ]
—

t2 )]fRe dt
&

dt2e
0 0

with

a = (ko —ko) E,
2fPl

b =
—,
' (coo —coo+~q),

(32)

where Re stands for the real part. Here (ko, coo) and
(ko, coo) refer to the interacting initial and final electron
states, and ~ is the phonon frequency. We are interested
only in the real part of the integral since the diagonal ele-
ments of density matrix are real numbers. This simple
expression allows a direct analytical integration in terms

of all the time integrals present in the diA'erent terms.
However, the functions to be integrated are rapidly oscil-
lating over the integration domain, owing to the quantum
interference e6'ects that they describe. Therefore in this
primitive form the method would require a huge amount
of computer time in order to yield a reasonably accurate
result even at the lowest perturbative orders. In order to
save computer time it is thus very useful to devise some
methods that allow for a partial analytical evaluation of
time integrals while the sum over k space is still evalu-
ated through random generations of all possible terms.

The second-order perturbative correction in the in-
teraction Hamiltonian involves only one of the processes
discussed above. The explicit form of the corresponding
integrals in Eq. (17) is of the type

are given. The result of this routine is then used for the
numerical evaluation of the corresponding term.

at+b
4a va

at +b
&a

b—S

2

2

(33)

f dt, f dt f dt f dt f(t„t,t„t), (35)

yields

f dti f dt's f dt2 f dt4f (ti, t2, t3, t4) . (36)

The integrals over t& and t2 can now be performed
analytically, each of them giving a result expressed again
in terms of Fresnel integrals:

An improvement in the efficiency of the method can be
obtained also at higher orders by integrating every other
vertex over the time interval determined by the times of
its two adjacent vertices. The result is again expressed in
terms of Fresnel integrals. Let us consider for example
the case of a fourth-order correction. By recalling the
following property of a double integral,

f dt, f dt,f (t, , t, )=f dt, f dt, f(t„t,), (34)

we see that the application of this property to the two
internal integrals present in the general expression of the
term

i (at' +2bt')
t 2a

1/2
b 2

' cos
a

at +b
C

at, +b—C
b2

+sin
a

at +b
S

at, +b—S

(37)

i2b(~, —
~z I 1 —cos(2bt)

0 0 (2b)
(38)

With similar considerations it is possible to evaluate
analytically all the time integrals at all perturbative or-
ders, even though we were not able to give a compact for-
mula that includes all the cases (the form of each result
depends in fact on the particular diagram considered).
We have developed a computer routine that gives as out-
put the symbolic primitive function of the integral, evalu-
ated between zero and t, once the perturbative order and
the details of the vertices belonging to the generated term

The other two integrals cannot be performed because of
the complexity of the integrand function; they must be
evaluated with the numerical technique. The same pro-
cedure can be extended to higher-order corrections.

When the electric field is absent (Hz =0) the problems
can be highly simplified because all time integrations can
be performed analytically. For example, let us consider
the second-order contribution due to a real emission of a
phonon in mode q given by the first two graphs on the
left in Fig. 1, which are complex conjugates of each oth-
er. The integration of these two processes yields

are given. The result of this routine is then used for the
numerical evaluation of the corresponding term.

IV. SEMICLASSICAL LIMIT:
BACKWARD MONTE CARLO PROCEDURE

The semiclassical limit of the theoretical approach de-
scribed in the previous sections is obtained when (i) mul-
tiple collisions (crossed graphs) are neglected, (ii) ICFE is
neglected, and (iii) the time between two collisions is as-
sumed to be much longer than the collision duration, so
that during each collision energy is conserved.

Under these conditions the perturbation expansion of
the density matrix reduces to the analogous expansion for
the distribution function obtained from the Boltzmann
equation.

Thus the semiclassical limit of the QMC gives a basi-
cally new CMC method for the solution of the Boltzmann
equation. This new technique difters from the traditional
MC method in two major respects: (1) the occurrence of
particular electron histories with given scattering events
is selected with arbitrary probabilities in the procedure
and appropriately weighted in the estimator; (2) the elec-
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tron state k at which the distribution function is evalu-
ated at time t is chosen at the beginning of the procedure
and electron paths are generated backward in time from t
to the time t =0 of the (known) initial condition. This
second feature is not inherent to the method which is
suitable also for a forward simulation. " Since the value
of k at which f is evaluated is fixed arbitrarily, the
method is particularly appealing for problems where rare
regions off are of particular interest.
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V. RESULTS

All the results presented in this section have been ob-
tained starting from equilibrium conditions for the elec-
tron and pho non systems; both electric field and
electron-phonon coupling are turned on at t =0.

The interaction Hamiltonian of the deformation-
potential interaction with optical phonons is

D 2

2KT, Vp
(&9)

Numerical results have been obtained for a simple-model
semiconductor (relative efFective mass m*/m&=0. 295,
crystal density d =2. 33 g/cm, one optical-phonon
scattering with energy T, =350 K, and coupling con-
stant D =2.5X10 eVcm '). The working conditions
are T=20 K, E =150 kV/cm, t =50 fs.

Figure 3 shows the quantum distribution function as a
function of k along the field direction compared with the
corresponding classical result obtained from the pertur-
bative expansion of the Boltzmann equation (see Sec. IV).
The distribution functions are peaked around the ballistic
value. The particles that are scattered out of the ballistic
translation are spread in a large volume of k space and
cannot be seen in the figure. The quantum distribution is
lower than the classical one since more particles have left
their ballistic trajectories, having relaxed the requirement
of energy conservation.

In order to have a better insight of the quantum effects
which contribute to the result presented here it is ap-
propriate to analyze separately the contributions of the

This section presents numerical results obtained with
the procedure discussed above for different materials and
physical conditions. The analysis has been devoted to
very short times after the initial conditions, when we ex-
pect quantum effects to be more evident. This choice al-
lowed us to include perturbative corrections only up to
the fourth order, which in turn limited the computer time
to affordable values. Since we considered always low
crystal temperatures only phonon emissions have been in-
cluded, the absorption rates being negligible. Special em-
phasis has been given to the investigation of typical quan, -

tum effects and to the comparison with the classical case.
As an example of the computer time necessary for ob-

taining the results presented here we may mention that
for the evaluation of the density matrix to the fourth or-
der in a single point of k space about 30 CPU minutes of
a Cray XMP/48 supercomputer were necessary.

A. Analysis of second- and fourth-order terms
in the presence of an electric field

0.5

0.0
0.8 0.9 1.0 1.2 1.3 1.4 1.5

Wave vector ( 10 cm '

)

FIG. 3. Quantum electronic distribution function (solid
curve) obtained from a perturbative expansion including terms
up to the fourth order as a function of the electron wave vector
k parallel to the electric field after 50 fs from the initial condi-
tions. The result is obtained for a model semiconductor (see
text). The dashed curve is the classical distribution function at
the same perturbative order obtained from the Boltzmann equa-
tion. The dot-dashed curve is the initial distribution after the
ballistic shift produced by the electric field.
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FIG. 4. Absolute value of the quantum correction (solid line)
at the second perturbative order as a function of k parallel to
the electric field compared with the absolute value of the classi-
cal one-scattering correction (dashed curve) for a model semi-
conductor (see text). The dot-dashed curve represents the quan-
tum correction without ICFE.

different orders.
The second-order correction is found to be, in the re-

gion of interest, always negative due to the prevailing
scattering out. Furthermore we can turn off the ICFE by
neglecting the effect of the field on the phase of the ma-
trix elements between two vertices of a particular process
which would lead to the 6 of energy conservation for
large times; in our case, however, the completion of the
transition is not necessarily reached if the time interval
considered is very short.

In Fig. 4 we compare the absolute value of the second-
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FIG. 5. The same results as in Fig. 4 obtained for the same
model semiconductor with E =75 kV/cm.
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order correction as given from Eq. (17) with the same
contribution without ICFE. In the same figure we also
report the corresponding classical contribution that
comes from "one-scattering" trajectories. It can be seen
that the quantum contribution is slightly larger than the
classical one. However this difference is the net result of
two larger quantum effects of opposite signs. In fact if
the ICFE is neglected we obtain the highest curve in Fig.
4 which shows, by co~parison with the classical case, the
big effect of energy-nonconserving transitions, due to the
short time considered. When the ICFE is also considered
it reduces the scattering efficiency by reducing the time of
positive interference which occurs when the energy
difference between initial and final states is equal to the
phonon energy. ' It is apparent from Fig. 4 that the first
effect is larger than the second since the quantum curve is
higher than the classical one. This interpretation is

Wave vec tor ( 10 cm )

FIG. 7. Quantum electronic distribution (dot-dashed curve)
obtained from a perturbative expansion including terms up to
the fourth order as a function of the electron wave vector k
parallel to the electric field. The result is obtained for a
simplified silicon model at t =0.5 ps (see text). The solid curve
is the zero-order density matrix, while the dashed curve is ob-
tained summing terms up to the second order.

confirmed in Fig. 5 where the same results are shown for
the case E =75 kV/cm (all the other parameters are the
same as in Fig. 4). Here we have reduced the ICFE
through a reduction of the field strength, and the quan-
tum result is larger than the case in Fig. 4.

Figure 6 shows the fourth-order perturbative correc-
tion (solid curve), which is now larger than zero, corre-
sponding to two out-scattering events. We can neglect
multiple collisions by allowing only processes that do not
overlap, i.e., the two vertices of one given process corre-
spond to adjacent times (dashed curve). The effect in this
case appears larger than the total quantum correction.

Once the two processes have been separated, we may
also neglect the ICFE in the two-scattering trajectories
(dot-dashed curve). We see that the whole curve is still
higher and much closer to the classical one, as it happens
for the second-order term.

Finally Fig. 7 reports results for the density matrix in
the case of a more realistic set of parameters that gets
closer to a simplified silicon model. We changed the pho-
non temperature (T, =450 K) and the coupling con-
stant (D =0.8X10 eV/cm). The electric field is E =15
kV/cm and the time is t =0.5 ps. In this case we found
that the ICFE is much lower than in the previous case
due to the lower field strength. Since the time is larger,
the effect of multiple collisions is also lowered; we expect
that this effect inAuences higher-order corrections.

0. 8 0.9 1.0 1.2 1.4 1.5

Wave vector ( 10 cm )

FICi. 6. Quantum corrections at the fourth perturbative or-
der for a model semiconductor (see text). Solid curve represents
the full quantum correction; dashed curve describes the quan-
turn correction with separate collisions and the dot-dashed
curve describes the quantum correction with separate collisions
and without ICFE.

B. Quantum energy relaxation of photoexcited carriers
in the absence of an electric Beld

The method described in the previous sections has been
applied to the case of photoexcited electrons in bulk
GaAs. The semiconductor model has been simplified to a
single spherical and parabolic band similar to the one
used for Si in Sec. V A. The interaction Hamiltonian in-
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electron-phonon coupling Hamiltonian, transitions to
states with energies close to the energy of the initial peak
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FIG. 11. Mean electron kinetic energy as a function of time,
obtained with classical theory [case (a)] and quantum transport
theory [case (b)] for the simplified GaAs model.

matrix without any assumptions about the strength of the
interaction with phonons and of the applied field.

Results have been obtained at low temperatures both
for Si and for GaAs using a simplified semiconductor
model in both cases. For the case of Si we have analyzed
the electronic density matrix up to the fourth order in the
interaction Hamiltonian starting from an equilibrium
carrier distribution subject to an applied electric field.
For the case of GaAs we have presented the time evolu-
tion of photoexcited electrons after the excitation.

The most important effect found in every physical situ-
ation analyzed in this paper is the violation of the classi-
cal energy conservation in electronic transitions induced
by phonon interaction, which appears to be dominant in
the results at very short times after the initial conditions.
In particular the quantum scattering at very short times
appears to be more e6'ective due to the energy-
nonconserving transitions; however, energy relaxation
from quantum transport has been found to be lower than
what predicted by classical transport, because the same
energy-nonconserving transitions favor higher energies
for the final state. The weight of ICFE and multiple col-
lisions on the quantum results have been studied and dis-
cussed.
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