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Low-temperature resistivity from electron —dual-phonon processes for alkali metals
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A calculation of the contribution from electron —dual-phonon scattering to the low-temperature
electrical resistivity for alkali metals is carried out. It is found that the low-temperature resistivity
from umklapp electron —dual-phonon scattering processes follows nearly the same exponential rule
BT exp( —0'/T) as resulted from umklapp electron —single-phonon scattering, where 0' is depen-
dent on the minimum available wave vector of phonons and the coefficient B is proportional to
(m/M), the square of the mass ratio of electron to ion. However, the constant 0' we find from
dual-phonon processes is only half of that from single-phonon processes. It is expected that this
scattering mechanism has a significant effect on the low-temperature resistivity of some light alkali
metals with high Debye temperature at very low temperatures. Our calculation shows that the
resistivity of the lithium that resulted from dual-phonon processes will be larger than the one from
single-phonon processes when the temperature is below 4 K.

I. INTRODUCTION

The low-temperature resistivity due to the electron-
phonon interaction is usually considered from
electron —single-phonon scattering including both normal
and umklapp processes. In metals the normal
electron —single-phonon scattering provides a T term to
the low-temperature resistivity if phonon-drag effects can
be neglected. In alkali metals phonon drag is important
and eliminates the T term. The umklapp
electron —single-phonon scattering provides an exponen-
tial decrease term T"exp( 8/T), where 8—depends on
the minimum wave vector of the involved phonons and n
may be 1 to —,

' (Ref. 1) (our calculation gives n =2). As
pointed out in Ref. 2, what value n may be is not impor-
tant, because the dominant contributions is from the ex-
ponential part.

There is another electron-phonon scattering process
which also contributes to the resistivity. These are the
multiphonon processes suggested by Enz. Multiphonon
processes have been included in the calculation of
phonon-phonon interaction in the heat transport prob-
lem. For electrical transport the calculation has been
done for the magneto-optical processes in semiconduc-
tors and for the high-temperature resistivity of metals,
but not including the low-temperature resistivity. The
reasons may be due to (1) the Migdal's theorem, which
says that the higher-order electron-phonon interaction
only provides a correction of order of magnitude of
(m /M)", where n is the order of interaction; (2) the low-
temperature resistivity experiments for simple metals,
which can be explained perfectly by the resistivity theory
based on the electron —single-phonon process; (3) the con-
tribution from normal electron —dual-phonon processes,
which is too small to be invoked to explain the experi-
ments, as we find in the Sec. II; (4) most of contribution
from dual-phonon processes will be canceled by single-
phonon processes. This is, perhaps, the most important

reason, as pointed out by Ngai and Herring, which is
discussed now. The electron-ion interaction potential can
be expressed as Q„V(r—R„—s„), where r is the position
vector of electron, R„ is the position of the nth ion in the
equilibrium configuration, and s„ is the deviation of the
nth ion. This potential is expanded as the power series of
s„, and only the second-order term is kept. The
electron-phonon Hamiltonian can be written as

H,' = —g s„VV(r—R„),

H2 = —,'gs„VVV(r —R„)s„.

The first-order term H, gives rise to electron —single-
phonon processes and the second-order term H, gives
rise to electron —dual-phonon processes. However, the
dual-phonon processes can also arise from the second-
order matrix elements of the single-phonon Hamiltonian
H,'. As described by Herring, most of the acoustic
scattering matrix element Of H, will be canceled by the
second-order matrix elements of H,'. This cancellation
of terms in the transport formulation has made it difficult
to draw any conclusions from transport data concerning
the importance of the bilinear acoustic term, H, . There-
fore, it seems that the higher-order electron-phonon
correction is not necessary. However, our calculation for
electron —dual-phonon interaction shows that (a) the
reason (4) mentioned above does not apply to umklapp
electron —dual-phonon processes; (b) at very low tempera-
tures the higher-order electron-phonon interaction is im-
portant. The physical origin is that the contribution to
the resistivity from normal electron-phonon interaction is
canceled due to the phonon-drag effects and only um-
klapp processes contribute to the resistivity. The resis-
tivity follows the general exponential decrease relation
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BT"exp( 0—/T). The critical parameter 0 depends on
the minimum wave vector of the phonons involved in
umklapp processes. The dual-phonon processes will
reduce the constant 0 by half. Therefore, at very low
temperatures, the reduction of coeScient by m/M may
be offset by the increase of the exponential part.

In this paper we consider electron —dual-phonon pro-
cesses in alkali metals. Two limit cases are considered:
(1) the Bloch limit, in which the phonon system in equi-
librium state is assumed and on1y the normal scattering
processes are considered; (2) the phonon-drag limit, in
which only umklapp scattering processes are considered.
The Matsubara Green's-function method is used to calcu-
late the self-energy from electron —dual-phonon scatter-
ing processes. It is found that in the Bloch limit, the con-
tribution from the dual-phonon processes provides a T
term to the low-temperature resistivity for alkali metals.
The coeKcient of this term is proportional to the
(m/M) . In comparison with the Bloch T term, this
term can be neglected. In the phonon-drag limit, it is
found that umklapp dual-phonon processes provide a
BT"exp( 0'/T) —as umklapp single-phonon processes
do. In the single-phonon scattering processes the
minimum wave vector and the phonons equals G —2kF,
where 6 and kz are the vector of the reciprocal lattice
and the Fermi wave vector, respectively, and 0 can be
approximately expressed as 0.20D. However, the
minimum available wave vector in dual-phonon processes
is only half of the one in single-phonon processes.

The contributions from the second-order matrix ele-
ments of the single-phonon Hamiltonian H,' for umklapp
scattering are examined in Appendix A. It is found that
all these contributions are proportional to (m/M) and
exp( —0/T). But they have nothing to do with
BT exp( 8'/T) te—rm.

The magnitude of this term for alkali metals with small
ion mass and large OD, for example, Li, is expected to be
compared with the one due to single-phonon processes at
some very low temperatures. In order to compare direct-
ly, the calculation of the resistivity resulted from
umklapp single-phonon processes, using Matsubara
Green s-function method, is given in the Appendix B. It
is found that the resistivity for lithium from dual-phonon
processes will be larger than the one from single-phonon
processes when the temperature is below 4 K.

The electron —dual-phonon Hamiltonians are derived
as follows. The derivation s„ is expressed as the normal
coordinates
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FIG. I. The Feynman diagram of the electron —dual-phonon
interaction.
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where nM is the mass density of the ion. The Feynman
diagram used in the calculation is shown in Fig. l.

The electron and phonon Matsubara Green's functions
are defined, respectively, as follows:

G (kia],)= 1

4 (4)

2cog qD &(q,i co)=-
CO +COg q

(5)

where g] =6k p.
The self-energy of electron using Matsubara Green's

function method is expressed as

d gi
X(p, ice)=(1 P/) g g g J;,~. ..]., o

d
X M'

( 2 )
3 q1 ~

1 'q2~2' o
(6)

G (p+q, +qz+G,

s„=g 1

2nMco &

1/2

exp(iq R„)(a &+a &) . ico+ico]+ic02)Dg (q], iso])Dg (q~, icop) .

Then the electron-pho non interaction Hamiltonian
describing dual-phonon processes is written as follows:

1H]p] =
2 g g g Mq g q g oCk+q]+q2+G

qi, q2 k, G kl, A2

XCk(aq & +a
q & )

The further calculation of Eq. (6) will be done in two
limit cases: (1) normal scattering processes; (2) umklapp
scattering processes.

II. NORMAL ELECTRON —DUAL-PHONON
SCATTERING PROCESSES

X(a &+a z ),
(3)

The Bloch limit is considered first. Let Cx be zero. The
electron-ion potential in Eq. (3) is written in the form of
the model pseudopotential'
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2—/3EF+(q/qTF) w(q)
V(q) =

1+(q/qTF)

2 6me n2

qTF
F

where w(q) is the model pseudopotential of simple metals
and qT„ is the Thomas-Fermi screening wave vector. At
low temperatures, the dominant contribution for normal
electron-phonon processes is from the phonons whose
wave vectors q are much smaller than q TF and it is a good
approximation to rewrite V(q) = V(0)= ,'EF—. —In order
to make the problem tractable, we use the same disper-
sion relation, cu =cq for both polarizations and e is the
average velocity of phonons. Therefore the polarization
subscription of co can be suppressed. Do summations
over co, and co2 and then do analytic continuation from ice
to co+I', 5. The imaginary part of the self-energy from Eq.
(6) is derived as follows:

ImX(p, co }

d ql d q2 M'~
(2~) (2m )2' 1

X [%,5(1)+4~5(2)+ %35(3)+4~5(4)],

0', = [n~(coq )+nF(coq to)]—
X [n~(co )+nF(coq +coq —co)],

%z=[n~(co }+nF(co +a))]

X[nz(coq )+nF(cuq coq co)],

3 [ng ( COq ) +nF( COq CO ) ][ng ( Cllq tOq + CO )]

44 [—nz(coq )+nF(coq +co)]

X [nz(coq )+nF(coq +coq +co)]

5(1)=5(co—cg —co —
g + + ),

5(2) =5(co—co +co —
g + + ),

5(3)=5(co+co —a) —g + + ),

5(4) =5(co+coq +coq —
gp+q +q ),

where nz(x) and nF(x) are the Bose and Fermi distribu-
tion functions, respectively. They are defined as follows:

1 1
n~(x) = &, nF(x) =

e~ —1 e~ +1

with p= 1/T. Let q&+q2=Q. We introduce the follow-
ing function:

q d qH(u„u~)= —m. g M q ~ 5(p Q/m+Q /2mkco +co )5(u, —
coq )5(u~ —co„) .

(2n ) (2m) ql q2 ql q2
(9)

In dual-phonon processes the phonons of both longitu-
dinal and transverse polarization can scatter electrons.
We choose one transverse polarization in the q&-qz plane
and another one perpendicular to this plane. Only the
phonons of former transverse polarization contribute to
scattering. There are four possible combinations of po-
larizations from two phonons. 0.

&
is denoted as the angle

between Q and q„a2 is denoted as the angle between Q
and q2, 8 is denoted as the angle between q, and q2, and p
is denoted as the angle between Q and k as shown in Fig.
2. The polarization factor is Q "cos a, cos a2 if both pho-
nons are longitudinal, Q"cos a&sin a2 if one phonon is
longitudinal and the other is transverse and
Q sin a, sin az if both phonons are transverse. The sum-
mation over polarization modes gives factor Q . The H
function is evaluated by changing the integral variable as
follows:

The conditions of the momentum conservation in the
four 5 functions of Eq. (9) are the same, because
(k+Q) /2m =k /2m =p and coq, coq «p. The integral

limit of Q is from ~q&
—

q2~ to (q, +qz). For convenience,
H is denoted for the q, &q2 case and H is for the

q, & q2 case. It is easy to see that H ~ (u „u2 )
=H (uz, u&). Because only the even part of ImX(co)
contributes the conductivity of metals, the 5 function can
be expanded at co=0, and only the first term is kept. The
5 function can be integrated first. Then we obtain

(2~) (2')

f q, dq, fq, dq, f dQ fd(Qk cosP) .
1

(2~) UF

(10)
FIG. 2. The normal electron —dual-phonon scattering pro-

cesses in momentum space.
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~/ V(O) /'
H (u„u2)= —

z 9 J(u&, uz),
(4m). (nM) u~c

(11)
+]+ P2++3++4 2[n~(u2)+n~(uz)]

X[2n~(u, )+n~(u, +u2)
J(u „u2 ) =2u )u~+4u )u 2+0.4u ~ . (12)

For the same reason, 4, +%2+%3+%'4 can also be ex-
panded as the power series of co and only the first term is
kept:

+n~(u, —u2)]+O(co ) . (13)

Make variable change x& =Pu, and x2=Pu2, then the
ImX(p, co) is

ImX(p, co)=2T f dxz[n~(x2)+n~(x2)] f 'dx, H (x„x )[2n (x, )+n (x, x—)+n (x, +x )]
0 0

+ f"dx, H (x„x2)[2nz(x& )+nz(x, —x2)+nF(x, +x2)]
x2

where the up integral limit can extend to Oo at low temperatures. From 1/~= —2 ImX, the resistivity is calculated
from

tlZ

ne ~

7T E Pl

4 M

'2
T I,
F

(14)

QO x2
dx2[n~(x2)+nF(x2)] dx, J(x„x2)[2n~(x, )+n~(x, —x2)+nz(x, +x2)1

0 0

+ f dx, J(x2,x, )[2n~(x, )+n~(x, —x2)+n~(x, +xp)]
x2

It gives T contribution to the low-temperature resis-
tivity. The coeKcient of this term is proportional to
(m /M) . At low temperatures this scattering mechanism
is much smaller than the Bloch T term. Perhaps this
term cannot be observed experimentally at any tempera-
tures. So, it is not necessary to examine the cancellation
of this term by the second-order matrix elements from
the single-phonon Hamiltonian H,' .

kinds of polarizations.
(3) The electron-ion interaction potential changes.

From Eq. (7), the potential V(q) is very sensitive to argu-
ment q when q is large to be compared with 2kF. In or-
der to obtain the quantitative result, the electron-ion po-

III. UMKLAPP SCATTERING PROCESSES

Umklapp electron —dual-phonon scattering processes
are different from normal scatting processes in the follow-
ing ways.

(1) The addition of the wave vectors of the two pho-
nons involved in umklapp electron —dual-phonon scatter-
ing will be fixed by the condition Q=k' —k —Cs. The
momentum conservation condition restricts the phonons
by wave vectors in low limits. The definition of the H
function should be modified by adding any arbitrary vec-
tor of the reciprocal lattice.

(2) The wave vectors of phonons involved in umklapp
processes are much larger than in normal processes. The
dispersion relation should change. However, the Bose
distribution has an exponential decrease for high-energy
phonons. The phonons involved in umklapp processes
are also restricted by the wave vector. Therefore, the
same formula co =cq can be approximately used to de-
scribe the phonons for umklapp processes but with
different propaganda velocity c. For simplicity, we still
use approximately the same dispersion relation for two

I

Qmin

FIG. 3. The umklapp electron —dual-phonon scattering pro-
cesses in ordinary momentum space (a) and in the repeat zone
scheme (b).
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tential is written in the simplified form

2kF cos(q1' )V(q)=—
1+(q/qT„)

(4) The change of the momentum between two electron
states involved in umklapp processes is Q+G. The po-
larization factor for umklapp processes in this case gives
(Q+G) . This is derived from the following considera-
tion. Consider the polarization factor of phonon q, in
Fig. 3(a). One of the transverse polarizations of phonon
q, is chosen in the plane defined by q, and G+ Q, another
one is chosen perpendicular to this plane, and a, is denot-
ed as the angle between q, and Q+G. Then, the square
of the longitudinal polarization factor from phonon q& is

I

cos ai(G+Q) . The square of the transverse polariza-
tion factor is sin a&(G+Q) . From approximation (3),
the total polarization factor from the phonon q, is
(Q+G) . In the same way phonon q2 gives the same po-
larization factor.

(5) The vectors of the reciprocal lattice are located at
the special directions at the momentum space. It will
give different possibility of electrons with the different in-
itial state of electrons. It must average momentum state
of electrons over the Fermi surface. f3 is denoted as the
angle between p and Q+G. Then this average is ex-
pressed as f d cosP/2. Remembering all these differences
between normal and umklapp processes, we introduce the
following new H function for umklapp processes:

H(ui, u~)= — f (G+Q) V(lG+Ql) 5(g +()+G
—g„+co„+co )5(u, co )5—(u2 —cu ),

8(nM) c (2m ) (2m. )

where z is the number of the nearest vectors of the re-
ciprocal lattice. The integrals of the colatitude angles e;
and 0 of the two phonons are changed, respectively, as
follows:

2coaf q&q2d cos8~ f g dg f d cosa;
Q

f '"F IG+QldlG+Ql
G —g GQ

Unlike the normal dual-phonon scattering case, the
momentum conservation for umklapp processes requiring
that q, +q2 ~ Q ~max[Q;„, q, —

qual], the low-integral
limit of dQ is the bigger one of lq, —

q2l and Q;„. As
shown in Figs. 3(a) and 3(b), the minimum wave vector of
Q;„ involved in umklapp processes is G —2k+. It will be
clear later on that the dominant contribution is from the
two phonons with nearly the same wave vectors. There-
fore, the low-integral limit can be chosen to be just Q
This simplifies H(u„u2) greatly. It allows H(u„u2) to
only depend on u

&
+u 2 not on the two-independent vari-

ables u, and u 2. We denote the corresponding minimum
energy of phonons involved by 8=cg;„. After finishing
the integral of the 5 function, the H function becomes

[+ I
+ ~2 ~]/2kF~

H(u&, u2)= —Cf dx J(x —8/2kFc), (17)
0/2kF V

2
y cos(any')

J(x)= dy'
1 —x ]+yy 2

from umklapp electron —dual-phonon scattering process-
es is

ImX(p, co)=2f du, du2H(u, +uz)[nii(u2)+nz(u2)]

X [2n~(u, )+nF(u, —u2)+nF(u &+uz)],

(19)

where the integral limits is determined by the condition
that 0 ~ [u, +u2] ~ 28D. The evaluation of Eq. (19) be-
gins with the integral of u& by parts. It is worth noting
that the H(u ) in Eq. (17), in fact, is dependent on
u/2kFc, so at very low temperatures, the three terms in
the second square bracket of Eq. (19) become 5-like func-
tions. It is easy to see that the dominant contribution is
from the middle term. Because of the condition
u&+u2~0, the peaks of the other two terms in the
square bracket of Eq. (19) are out of range and only the
middle term —BnF(u, —uz )/Bu, =5(u, —u2) has a peak
when u, = u 2. Equation (19) now becomes

ImX(p, co)=2f du[ning(u)+nz(u)] f "dy H(y) . (20)
Q~ /2 Q~

Because of the sharp decrease of nF(u) and n~(u) for
large u, the main contribution in integral of H(y) in Eq.
(17) is from y =8/2kFc. Then we have

2
cosao

J(x)= x+O(x ),(1+) )

mz(2k+ ) 2EFC=
(4vr) G(nM) uFc

2 coscxp
H(y)= ——

2 (I+y)

2

2kFc

2

o=2r k

y = (2kF /q T„)2 .

~z(2kF ) V(2k~ )

, '. y-
2(4') G(nM) uFc

0
2k~c

2

For convenience, we have introduced the J(x) function
with x =(Q —Q;„)/2kF. The self-energy of the electron

It is a good approximation to replace the Bose and Fermi
distribution nz(uz) and nF(u2) each by the Maxwell dis-
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tribution exp( —u2/T). Then the integral of u can be
done easily. The low-temperature resistivity from dual-
phonon processes is derived as follows:

pdph= =BT exp( —8/2T), (21)
ne ~

(2k~)
dph 4 3 n 2

( M)2 —6G g is=2k~

The numerical calculation is done for lithium. Some

3.0 x 10

TABLE I. The crystal parameters of lithium (Refs. 11 and
12). n is the density of electron and a is for crystal constant.

n =4.7X10 ~ cm
kF =1.11X10 cm
uF =4.7 X 10 cm/sec
z —12
a =3.491X10 ' cm
G =2 55X10 cm
r, =0.92 X 10 cm

qTF = 1.64X 10 cm
oD =330 K

0
0.15

25.0 x )0

20

I I

O.30 0.45 0.60
x = (Q- Q;„)/2k F

0.75

useful crystal parameters are listed in Table I. In order
to obtain quantitative result, the crystal structure of lithi-
um, at very low temperatures, is still assumed as bcc,
though recent neutron scattering experiments reveal that
it is a 9R structure below transition temperature of 70
K 13

The plots of J(x —8/2k~c) and H(y) are given in
Figs. 4(a) and 4(b). H(y ) can be replaced by
0.45C(JP 8/2kFC ) as sllow11 111 Flg. 4(b).

In the coefficient 8, only c is difficult to be determined.
The average sound velocity in lithium crystal is nearly
5 X 10 . However, the c should be much smaller than the
average sound velocity c, since (1) c is the average veloci-
ty measured at q =Q;„/2=(G —2k~)/2, and c is at
q =0; (2) c favors smallest values of c. According to
the empirical relation Q;„c=0.20D, c =2. 6 X 10 can be
obtained. Considering above reason (2), we take
c=2X10, then Bdp&=1.OX10 ' QmK ". Since the
theoretical result of the resistivity for umklapp single-
phonon processes is only available from the variational
calculation, in order to compare our result with the one
from single-phonon processes directly, the calculation of
resistivity for single-phonon based on the Matsubara
method is given in Appendix B. The ratio of resistivity of
dual phonon to single phonon can be derived from Eq.
(24) as

T EPdph dph F I 0/2 Te
Psph sph (kgc ) I (22)

+=10

It is found that the resistivity resulted from dual-phonon
process will be larger than the one due to the single-
phonon process below 4K.

IV. CONCLUSION

0.)6
x =u&+ 0&

0.)7 0.18

Flax. 4. (a) The plot of J(x —0/2k„c), where x =Q/2kF.
(b) The plot of H ( u

&
+u 2 ) and its fitting line

y (x)=0.48(x —0) . The line with the solid circle is for
H(u &+ u2) and the asterisk for y(x).

In this paper, we calculate the contribution from
electron —dual-phonon scattering including both normal
and umklapp processes to the low-temperature electrical
.resistivity for alkali metals. It is found that the contribu-
tion from normal electron —dual-phonon scattering pro-
vides the low-temperature resistivity a T term, and its
coefficient is proportional to (m /M) . It follows that the
magnitude of this term is smaller than the Bloch T term.
It is hard to be observed in the temperature resistivity ex-
periments. Considering umklapp processes it is found
that the low-temperature resistivity caused by
electron —dual-phonon scattering follows nearly
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the same exponential decrease temperature relation
Bd h T exp( 0—'/T) as by electron —single-phonon
scattering but with the different parameters. The
coefficient Bdph is proportional to (m/M), and 0' is
only half of O. This reduction for the exponential func-
tion is significant for low-temperature resistivity of alkali
metals, especially for metals with high OD. According to
our calculation, the resistivity from dual-phonon process-
es will be larger than the one from single-phonon process-
es when the temperature is below T=4 K. However, this
term is difficult to be detected in the lithium resistivity
experiments. This is because the T terms due to
electron-electron interaction and inelastic impurity
scattering begin appearing at T=10 K. These two terms
will be dominant below this temperature. ' In Appendix
8, we also consider the contributions from the second-
order interaction from the single-phonon Hamiltonian
II,' . It is found that these contributions do not affect our
results.

(a)

/
/

/
I

l /
I I

ltd+ ~CO)

ice, p p+q~ + G@

IQ)), qq

+ '~1+ '~2
p+q, + q2+6&

(b)

/

/
I
I

I

lm, p

l4J+ i' ~

p+q) +G)

~4p), qq le~ q2

/
/

I
I

~ im+ iw„+ i'd& i
I I

p+ qq+ qp+Gp

IQ)+ IQJp

p+ qua+6@

\

i(d, p

~ iu+iu& ~

p+q~+G~ im, p
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FIG. 5. The Feynman diagrams for the contributions from
the second-order matrix elements of single-phonon Hamiltonian
H p There are three diagrams which are shown (a) and (b), re-
spectively.

APPENDIX A

There are only two self-energy diagrams for the
second-order interaction from the single-phonon Hamil-

tonian H,' which are related to our problem. These two
diagrams are shown in Figs. 5(a) and 5(b), which may
cancel the BT exp( 0'/T) ter—m. They can be written
as follows:

&'(p, ~)= 1
2

q
2

q ] 1

/3 ~ ~ q q G G G C01+COq CO2+CO LCO+ 1 C01 kp+q +G 1 CO+ 1 CO1 kp+q +G

X"(p,co) =

x
l Ct) + 1 Ci) 1+ l CO2 gp+ q +q +G

1 2' q 2coq
1

P ~ ~ q q G G G ~1+~q ~2+CLq 1M+i&1 gP+q +G 1&+1&2 gP+q2+G

1~+~1+~2 4p+q&+q2+G2

These two diagrams have similar structure. In each of
these two diagrams, there are three intermediate states
available for scattered electron. In diagram (a), electron
is scattered from the initial momentum state p through
three intermediate states and finally back to the initial
state p as follows: p ~p+ q, +G, ~p+ q, +q, +G2~p
+q+Cx3 —+p. Only the last intermediate state in these
two diagrams is different.

From the calculation of Eq. (19), the essential condi-
tion for obtaining BT"exp( 0'/T) term is tha—t the low
limits of the momentum integrals q& and q2 must satisfy
q &

+q2 q;„ for intermediate states.
In these two diagrams, if the first intermediate state is

an umklapp process, then the low limit of the momentum

I

integral q& will be from q;„and the above essential con-
dition is not satisfied; if the first intermediate state is nor-
mal process, the above essential condition is not satisfied
either. Therefore, the two diagrams cannot give rise to
the T exp( 0'/T) term. —

We conclude our discussion by noting that the
BT4exp( —8'/T) term due to dual-phonon processes
cannot be canceled by the second-order matrix element of
the single-phonon Hamiltonian M,' .

APPENDIX B

The self-energy for umklapp single-phonon processes
can be derived using Matsubara Green's-function method
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as follows:

gX(P, i co„)= —1/P g g g f M +G k
(2tr )

X G (p+ q+ G, i co„+iq„)

2nMco

1/2

XDk(q, iq„),

V(q+G)(q+G) e k .

This expression has many similarities as the one for
dual-phonon processes as follows: (l) the phonons of
both longitudinal and transverse polarization can scatter
electrons. As in the dual-phonon case, the summation
over polarization modes gives a polarization factor
~G+q~; (2) the electron-ion interaction potential can be

&=8 T2e —o
sph

= z 1B,t,h =
3 [GV(g)]s 2k4~ nMc GUF

g F

(B2)

X 1— T 1 T
kFc 2 kFc

At low temperatures, T/kFc «1, the last two terms can
be neglected.

approximately written as V(2kF); (3) the 5 function for
energy and the momentum conservation condition has
the same form except that Q is replaced by q.

The resistivity formula for the umklapp single-phonon
process is

I
Psph
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