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Rigorous theories in differential-equation approaches for the diffraction of all waves from planar
media with general periodic structures (gratings, single-crystal slabs, etc.) are studied based upon a
united viewpoint. In order to do this without duplicating derivations of the existing theories for
spinless or relativistic electrons and electromagnetic waves (light, x rays, etc.), we construct all the
theories of this kind for both spinless neutrons and relativistic neutrons. Some of them are the only
rigorous theories that are suitable and efficient for numerical calculations in their exact forms and at
the same time provide a clear physical picture for the diffraction phenomena. We derive explicit re-
lations between the different types of exact theories for the same wave-diffraction problem, compare
the diffraction theories of the same type for different waves, and illustrate the common particulars
of these theories. In addition, we present a new and most efficient form of solution for a limiting
case of the diffraction systems and clarify previous misinterpretations about the limiting case.

I. INTRODUCTION

Wave diffraction from planar media with periodic
structures is a common phenomenon. The waves referred
to in this paper are matter waves of electrons and neu-
trons and electromagnetic waves (light, x rays, etc.). The
slab media with periodic structures are usually gratings
or ideal single crystals.

Many theories for such diffraction phenomena are pro-
posed in the fields of spectroscopy, holography, acousto-
optics, electron microscopy, and x-ray and neutron crys-
tallography. Most of them are approximate theories'
based on many simplifying assumptions such as weak
coupling, a very thin or semi-infinite medium, negligible
backward or forward scattering, and some "difficult-to-
justify"' assumptions. These theories are thus applicable
only in limited parameter ranges. Among the review arti-
cles and monographs, ' " the book by Cowley" intro-
duces the crystal-diffraction theories for x rays and spin-
less electrons and neutrons in the unified viewpoint of an
approximate integral-equation approach.

Rigorous theories based on differential-equation ap-
proaches have also been developed for the diffraction of
spinless el'ectrons' ' and relativistic electrons' ' from
planar ideal crystals and for the diffraction of electromag-
netic waves from gratings with one, ' two, and
three ' grating vectors. The last case includes the x-ray
diffraction from ideal crystals. Some of these are the
only rigorous theories that are suitable and efficient for
numerical calculation and at the same time provide a
clear physical picture for the diffraction phenomena. A
rigorous theory means here an exact solution of a wave-
diffraction problem that is simulated by a given model for
the diffraction system and a given equation for the wave
motion.

There is also a ground of unification for all types of
rigorous theories of wave diffraction from planar media

with periodic structures that are based upon differential-
equation approaches (Sec. II). In this paper we derive for
all waves, based on this unified ground, the explicit rela-
tions between these theories through the constructions of
all of these types of theories for both relativistic (Sec. III)
and spinless (Sec. IV) neutrons. With such a presentation
we can avoid duplicating the derivations of the aforemen-
tioned existing rigorous theories' for electromagnetic
waves, spinless electrons, or relativistic electrons. Gen-
eral discussions and conclusions are itemized (Sec. V).
In particular, a new and most efficient method to solve a
limiting case of the diffraction problems is presented (Sec.
III D) and, as a by-product, some previous misinterpreta-
tions about the limiting case are clarified [part (viii) in
Sec. V].

II. THE COMMON MODEL
AND THE METHODS OF ANALYSIS

The formulation of the theories of wave diffraction
from planar media with periodic structures is usually
based on the same simplifying model for the various
diffraction systems. In this model, (i) the medium is pla-
nar with finite thickness d and infinite lateral extension
(region II with 0~z + d in a chosen frame) and bounded
on both sides by uniform regions (region I with—~ (z ~0 and region III with d ~z ( ~), (ii) the in-
teraction between the wave and the medium is terminated
at the surfaces of the medium, (iii) the effect of the pres-
ence of inelastic scattering on elastic scattering may be
taken into account as "absorption" by adopting complex
interaction functions, and (iv) the incident wave is an
arbitrary stationary plane wave [coming from region
I with the wave vector ko= k&&( sin8', 0, cos8')].

The main diffraction analyses are based on integral
equations, " differential equations, and direct numerical
integrations. The last approach belongs to numerical
analysis, in which the wave equations are directly in-
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tegrated numerically through complicated algorithms to
obtain numerical results. Physical insight is completely
obscured. In an exact integral equation approach, the
formal solution of the scattering matrix is operationally
defined in terms of a perturbative series. The series can-
not be summed exactly, in general, and the high-order
perturbative terms are hard to calculate. This approach
is not suitable for numerical calculation in its exact for-
mulation.

In the studies of the wave diffraction from periodic
structures through differential-equation approaches,
mainly three types of expansion forms are used for the
wave function. A11 are guided by the Bloch's theorem.
They are the Bloch-wave, coupled-wave, and semire-
ciprocal expansions. The corresponding theories are
clearly established on a uni6ed ground. It consists of the
common model for all the diffraction systems of planar
media with periodic structures on one hand, and the
same Bloch's theorem for the basis of analyses for all the
waves on the other hand. The only variations are in the
wave expansion forms and the wave equations.

III. EXACT THEORIES
FOR RELATIVISTIC NEUTRONS

The time-independent Dirac-type wave equation for a
relativistic neutron is

Ica p+Pmpc —W+ U(r)
—pP[o".H(r) —ia.E(r)] I Q(r) =0 . (1)

Here mo, W, and p ( = —1.91eR/2mpc ) are, respective-
ly, the mass, the positive relativistic total energy, and the
magnetic dipole moment of the neutron. c is the speed of
light, A is Planck s constant h divided by 2m, i is the
imaginary unit, and e is the magnitude of electron charge.
p= —iA'V is the momentum operator. P and the three
components of a are the Dirac spinor operators, which
are 4 X4 matrices in the Dirac representation:

0 0 0 1 0 0 0 —i

which is a sum of Dirac delta functions. Here R',."' is the
position vector of the dth nucleus in the ith crystalline
cell, and b "' is the bound coherent scattering length ' '

of the neutron.
The functions U and V have the same periodicity of the

crystal lattice. We shaH consider nonmagnetic and anti-
ferromagnetic substances only. Then the magnetization
M is zero outside the crystal and its periods inside the
crystal are the integral multiples of the periods of crystal
lattice in the corresponding directions. Thus, the basic
reciprocal-lattice vectors b, (r =1,2, 3) of this periodic
diffraction system as a whole are those of the periodicity
of M. In terms of them, the functions U and V as well as
M may be Fourier analyzed. The Fourier coefficients are
designated, respectively, as Umnt& ~mnt& mnt& mnt& and
8 „„'forexample,

U(r)= g U „,exp[i2m(mb&+nb2+tb3) r]
m, n, t

(3)

with m, n, t =0, +1,+2, . . . . The uniform regions outside
the crystal are assumed here to be vacua. According to
the Bloch's theorem, if the coefficients of a linear and
homogeneous differential equation are truly periodic
(characterized by b„), there are particular solutions
known as the Bloch waves:

where v „,( K ) are constants depending on the Bloch
wave vector K.

A. Rigorous Bloch-wave analysis

Guided by the Bloch's theorem we may expand the
wave function in each region into a linear combination of
the Bloch waves (with constant coef6cients):

m, n, t

vK(r)= g v „,(K)exp[i2m(K+mb, +nb2+tb3) r],
m, n, t

(4)

0 0 1 0 00100' ~ 0
0 i 0
—i 0 0

X exp[i(n „,+xi, ) r'] (5)

0 0 0 i 0 0 0 where

0 0 1 0
0 0 0 —1

z 1 0 0 0
0 —1 0 0

1 0 0
0 1 0
0 0 —1

0 0 0

0
(2)

and

n „,= sin8'i„+(coop —sin 8')'~2i,

+(mb&+nb2+ tb3)/kp,

The wave function g is then a four-component spinor.
cr = —ia Xa/2 is the spin operator.

E and 8 are related to the static electric potential V
and magnetization M by E= —VV, 8=V X A, and
A= —f M(r, ) X V(1/~r —

r& ~ )dr, where dr, is a volume
element. U is a scalar potential incorporated here to
simulate the neutron-nucleus interaction by assuming
zero net spin for the nucleus. Owing to the short-ranged
nature of the interaction force, the Ferroi point potential
U =(h /2mmp)g; db '5(r —R',. ') may be used, '

k =1/A, =+(W —m c )'~ /ch .

Here

(U~)/( W —moc')]

X [1—Re( Uoop)/( W+mpc 2)]

is the permittivity for the neutron wave in a region in
which the neutron-nucleus interaction energy is equal to
the constant averaged value Uooo. The symbol Re stands
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for taking the real part. i (j =x,y, z) is the unit vector in
the j direction. Clearly, here the Bloch wave vector is
KBw=kQ( sin8', 0, +(EQQQ

—sin 8')'~ +x}, in which only
x is an undetermined parameter. Here v „,(x) is a con-
stant spinor coefficient since the wave function g is a spi-

I

nor function. a(x, ) is a constant scalar coefficient. To
find the allowed values of x, and the corresponding spi-
nors v „,(x), we substitute the expansion form (4) of the
Bloch wave with the Bloch wave vector K=K&w into
Eq. (1) and obtain

[a.(n „,+xi, )+ (m Qc p —W}/chkQ]v „,

+(1/chkQ) g [U „„,, p/3(—o H „„,, ia—E „„,, )]v„, =0,
Q)V)W

(6)

where the subscripts u, U, w =0,+1,+2, . . . are just the same as m, n, t. We may multiply the set of equations in (6) with—n, and obtain an equivalent set of equations. The latter may be cast into the form of a grand matrix equation as

(C —xl)v=0, (7)

with

where the superscript t stands for matrix transpose, and with

ie, —n,

+ lny iex + ey

s1 —u+h,
—h —ih—X

—nx + lny +iex + ey

ie, —n,

h —ih—x —y
—s 1+u+Il,

1/s —u —h,

h„+ih

—ie, —n,

n +in +ie —e

—h +ih
—1/s +u —h,

—nx +iny —iex —
ey

—ie, —n,

Here v (the subscript p, q =1,2, 3,4) is a column matrix with elements (y ) „,=v „, , while v „, is the pth element of
the spinor v „,. The submatrix n is diagonal with diagonal elements n „,which are the j components of the vectors
n „,. The elements u „„, , ej „„, , and h j „,„, of the square matrices u, e~, and h~ are, respectively, related to the
Fourier coeKcients Umnt Vmnt, and Mmnt of U, V, and M as

mntuvw 1 kQ ) Um —u, n —v, t —w

jmntuvw (P/ kQ)( m —u n —v t —w j QQQj )1 m —u n —v t —w r

jmntuvw ( )rP/ kQ)[Mj, m —un —v, t —,w ™m—u, n —v, t —w (nm —u, n —v, t —w QQQ)( m —u, n —v, t —wj )iQQQJ')

X (n „„,, —
nQQQ) ],

(10)

and s =[(W —mQc )/(8'+mQc )]'~ . Equation (7) shows that to determine x and y is a standard eigenvalue and
eigenvector problem.

In region II, C=C". The eigenvalues of C' and their associated eigenvectors shall be labeled as x„', and y'„, , re-
spectively. Using these and Eq. (5), we write the spinor wave function inside the crystal as

(1 1)
Q) V) U)) g m, n, t

Here v"„,„, is a spinor with elements v"„t~„, ~
=(v'„', ) „t~, and a„", is the scalar expansion coefficient associated

with the (u, u, w, q)th Bloch wave.
In a vacuum region U= V=M=0. In this case it is simpler to set n „„=0.The submatrices in C' are all diagonal

(here the superscript v refers to a vacuum region) and hence Eq. (7) can be decomposed into independent spinor equa-
tions

(12)

wit'x the spinor operator

0 mntx ~ mnty 1/s 0

Cmnt
nmnyx + lnmnty

0

0

0

0

0

mntx + lnmnty

—1/s
4

nmntx ~ lnmnty

0



39 EXACT THEORIES FOR LIGHT, X-RAY, ELECTRON, AND. . . 10 643

The spinor components lit' „,=v" „t(x")exp[i(n „t„x'
+n „,y'+x"z')] in a Bloch wave are already the com-
mon eigenfunctions of the Hamiltonian operator for a
neutron in vacuum (Ho =ca p+ mac P) and the momen-
tum operator p, belonging to positive eigenenergy 8'and
eigenmomentum hko(n „t,n „ty, ~"). In order to study
the polarization ' of the neutron waves, we require each
elementary wave to possess a definite helicity (which is
the spin projection value along the direction of momen-
tum in the unit of ih'). This is possible because the helicity
operator cr p /2~p~ commutes with p and Ho. From the
requirement of (cr p/2 ~ p ~

)P' „,=co "tttt" „„wehave

(14)

where cu' is the helicity eigenvalue and h '„=a' n' „t/2~n' „,~
is a spinor operator. Thus, the eigen-

spinor v' „, must satisfy both of Eqs. (12) and (14).
The eigenvalue pair (x', co') has four pairs of solution:

takes a positive (real or imaginary) value. The four pairs
of signs (+,+) in the eigenvalue pairs will be used to la-
bel the associated nondegenerate eigenspinors, which are

where the superscript p in a'p„, and v'p„t stands now for
the four sign pairs (+,+), while in n'~„t it stands only for
the first signs in these pairs: n' —„,= ( n „, , n „, , +g „,).
z o' takes the value 0 in region I and the value d'
(=2vrkod) in region III. The eigenmomenta and wave
vectors may be either real or complex since g „, can be
real or imaginary, corresponding, respectively, to propa-
gating waves and evanescent waves. Since the eigenspi-
nors v' —„,—associated with a real g „, are normalized to
one, their associated coefficients a' —„,—are the (relative)
amplitudes of the corresponding (m, n, t)th-order propa-
gating plane waves. And ~a"+„t

~

are the numbers of neu-
trons in a unit volume. Moreover, for these propagating
waves, the first + signs in the upper indices of a"—„,—indi-
cate the senses of momentum projection of these
(m, n, t)th-order waves along the z axis. The second +
signs label the senses of spin projection along the direc-
tion of momentum.

Before we go further, we shall show in the next subsec-
tion that the solutions of ttt' and t)'t" just obtained by the
rigorous Bloch-wave (RBW) analysis may also be ob-
tained by the rigorous coupled-wave (RCW) analysis.

v+ +
~ =N

&mnt

mntx mnty gmnt
—I
mnt

(nmntx nmnty )0mnt

&0mnt

B. Rigorous coupled-wave analysis

Also guided by the Bloch's theorem, we may expand
the wave function in each region as

v+—
=N

~mnt

mntx mnty )9mnt
—1+ Imnt

+ ( mntx mnty )rimnt
—1S Imn

(15)

g a "~„tv"~„texp[in'y„t (r' —zo"i, )],
m, n, t p

(16)

with g „,=+(1—g „,) ', ri „t=+(1+/ „,) '~, and
N = +[2(1 +s )]

The explicit wave function in a vacuum region is now
solved analytically to be

Q(r') = g y „,(z') exp(in „, r') .
m, n, t

(17)

This is a modified form of a single Bloch wave with its
constant expansion coefficients of the plane-wave com-
ponents being replaced by the depth-dependent
coefficients tp „,(z'). Here y „, is a spinor since lit is.
n „, and r' are defined exactly the same as in the RBW
analysis (Sec. III A). Here the Bloch wave vector for the
original unmodified Bloch wave is completely fixed as
Kcw=ko( sin8', 0, +(Eooo —sin 8')'y ). Substituting the
expansion form (17) into Eq. (1), we obtain a set of cou-
pled differential equations for the variable spinor ampli-
tudes gmnt

dy „,/dz'= ia, [a n—„,+(mac P W)/chko]p —„,

+(1/chko) g [U „„,, pP(cr H— „„,, —ia E „„,, )]tp„„
Q, v, w

(18)

which may be cast into a grand matrix form as

dy/dz'=iCy . (19)

with the constant matrix coefficient C . According to
matrix theory, its solution has the following two
equivalent forms:

Here the matrix C is exactly the same as that given by
Eq. (9) in the RBW analysis. tttt'=(y', cpz y3 y4) and the
elements of the column matrix ~y are y „, , while the
latter are the pth elements of the spinors y „,.

In region II, C=C . Equation (19) is a linear and
homogeneous matrix differential equation of first order

tttt"(z') = exp(iC "z')
tp( )0

=T"exp(ix"z')a" . (20)

Here x" is a diagonal matrix with the eigenvalues x,ppwq

of C" as its diagonal elements. T" is a square matrix
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m, n, t u, u, w

(22)

This solution is in fact exactly the same as that obtained,
in Eq. (11)by the RBW analysis.

In a vacuum region, it is again more convenient to set
n „„=0as we did before in the Bloch-wave analysis. In
this case, u =ej=h~=0. Then, Eq. (19) may be decom-
posed into independent spinor equations

d pm~f. Idz ECmni prnn (23)

Here C"„, is also exactly the same as that given by Eq.
(13). The general solution of Eq. (23) is in the form
y" „,(z') = exp(iC'„, z')y' „,(0). Furthermore, we also
require this spinor to be expanded into helicity eigen-
states as we did in the RBW analysis. Then, it has the
form

y' „,(z')=T'„, exp[ix" „,(z' —zo )]a'„, , (24)

v' —„,—are exactly those given by Eq. (15). x' „, is a diago-
nal spinor operator with diagonal elements g „„g„„

and —
g „, arranged in this very sequence.

nor with constant elements. Substituting the solution (24)
back into Eq. (17), we obtain the wave function in a vacu-
um region as

which consists of a row of the column eigenvectors y'„',

belonging, respectively, to eigenvalues xppwq and these
column matrices are arranged in T" in the same sequence
as x'„', are arranged in x'. That is, the elements are

column matrix. From the solution of cp" given by Eq.
(20},we obtain the solution of the spinor y"„, as

(21)
Q, V, W

Here T „,„, and x'„',„are, respectively, the spinor opera-

is clearly an arbitrary constant spinor. Substituting Eq.
(21) back into Eq. (17), we obtain the general solution of
the wave function inside the crystal as

„,(z') = g a (x)v „,(x) exp(ixz') (26)

between the factors in the two kinds of expansion forms.
This equality simply means that the depth-dependent arn-
plitude q& „,(z') in the RCW analysis is further expanded
as such in the RBW analysis. If we substitute the expan-
sion form (26) into Eqs. (18) and (19) in the RCW
analysis, we immediately obtain their corresponding
equations (6) and (7) in the RBW analysis, respectively.

The boundary conditions g'(x, y, 0)=g"(x,y, 0), and
P"(x,y, d) =g"'(x,y, d) imply

a Ip up ~ a II II
amnt +mnt ~ auvwq +mntuvwq

p u, u, w, q

a IIIp/up = M a II
mnt +mnt ~ uvwq +mntuvwq

p Q, v~ W, q

x exp[i(n"„„+x'„',„,)d']

when Eqs. (16) and (11) are used; or equivalently

~u aI ~ g II aII
mnt mnt ~ mntuuw uuw

Q~U, W

~v a III ~ g II" mnt mnt ~ mntuuw
Q, V, W

X exp[i(n"„„+x'„', d')]a„"„

(27a)

(27b)

when Eqs. (22) and (25) are used. Either Eqs. (27a) or
(27b) may be cast into the same grand matrix forms as

Tu I TIIa II

T'a "'=X(in "d')T"exp(ix "d')a" (27c)

where

C. Exact RBW-RCW theory

By applying RBW and RCW analyses, we have ob-
tained in the last two subsections exactly the same gen-
eral wave solution in each region. Apparently, here the
RBW theory and the RCW theory are not only
equivalent as they ought to be. They are actually the
same theory. Under our choice of the Bloch wave vec-
tors in the Bloch-wave and coupled-wave expansions
(namely, K~w =Kcw+ koxi, ), the close relationship be-
tween the RBW and RCW analyses are transparent in
each step. For instance, by comparing the expansion
forms (5) and (17},we can see the correspondence

m, n, t

T'„, exp[in' „, (r' —zo"i, )]a'„, , (25) u+
V+

a'
U+ + a U

—+

a U (28)

where n" „,=(n „, , n „,~, &c' „,) is rather a spinor opera-
tor. This solution is also exactly the same as that given
by Eq. (16) in the RBW analysis.

with the superscript U in a'+ —standing for I or III. The
elements of a' ——are a' —„,

+—,X(in,"d') = [ exp(in,"d')5~ ],
and

(n„in~ )g-
g

—1

T'=W
s (n„in~ )g-

sg
—1

(n„in )vg—

s(n„in )ri-
s'g

—s (n in~ )(—
sg '

(n„in )g—
—s (n„in~)p-

s'g

(29)
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Eliminating a" from Eqs. (27c), we have

a =Ma (30)

with

M = ( T") 'T" exp( i—x"d')( T") 'I( in —"d') T" . (31)

The given "initial conditions" are that the incident neutron wave is a single stationary plane wave coming form re-
gion I and it belongs to the positive relativistic total energy 8 and the wave vector k0=k0n000. Thus we have
a +=a"' =0, a ++=b+(0 0 1 0 0)'and a' =b (0 0 1 0 0)', when the (0,0,0)th elements
app p* are arranged in the middle of the corresponding column matrices a"—.These and Eq. (30) determine the
diffraction amplitudes a „,+, a'„, , a"„',++, and a '„,+ . ' ' And we have g;„,=(b+vppp++b vppp )exp(inppp r').
Clearly, ~b

—
~

are the numbers of incident neutrons per unit volume with the eigenmomentum hkp and, respectively,
the helicity eigenvalues +—,. The explicit expression of the wave solution is then

g'=(b+vppp++b vppp ) e xp(i2~k pr)+ g (a'„,+v' „,++a'„, v' „, ) exp(i2lrk „, r),
m, n, t

with

II II II ~ IIX X auvwq Vmntuvwq P 'Ir
mnpuvwq

m, n, t u, v, w, q

(alll+ + v+ ++aIII+ — v+ —
) [

~

2 kT
m, n, t

(32)

k"„,„, q
=kp sinO'i, +kp[(Eppp sin 0')' +x'„', q]i, +mb, +nbz+tb3

R v— T v+
kmnt k0 mnt ~ a d kmnt k0 mnt

D. The limiting case and a new approach

There is a limiting case for the diffraction systems. It
is the case that a basic reciprocal-lattice (or grating) vec-
tor, say b3, is exactly perpendicular to the medium sur-
faces (i.e. , b3=b3i, ). In such a limit, the x and y com-
ponents of n „, will become independent of the subscript
t. Thus, in the vacuum regions, the wave vectors and
hence all the t-dependent quantities in the wave function
given by Eq. (16) become t independent. Hence, instead
of Eq. (16) or Eq. (25), we have

g"= g g a'~ v'I'„exp[in'~„(r' —zp"i, )],
m, n p

(33)

+kpx'„', q+tb3]i, +mb, +nb2 .

There are two methods to solve for the amplitudes a' „—
and a"„'++— of the (m, n)th-order diffraction waves. We
shall introduce them in the RBW analysis only.

The first method is to use still the expansion form (11)
for the wave function in the crystal. Applying the bound-
ary conditions to wave functions in Eqs. (11) and (33), we
obtain

in which the wave vectors are k „=k0n'+„

nor vg„have the same from as Eq. (15) with the subscript
t suppressed. While inside the crystal, the wave vectors
have t dependence only in their z components:

&Ip &Ip —~ ~ II II
mn mn ~ ~ auvwq +mntuvwq

t u, vwq
(34)

& IIIp vp g II II
uvwq mntuvwq

t u, v, w, q

X exp[i (n"„„+x'„'„q)d'].

mn ~ mnt ~

IIIp ~ IIIp
mn ~ mnt

t
(35)

Thus, the RBW-RCW theory for the general case is still
applicable to the limiting case with the help of Eqs. (35).
Physically, this result means that when the direction of b3
approaches in the limit to that of the crystal's normal,
the diffraction waves with different order number t but
with the same order numbers m and n, the same sense of
propagation, and the same helicity collapse into a single
(m, n) th-order wave. Consequently, their amplitudes
must be summed coherently as given by Eqs. (35). This is
the same as the corresponding approach in the RCW
theories in Refs. 15, 17, and 25.

The second method that we shall introduce is a new
approach. In Eq. (11), the wave function inside the crys-
tal is expanded by all the Bloch waves for the particular
periodic system. Now we shall expand it instead by sub-
set of the Bloch waves:

Now we use Eq. (27a) with v'~„, =vg„ to define the auxili-
ary quantities a'p„t and a"„'p. These are then related by
Eq. (30), as we have shown. By comparing Eqs. (27a) and
(34), we see that the unknowns ag„and a"„'I' may be cal-
culated from the simple summations:
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II II IIX +uvq g Vmntuvtvq
u, v, q m, n, t

X exp[i (n"„t+x '„'„qi, ).r'] . (36)

X QX(in "d')T" ' 'Tv (37)

The column matrices a' and a"' and the square matrix
T' have the same form as defined, respectively, in Eqs.
(28) and (29). But in them the column submatrices a' ——
and the diagonal submatrices n„, n«, g, and q) have in-
stead, the elements a"—„—and the diagonal elements
n „„=sin9'+(mbi„+nb2„)lko, n „«=(mbi +nba )I
ko, g „=+(1—g „) ', and ri „=+(1+/ „) '~2, re-
spectively. The diagonal elements of the diagonal ma-
trices nt", and x" are n"„„adnx'„', (with an arbitrarily
fixed Itt for each given triple of u, v, and q). And T," is a
square matrix with elements (T, ) „«„,q =(v„,

q
)

(with Iit fixed exactly the same as in x'„', ).
The explicit expression of the wave function in this

limiting case is then

This may be obtained from Eq. (11) by deleting the sum-
mation on the subscript w. Here m takes an arbitrarily
fixed value for each given triple of u, U, and q.

When the boundary conditions are applied to the re-
duced expansion form of g" in Eq. (36) and the waves f'
and t/r' ' given by Eq. (33), the result may be also be cast
into a grand matrix from like Eq. (30), namely
a'=M a"', but the contents in each matrix are di6'erent.
Here,

M =(T') '

HATT'

exp(ixi'd')

Furthermore, the minimal number of di8'erent Bloch
waves used inside the crystal in the second approach
must be equal (or one-to-one corresponding) to the num-
ber of waves in either of the vacuum regions. But the
choice of this subset is entirely arbitrary. Inside the crys-
tal, the nonuniqueness of the amplitudes of the Bloch
waves in the first approach and the arbitrarines of the
choice of the subset of the Bloch waves in the second ap-
proach are expected to come from the same origin.
Indeed, looking at a single Bloch wave in this limiting
case,

m, n, t

(39)

we see that it can in fact phase match a plane wave of any
order in a vacuum region on the interface. The Bloch
waves are thus all equivalent in this limited sense. This is
the reason why any arbitrary subset of them may expand
the wave function inside the crystal as long as the number
of the different Bloch waves in the subset is equal to (or
greater than) the number of plane waves in either of the
vacuum regions.

E. Rigorous semireciprocal theory

In addition to the Bloch-wave and coupled-wave ex-
pansions, there is still another expansion form that is also
guided by the Bloch's theorem. it may be obtained by
absorbing the z-dependent phase factors in the coupled-
wave expansion form (17) into the z-dependent spinor
amplitudes. Namely,

P'=(b+voo+ ++b voo+ ) exp(i2qrko r) f(r') = g @ „,(z') exp[i (n „,„x'+ n „,y') ] .
m, n, t

(40)

m, n

X exp( i2m.k „r),
II II IIX ~uvqVmntuvtvq

u, v, q m, n, t

This is called semireciprocal approach because only part
of the spatial-coodinate (namely, x and y) dependence is
Fourier analyzed.

Substituting Eq. (40) into Eq. (1) and casting the result-
ing equation in a matrix form, we obtain

X exp(i2qrk"„t„, q r), (38) d @/dz' =iD (z' )N, (41)

qiii ~ (& III+ + v+ ++ III+ — v+ —
)amn +mn amn &mn

m, n

X exp[i2qrk „(r—di, )] .

In both of the approaches to the limiting case, the
same standard eigenvalue and eigenvector problem is in-
volved. The advantage of the first approach is that no
separate considerations for the limiting case is necessary.
The main computation scheme, and hence the main com-
puter program, for the general case is still applicable.
But since here the number of the equations involved is
greater than that of the variables to be solved, this ap-
proach is ine%cient. In the second approach, only about
two-thirds of the eigenvalues and their associated eigen-
vectors need to be calculated and the dimension of the
diffraction-amplitude matrices to be handled is also re-
duced by one third. This is the most ef5cient method.

I

4"(z') = exp T I iD "(z')dz' 4"(0),
0

(42)

where T is the Dyson ordered-product operator. This is
rather an integral-equation approach to the di8'raction
problem, since the exponential matrix-operator function
in Eq. (42) is only defined operationally by a perturbative

where 4'=(O'I 4z @3 N~) and the elements of the column
matrix N«(p =1, 2, 3, or 4) are N „, which are the pth
elements of the spinors 4 „,. But here we shall have no
need to write down the coefficient matrix D(z') explicitly,
except for pointing out that it is z dependent for the re-

gion inside the crystal. In the vacuum regions, we have
D"=C' and @'=p', where C' and tp" are defined in Sec.
IIIB and. y' has already been solved there. Inside the
crystal, we may formally write down the solution of Eq.
(41) as'
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series. Consequently, the rigorous semireciprocal (RSR)
theory is not suitable for numerical calculation in its ex-
act form. '

IU. EXACT THEORIES FOR SPINLESS NEUTRONS

The time-independent wave equation for a spinless neu-
tron is the Scrhodinger equation for a scalar wave func-
tion i)j(r) belonging to a nonrelativistic total energy E:

{V' +(2mo/vari )[E—U(r)]I/(r) =0 . (43)

A. Rigorous BIoch-wave theory

Substituting the expansion form (4) for a scalar Bloch
wave vK(r) with the Bloch wave vector K=KBw (defined
in Sec. III A) into Eq. (43) and rearranging the resulting
coupled equations of the scalar coeScients v „, into a
grand matrix form, we have

[f—n„—n~
—(n, +xl )z]y=O . (44)

Here n~ stands for the same quantity defined in Sec.
III A. The elements of the column matrix y and square

Only RB%' and RCW theories shall be constructed for
spinless neutrons since an RSR theory is not suitable for
numerical calculation' just as we have seen in the rela-
tivistic case. We shall see below that the RBW and RC%'
theories for spinless neutrons are not identical as are
those for relativistic neutrons. Furthermore, the deriva-
tions of the former theories and their relation are less
straightforward. The reason is that while the differential
wave equation for a relativistic spin- —, particle (the
Dirac-type equation) is of first order, its nonrelativistic
spinless limit (the Schrodinger equation) is of second or-
der. Moreover, this difference gives rise to more compli-
cated boundary conditions for the spinless case.

det(C —xl) =0 (45b)

with
—n,

(46)

Equation (45b) is a standard eigenvalue equation for ma-
trix C. Apparently, Eq. (44) is a generalized eigenvalue,
and eigenvector equation. Since this equation is quadra-
tic in its eigenvalue x, the correspondence between the ei-
genvalues x and the eigenvectors y is two to one.

In region II, U=U" and C=C". The eigenvalue
pairs and their associated eigenvectors shall be labeled as
x'„'„q and y„'„(here the superscript q or p stands for the
sign symbol + or —). The former may be calculated by
Eq. (45b). This is an eigenvalue problem in the standard
form. By using its results, the latter are calculated by Eq.
(44). This is an eigenvector problem also in its standard
form. The general solution is then

matrix c, are, respectively, vm«and

the Fourier coefFicient of the complex permittivity 1—U(r)/E for the nonrelativistic spinless neutron wave.
In particular, the averaged real permittivity @000= Re(sooo) = I —Re( Uotm )/E is involved in the definition
of Kzw for this nonrelativistic case. %'e note that since
no magnetic interaction may be considered, here the b„'s
stand for the basic reciprocal-lattice vectors of the true
lattice structure of the medium.

The allowed values of x in this spinless neutron case
are to be solved from the determinantal equation

det[f —n„—n —(n, +xl) ]=0,
which is equivalent' to the usual form of secular equa-
tion

u, u, w, q m, n, t
(47)

where v"„,„„=(y'„', ) „,. In a vacuum region, U=0 and f=1. Here we may also set n „„=0.Hence, Eq. (44) may
be decomposed into the scalar equations [I nmn»

—n « —(x") ]—v' „,=0. Thus, the eigenvalues are x'*„,=kg „,.
The general solution is then

g'(r')= g a "~„,exp[in' „, (r' —zo i, )] .
m, n, t,p

(48)

Here g „„n'—„„and zo are also defined exactly the same as in Sec. III A
The boundary conditions for the scalar wave function governed by the (second-order) Schrodinger equation are

g'(x, y, O)=g"(x,y, O), (Bg'/Bz), 0=(BQ"/Bz), 0, g"'(x,y, d)=g"(x,y, d), and (dg'"/dz), „=(Bf'/Bz), d. Apply-
ing these to the solutions of g' and f"' given in Eq. (48) and f" in Eq. (47), we have

II IIq
mntuuw uuw

u, v, w,

vp Ip
nmntzamnt

P

II IIq II IIq
mntz +Xuuw )Vmntuuw uuw

u, v, w, q

IIIp

u, v, w,

II ~ II IIq i IIq
vmntuuw e p[i (nmntz+xuuw )d ]a»w

q

p a IIIpn mntz am nt
p

X (nmniz+Xuuw )Vmntuvw e p[ (nmntz+Xuuw ) ] uuw
u, v, w, q
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The first (last) two equations may be combined into one boundary condition at z =0 (z =d) in a matrix form. Namely,

Tv I TII II

T'a '"=X(in "d' )T"exp(i x"d')a"

with

(50)

1 1
at

U +
(51)

Here x is a block matrix with two diagonal submatrices x' + and x' on its diagonal in this very sequence. The ele-
ments of a"+—and the diagonal elements of x,' * are a"„, and x „„respectively. X(in,' d') is a block matrix with two
identical submatrices exp(in,"d') on its diagonal, while n, is defined just the saine as in Sec. III. And,

1

~ IITII

—z

0 ~II
+

0
0 0

~II II+
0

(52)

ai=m a"' (53)

with

M = ( T') 'T" exp( i x"—d')

X(T") 'X( in' d')T'—. (54)

Here Y" is the square matrix consisting in a row of the
column eigenvectors y„'„, in the same sequence as x„'„~

are arranged in x"q. That is, its elements are
II II

)mntuttut ( Vuutn )mnt '

Eliminating a" from Eqs. (50), we obtain

df "„,Idz'=iC" „,f '„, (59)

f"(z')=T"exp(ix"z')a", (58)

where T ' is a square matrix consisting in a row of the
column eigenvectors p'„', of C', belonging, respectively,
to the latter's eigenvalues x„, . These eigenvectors are
arranged in T in the same sequence as the eigenvalues
x'„,~ are arranged in the diagonal matrix x". We will
show that the T' defined here is exactly equal to the T"
defined in Sec. IV A.

Since in a vacuum region the submatrices in C' are di-
agonal, Eq. (57) can be decomposed into

These have exactly the same forms as Eqs. (30) and (31)
for the relativistic case, but the contents in each matrix
factor in this nonrelativistic case are difFerent. In partic-
ular, the dimension of the matrix factors here is less by a
factor of 2.

CU—mnt

0
2

mntx mnty
(60)

B. Rigorous coupled-wave theory

2
mnt0 mnt + ~ ~m —u, n —

U, t —WV uvw
u, U, w

(55)

where cp „, is a scalar function. All the other symbols
have been defined previously. Use the so-called "state
variable" " conjugate to y „„which is set to be'

Xmnt t %mnt I + mntz9 mnt (56)

Then, the whole set of equations in (55) and (56) may be
converted into a set of first-order equations for the conju-
gate pairs of variables y «and g „,. The latter set may
be then combined into a grand matrix form as'

df Idz'=iC f (57)

with f '= (tp'X'), where tttt and X are column matrices with
elements y „, and y „„respectively. Here the matrix C
is exactly the same C matrix given in Eq. (46).

In region II, the solution of Eq. (57) is

Substituting the coupled-wave expansion form (17) for
a scalar wave function lt~ into Eq. (43), we obtain

d tp tImdnz' + i2nmntzd9 m„, Idz'
f"„,(z') = T"„,exp[ix' „,(z' z'o)]a "—„, , (61)

where x „, is a 2X2 diagonal matrix with diagonal ele-
ments g „, and —g „„arranged in this very sequence.

f'„, in Eq. (61) may be combined into the solution of f"
as

f"(z')= T"exp[i x'(z' —z'o) ]a",
with T" and a' defined the same as in Sec. IV A. Here x'
is a block matrix with two diagonal submatices x"+ and
x' on its diagonal in this sequence, while the elements
of x' are x"*„,=+/ „,.

From the definitions of y «and y „, given by Eqs.
(17) and (56), we can see that the continuity of wave func-
tion and its partial derivative across a boundary imply
the continuity of the matrix function X(in, z')f(z'),
where the function X has been defined previously. Thus,
the boudary conditions are f '(0) =f"(0) and

f (d')=X(in, d')f"(d'). The simplicity of this form of
boundary conditions for the matrix amplitude f is

where we have set n n„=0 as before. The eigenvalues of
C'„, and their associated eigenvectors are +g „, and
p"+—„,= (1 +g „,)', respectively. Hence
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the reason why we define the state variable g „, in the
form of Eq. (56). Substituting the solution of f in each
region as given by Eqs. (58) and (62) into these boundary
conditions and eliminating the common factor a ",we ob-
tain the same relation between a and a'' as given by
Eqs. (53) and (54).

Now we start to show that the T' defined here is the
same as the T defined in Eq. (52). In another word, the
matrix T" that consists in a row of eigenvectors of C"
and the matrix Y that consists in a row of eigenvectors
of Eq. (44) for region II are related by Eq. (52). From the
definitions off and y „,we have

—id'/dz'+n, y
' (63)

2
g"(z') =Y" g exp(ix z')a "~ .

q=1
(64b)

Substituting Eqs. (64b) and (58) into Eq. (63) and then set-
ting z =0, we obtain

~II IIq

~II ~ IIq IIq+ II~II ~ IIq

q q

(65)

This implies Eq. (52). Q.E.D. Thus, the RBW and RCW
theories for spinless neutrons are equivalent as they
ought to be. And here we have derived the explicit rela-
tion between them, Eq. (52).

The given incident wave in this spinless case is
g;„,=b exp(i2nko r), which implies the "initial condi-
tions:" a"' =0 and a'+=b(0 . 0 1 0 0)'. These
and Eq. (53) determine the diffraction amplitudes a
and a"„'t+. The wave solution is

f'=b exp(i2vrko r)+ g a'„, exp(i2~k „, r),
m, n, t

(66)
u, U, tt), q m, n, t

g a „,+ exp[i2vrk „, (r —di, )],
m, n, t

+mb)+ nb2+ tb3,
and k „, and k „, are defined in Sec. IIIC.

V. DISCUSSIONS AND CONCLUSIONS

(i) We have formulated here the rigorous Bloch-wave
and coupled-wave theories for both spinless neutrons and

The correspondence between the Bloch-wave expansion
and the coupled-wave expansion, Eq. (26), may be rewrit-
ten more explicitly for region II as

(64a)
u, u, ta, q

relativistic neutrons, basing upon the unified ground of
(a) a common model for the wave diffractions from planar
media with periodic structures and (b) the same Bloch
theorem for the basis of wave expansions. The wave
equations are characterized by the particle's spin values
and the particle-medium interactions. The rigorous
theories that are based on the common model and the
same wave equation but different expansion forms are
equivalent, of course. We have pointed out that the
RBVf and RCW theories are the only rigorous diffraction
theories that are convenient for numerical calculation in
their exact forms and at the same time provide a clear
physical insight to the diffraction phenomena. These
conclusions are obviously true also for other waves such
as electromagnetic waves and relativistic and spinless
electrons since for them the equations of motion are also
linear and homogeneous (cf. Refs. 15, 17, and 25).

(ii) The amplitudes of spinless and relativistic neutron
diffraction waves in the RBW and RCW theories are for-
mally solved in explicit matrix forms, which display a
simple numerical calculation shceme and kence can be
implemented on digital computers in a straightforward
manner. No approximations have to be made except for
the necessary finite truncation in series calculations. Pre-
cision of arbitrary levels may be achieved in principle, as
long as the model based on which the theories are con-
structed remains applicable. All of tkese are also evident-
ly true for all other waves (cf. Refs. 15, 17, and 19—25).

(iii) We have shown that the RBW and RCW analyses
yield the same theory for the relativistic neutrons owing
to the fact that a Dirac-type wave equation is of first or-
der in spatial derivatives. The conclusion is also ap-
parently true for relativistic electrons and electromagnet-
ic waves since the Dirac equation of electron and the
Maxwell equations are also first-order differential equa-
tions. Moreover, the RBW-RC% theory for relativistic
neutrons has exactly the same form as the relativistic
electron diffraction theory which is derived in RCW
analysis in Ref. 17, except for the contents of the charac-
teristic coefticient matrix C which contains the particular
wave-medium interaction information of the given
diffraction system. This is because both electron and neu-
tron have the same spin value, —,'. The rigorous
diffraction theory of electromagnetic waves (spin 1) de-
rived via RC%' analysis in Ref. 25 also has a very similar
form.

(iv) The RBW and RCW theories are different (though
equivalent) for the spinless neutrons. We have derived
their explicit relation [Eq. (52)]. Clearly, the same rela-
tion should also exist for spinless electrons and TE and
TM -polarized electromagnetic waves since they are all
governed by second-order scalar differential equations of
the same form. Besides, the RC%' theory for spinless
neutrons is of exactly the same form as that for spinless
electrons given in Ref. 15, except that the electon-
medium interaction —eV is replaced by the neutron-
mediu~ interaction U, while the RB%' theory of spin-
less neutrons should have similar connection with
Colella's' RBW theory for spinless electrons.

(v) In a nonrelativistic theory for neutrons or electrons,
the Schrodinger equation is adopted as the equation of
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motion. The spin (i.e., polarization) and magnetic effects
are then entirely neglected. These effects could be ap-
proximately accounted for by adopting, instead, the Pauli
equation for a spin- —, nonrelativistic particle. But the
corresponding RBW and RCW theories would have the
same complexity and equally large dimension in the ei-
genvalue problems as a fully relativistic RBW-RCW
theory.

(vi) For wave diffraction problems, the important to-
pics of scattering matrix, transmittance and reAectance,
conservation laws, polarization, Bragg's law, the conver-
gence rate in numerical calculation, and the relation to
the problems of guided wave in periodic structures have
all been discussed in details for spinless and relativistic
electrons in Refs. 15 and 17, respectively. The results are
totally applicable to the spinless and relativistic neutrons,
as apparent from our foregoing comparisons.

(vii) We have presented here two methods to solve the
problem of relativistic neutron diffraction from planar
crystals in the limiting case. Clearly, they are also applic-
able to the diffraction of all waves from slab media with
periodic structures that are characterized either by one,

two, or three grating vectors or by three reciprocal-lattice
vectors when one vector is perpendicular to the slab sur-
faces. The second method is a new and most efficient ap-
proach to treat such a limiting case

(viii) Moon has argued that in the limiting case (a) the
RBW approach of Colella' has an insufficiency in the
number of boundary conditions to fix all the unknown
amplitudes, (b) this approach is inefficient in the use of
computer time in numerical calculation, and (c) there ex-
ist subsets of equivalent eigenvalues to produce identical
Bloch waves. But Colella maintains that in his treat-
ment' the number of boundary conditions is exactly
matched to the number of unknowns in any case. From
our derivation in the first approach for the limiting case,
which is essentially the same as the Colella's, ' we can see
that the matching conditions on the boundaries are ex-
plicitly displayed in matrix forms and there is no
insufficiency. But as we have pointed out, it is truly an
inefficient method. From our discussions on the new ap-
proach, however, we see that the degeneracy in the limit-
ing case is not caused by what is asserted by Moon.
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