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Determinantal solution of the density matrix in quantum transport theory
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A new method previously elaborated on in time-dependent quantum mechanics is recalled and
used to establish, on the basis of the unperturbed Hamiltonian, explicit and tractable expressions of
the long-term density matrix, well suited to transport problems. A constant collision potential and
a constant external field, switched on at t =0, are assumed. As an illustration, the general results
are applied to the quantum theory of electrical conductivity in the case of quasifree electrons.

I. INTRQDUCTION

The quantum treatment of transport processes in
solid-state physics is well known to be dominated by the
Kubo linear-response theory, ' in terms of correlation
functions of current density. In spite of its rather attrac-
tive form, dealing directly with the quantum-mechanical
motion of microscopic quantities, and its widespread use
in applications, this formalism is not free from severe cri-
ticisms. An important one, as discussed by Van Vliet, is
concerned with the lack of dissipation and relaxation, in-
herent to the starting von Neumann equation of the den-
sity matrix, which does not include the approach to equi-
libriurn. On the other hand, the density matrix is extract-
ed from the Schrodinger integral equation thanks to a
preliminary linearization, in order to avoid a self-
consistent resolution. This procedure, which is question-
able when seeking the long-term behavior, has been
shown to be equivalent to randomization by van Kern-
pen, and seems particularly dangerous in the vicinity of
resonances. This is perhaps the reason why this formal-
isrn did not succeed in yielding convincing results when
applied to the cyclotron-resonance linewidth, in the last
decade.

In common transport theory the external driving field
is assumed to be adiabatically applied to the system from
a remote past (t = —ao ), tending to support the idea that
the knowledge of the adiabatic response is required to get
a correct description of the transport process. This may
look surprising because of the physical feeling that the
way of applying the field is irrelevant, as long as the
transport process is understood as a steady-state balance
between the competitive e8ects of applied field and col-
lisions. This state of things is, in fact, intimately connect-
ed with the lack of relaxation dissipation. Many theoreti-
cal descriptions, indeed, fail in taking properly into ac-
count the counterbalance between driving field and col-
lisions.

The main concern of the present paper is to show that,
to some extent, a trace-conserving theory previously
developed ' ofFers a simple tool to overcome the above-
mentioned difficulties, at least in the cases of a constant
or harmonic perturbation. In this method, denoted
"deterrninantal, " the time-dependent Schrodinger equa-

tion is rewritten in Laplace space and solved by means of
Cramer's formulas, with some further arrangements to
replace determinant expansions by more suitable ones.
We are going to see that when applied to the linear-
response theory the method yields a well-defined long-
terrn response, independent of the way of applying the
externa1 field. In particular, there is no need to assume a
very slow adiabatic application of the field and, therefore,
use can be made of the Laplace transform which is well
suited to the application of external disturbance from
t=O, as in elementary circuit theory.

In Sec. II the starting von Neumann equation is
presented with some useful arrangements, for notational
convenience and discussion. The method of calculation is
described in Sec. III, whereas Sec. IV is devoted to the
derivation of more explicit expressions suited to current
applications. A simplified treatment of the quantum
theory of electrical conductivity will be given, as an illus-
tration, in Sec. V.

II. THE von NEUMANN
DENSITY-MATRIX EQUATION

The physical system is described by the unperturbed
Hamiltonian Hp with eigenstates ~a ), ~b ), . . . , ~z), . . . ,
and related eigenvalues Ace„%cob, . . . , A~„. . . . For
present purposes it will be sufficient to describe the
predominant contribution to collisions by means of a con-
stant potential V. Then, other contributions, often in-
volving inelastic collisions associated with the coupling of
the system with the heat bath, correspond to much
slower relaxation processes and are, therefore, sufficiently
well represented by a simple phenomenological relaxation
time r. The consideration of such accessory relaxation
processes is essential for the overall coherence of the
theory, because they permit the equilibrium to be
recovered, through relaxation with the bath, as the exter-
nal field is switched oK ' But as far as V is strongly
predominant, these processes should be eliminated from
the final result which, thereby, is expected not to depend
on ~, at least in the linear limit.

Also, for the sake of simplicity, the external field will
be described with the constant operator F, assumed to be
turned on at t=O. As a result, the von Neumann equa-
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tion for the density matrix p(t) will be written as

= —iA' '[Ho+ V+FY(t),p]—p po

dt

Y(t) denotes the Heaviside step function, and po=p(0) is
the initial value of p(t)

As is well known, the microscopic von Neumann equa-
tion strictly applies to the complete isolated system, in-
cluding the heat bath. In Eq. (1) this requirement is
obeyed to within a very good approximation, through the
introduction of the relaxation parameter ~. Since the
coupling between the system and the heat bath is weak,
the complete density matrix p& can be written in the
form of a Born-Oppenheimer —type product

pc=ppa with [p pa]=0

pz is the heat-bath density matrix (e.g. , that of a phonon
system). Let H~ be the bath Hamiltonian and Vz the
coupling Hamiltonian between the system and the bath.
%'e have the complete equation

Qpc = —iR '[Ho+Hii+ V+ Vii+FY(t), pc] . (3)dt

But the change of the bath motion due to the coupling
with the system is completely negligible, so that

i% [—HJi, pii] .pa
dt

By taking Eqs. (2) and (4) into account, together with the
evident commutation relations between the two quasi-
independent subsystems,

[P,Hti]=0, [P~,HO+ V]=0,
Eq. (1) is recovered from Eq. (3), in the form

= —iA' '[Ho+ V+FY(t),p] ih' '[ Vii,p], —
dt

showing how the coupling with the bath on the right-
hand side has been simplified through the introduction of
the phenomenological parameter ~.

Finally, Eq. (1) is quite consistent with the partitioning
of the complete isolated system into a small subsystem
and a large reservoir. As discussed by Fano and Balian
et al. , such a partitioning is the essential source of ir-
reversibility and dissipation.

Assuming statistical equilibrium prior to the applica-
tion of the perturbation, pp~ is represented, at t=O, by
the microcanonical density operator. But, as shown in
elementary quantum statistical mechanics, the micro-
canonical density in the whole system leads to the canoni-
cal density in the small subsystem. The collision poten-
tial V contributes the initial thermal equilibrium, so that
po is, in fact, a function of Ho+ V instead of Ho alone.
This entails the commutation relation

[PO, HO+ V]=0 .

All previous considerations concern the system as a
whole. In general, Ho, V, F, and p will refer to many-
body operators. In some cases the reduction of the for-

malism to a one-particle problem will be possible. In
such cases, po can be expressed in terms of individual Fer-
mi or Bose-Einstein occupation functions.

III. FQRMAI. SQI-UTION
OP THE DENSITY-MATRIX EQUATION

(v+r ')R (v)+inert '[H0+ V+F', R (v)]

=po(1+v 'r ') .

Then, taking the cb matrix element of each side of this
equation, we have

(v+r '+ice, i, )Ri', ( )v+iirt '[ V+F,R (v)]i,

=pob(1+v 'r '),
where co,b =co, —cob. Summations over repeated indices
are implicit throughout. The R operator will next be re-
garded as a column vector belonging to the Liouville
space

@H,H, =@H, @H,

defined by tensorial multiplication of the unperturbed
Hilbert space 6'tt by the dual space 6'H . In 8H H, basis

0 0 0 0
states will be specified by all pairs of indices (c,b). Su-
peroperators involving commutation with V or F are con-
veniently defined by

Ki, =iiri '( V5 —5V),

where 6 is the Kronecker delta. This means that any
c2b2-c, b, matrix element is given by

2 1 2 1 2 1 ~ —1Kv, b =Kv,
, 5b, 6, , Kvb, with Kv=ik V

Diagonal matrix elements of V will be ignored without
serious loss of generality. We shall also introduce the di-
agonal operator

d=(v+r ')I+EH with Ktt =iA' '(H05 —5HO) .

S denotes the unity operator in @~ ~ . Making use of the
0 0

above definitions, Eq. (6) becomes

(d+ Kv+ K~ )R =po(1+ v 'r '),
which can also be written as

[I+@ '(Ki, +K~)]m=1 'po(1+v 'r ') .

(10)

In terms of R-matrix matrix elements, say (cb~lR) =IR'&,
we have

%'e shall proceed with a brief reformulation of the
theory ' more suited to the present transport problem.
Returning to Eq. (1), upon performing the Laplace trans-
form

R (v) = J exp( vt)—p(t)dt,
0

we obtain
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E b+@ b (KV b+KF )b }E b @ b Pob(1+v

(12}

Equation (12) turns out to represent a linear system in
and as such it can be solved in terms of Cramer's

0 0
minors and determinants (denoted by the symbol D with
an appropriate set of indices) pertaining to the matrix
}1+dl '(Ki, +KF). For the pA, component of E, we thus
have

Dpb
E"i= pob(1+v 'r ') .

B,bB
(13)

Using Cayley's expansions of determinants, Eq. (13)
yields an explicit expression of the solution in increasing
powers of Ez and EF. It has been shown, however, that
both numerator and denominator contain unexpected
closed sequences of transitions (related to secular terms of
perturbation series), which can be removed by means of a
suitable "reduction procedure. " The latter turns out to
come down to the division of the upper and lower deter-
minants by the diagonal minor D,'b. It is convenient to
reestablish this procedure straightforwardly, so as to in-
troduce some appropriate minor changes. Equation (10)
first gives

IE) =(dl+Ki +KF) '(1+v 'r ')lp ),
or, equivalently,

IE&=y(dl+K +x } 'P, (1+v 'r ')Ipo& .
c, b

(14)

P,b, Q,b denote the projector on the cb state and the com-
plementary space, respectively, in 8H H .

0 0

As pointed out above, in current-transport problems
the proper "unperturbed states" are not eigenstates of Ho
but, instead, those of Ho+ V, giving rise to the commuta-
tion relation (5). Using the commutation kernels, the
latter can be written in 8H H as follows

0 0

(KH, +Kv)lpo& =0.
which entails, from Eq. (9},

(d+K, ) lp, & =[(v+r-')I+K„+K,]lp, &

=(v+r ')Ip, & .

Consequently, Eq. (14) will be rewritten, without change,
as

IE) = g (dl+Kv+KF) '(dl+Kv+KFQ, b )P,b
c,b

1+v r
I )

v+~ '

Setting

IE&= y IE'"'&
c, b

every cb component will be considered separately,

C

IE~' ') =(dl+Ki +KF) (dl+K +K Q, ) I b ) .

We thus obtain a somewhat new form of the system (11),
whose Cramer solution can again be written as

DF,b( Dcb }
—1

cA. cb

D( Dcb )
—] Pob (17)

D,'b now denotes the determinant of the matrix

S,b =)1+dl '(Kv+KFQ, b ) . (18)

This expression is slightly changed with regard to the ini-
tial reduction procedure, in which the S,b matrix was
just I+ dl '(xi, +KF )Q,b, so that 0;b exactly represented
by cb-cb minor of the matrix )i+1 '(Kv+KF ).

IV. PRACTICAL FORM OF THE SOLUTION

In practice, the determinant ratios arising in Eq. (17)
can be given a convenient form in terms of geometrical
series. ' Making use of the splitting

KF d KFPcb +d KFQcb

and the notation (18), Eq. (16) can be written in the new
form

(}1+s,b'dl 'K.,P„)IE'"'&=v 'p, ', lcb&, (19)

Due to the projector P,b, the operator on the left-hand
side of (19) is represented by a column matrix, so that
determinant and minors reduce to single matrix elements
[see also Eqs. (A17) and (A18) in Ref. 10]. This gives the
following equivalent operational form of the solution (17):

(pA, I(}(+Q, S,„'dl 'K )lcb)
(20)

v(1+&cblS„'dl 'K.l.b&)
"'

We thus arrive at a "once-reduced" result (the "reduc-
tion" is associated with the above division by D',b), lead-
ing to a well-defined long-term limit by means of the ele-
mentary rule

p(t~ oo )= lim [vE(v)] .
v~0+

Explicit expressions involving increasing orders of I'
and V will be finally obtained through expansion of S,b'

in Eq. (20). Thanks to definition (7) leading to rule (8) for
the matrix elements of the commutator kernels K, repeat-
ed applications of the Liouville operator can be per-
formed in a mechanical manner, lending itself, if needed,
to computational methods. In the case of many-body fer-
mion systems, care must be taken of the chronological or-
dering which requires, first, to restore the order resulting
from the action of commutators. This is easy to do by ac-
counting that the symbol 5V implies the permutation of

Factorizing out the 8's and reversing the brackets back
into the left-hand member yields

[1+6 '(Ki +KFQ,b)] '[}l+dl '(Kt, +KF)]IE' ')

pob Icb ) .
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V with the operators on the right, whereas V6 does not.
For any operator A of the Liouville space, we thus have

(nml(QV)Alcb &
QnVk AIb Anb Vk

(nml( v5)Alcb &
= v"5" A' = v"A'"

(21)

The density-matrix solution is now given in a fractional
form which can be shown to be trace conserving. At
first sight, it seems more attractive than a perturbation
series. In fact, we are going to see that this is not so, to
the first reduction stage. To lowest orders, the denomina-
tor in Eq. (20) can be written, upon expansion, as

1+&cblS;„'dl-'K, lcb & =1+ 1

cb

VcFz Fb Vz
z c + z b

@zb @cz

lFz 2
c + b

~zb ~cz
+ ~ ~ ~

—dl, pobrCF lcz& . (22)

The projector g, „c,b, & (c,b, l
has been inserted and

use has been made of the definition (8) and the rule (21).
The solution is obtained the same way as before,

Dpb( Dzb )
—

1 Dpz(ocz )
—1

F POb
dl D(D )

—i POb F
zb zb cz cz

(23)

The bracket (cb) reminds us that this X solution is writ-
ten assuming cb to be the starting state. Determinants
and minors pertain to the S,b matrix, and can be written
again in terms of single matrix elements involving geome-
trical series, '

X"k(cb)=—(pA, ldl '(K +K Q,„)T, 'lzb &

dl„+ (zb l(Kg+ KFQ„)T,,'
lzb &

(/lk. ld '(K +K Q, )T,, 'lcz &

dl„+&czl(K, +K,Q„)T;,'lcz& '" ' '

Except for the first one, all terms on right-hand side of
this equation involve F to increasing orders. These terms
represent the natural width of the transitions (collision
assisted or not) induced by the applied field and, there-
fore, they are extremely small at vanishing values of the
field. As a result, the fraction in Eq. (20) reduces to its
numerator, which can be readily verified to be very close
to a perturbation series of the density matrix, in increas-
ing powers of both K~ and KF. This is the reason why,
to get a nontrivial result, we have to continue the same
process one step further, by regarding, in turn, the matrix
elements arising in the numerator of Eq. (20) as reduced
solutions of the following system:

s,blx& dl KF cb &POb

=fE,
, b, lc, b, & & cibi lKF &pOb

dzb +FcPOb lzb &

with

Tzb E+Qzbd (KV+KFQcb )&

The result (24) holds for Ilk&zb, cz F. or pA, =zb or cz, the
related numerator reduces to 1, as immediately seen in
Eq. (23). Finally, making use of the X's as given by Eq.
(24), the solution (20) becomes

X"k(cb )
R"k(v) = —=v ' g Xi'k(cb),

b~ k v[1+X b(Cb)] b~ A.

(26)

which again leads to a well defined steady-state value of
px

It is worth noticing that although both the collision po-
tential and the external field are similarly regarded as
perturbations on the state basis of Hp, all final transition
rates are direct functions of the external field F (through
the kernel KF ), i.e. , they vanish if F=O, as shown in Eq.
(24). This, of course, results from the inclusion of the
commutation relation (5) [or (15)] in the formalism,
which gives rise to the particular form of the 5 operator
as given by Eqs. (18), which KF and Kv does not enter
symmetrically.

In the linear-response theory the field can be dropped
inside the brackets ((

l l & ) of Eq. (24). We are thus left
with the final twice-reduced result of the steady-state
density matrix (t +Do ):—

(pA, di 'Ki, (E+Q,bdl 'Ki, )
' zb &

KFcPObdl„+(zb lKv(E+Q, „dl 'Ki, ) 'lzb &

&~aid(-'K, (E+Q„dl 'K, ) 'lcz&

dl„+&czlK (E+Q„d 'K ) 'lcz&

(27)

Let us recall that this expression must be understood in
limit where v —+0+, with the index restriction Ilk, &zb, cz.
We note that, because of the conjugation relation in Liou-
ville space,

&llxlAlcb & =&xplAlbc &*,

the second term on the right-hand side in Eq. (27) is con-
jugate to the first one through permutation between X
and p. This is readily seen upon exchanging the dummy
indices b and c in the second term.

As observed, the calculation of p~& requires knowledge
of nondiagonal matrix elements Ppb of Po. This, of
course, is a consequence of dealing with the unperturbed
basis of Hp instead of that of Hp+ V, which is not known.
In the widespread random phase approximation, nondi-
agonal matrix elements of pp are ignored. Then, upon in-
terchanging the dummy indices b, z in the second term on
the right-hand side, Eq. (27) can be given the more com-
pact form

(paid-'K, (E+Q„d-'K, )-'lzb &

d,b+ (zb lKv(E+Q, bdl 'Ki, ) 'lzb &

(24) + (+FbPOb Poz+Fb ) (28)
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An alternative way which seems physically valid con-
sists of assuming that the correct long-term limit of the
density matrix can be obtained as well if V and F are both
applied to the system at t=O. This point of view, which
was adopted, for instance, by Dumke" in his early work
on the intraband infrared absorption in semiconductors,
has, of course, the great advantage of allowing us to use
directly the unperturbed density matrix, at t=O. Care
must be taken, however, because in doing so we are not
quite sure how to avoid introducing spurious contribu-
tions into the solution.

Formulas (20) and (24) —(27) are quite general. In many
applications, many-body states must be considered. In
the case of an independent-particle system in which, in
addition, the correlation between individual motion re-
sulting from the external applied field and the collision
potential can be neglected, individual states entering the
collective initial states can be treated separately. This
amounts to ignoring coupling between the particle under
consideration and the other particles that will give rise,
necessarily, to subsequent factorizations in the starting
solution (13). This is completely equivalent to saying that
the system (16) is broken into one-particle —independent
systems, to every one of which the above reduction pro-
cedure can be applied identically.

V. APPLICATION OF THE THEORY
OF ELECTRICAL dc CONDUCTIVITY

Since the early work by Kohn and Luttinger, ' and
Lax, ' there have been a great many theoretical studies
on the quantum theory of electrical conductivity, a large
part of which is based on the Kubo formalism. The pur-
pose of this section is not to give a critical discussion of
these previous approaches, as compared with the present

J= (e—A/Vm)k"= —(eh'/Vm) g kckcz .
k

(29)

The superscript (c) is used to distinguish the collective
from the individual k. Similarly, the field kernel KF is
given by

KF=ik 'eE„x"=iA 'eE g xq cqck
k, k'

(30)

The individual matrix elements of x between plane waves,

xk. =V ' f exp( —ik r)x exp(ik r)dr

= —i V 'V„,f exp[ —i(k —k') r]dr,

are conveniently written with a 6 function,

x„"= i(8vr /—V)V„,5(k k') . —
X

(31)

From Eq. (27), it is straightforward to write the o,„
component of the conductivity:

one, but simply to test how the above general formulas
work, in a simplified case.

We shaH consider a system of quasifree electrons of
mass m, and with an individual energy E(k)=A' k /2m,
corresponding to an isotropic and parabolic band. The
unperturbed one-electron eigenstates are plane waves,
normalized to the volume V of the system,

&rIk&=V '"exp(ik r) .

The electrons are subjected to the collision potential V of
zero diagonal elements. Spin is ignored. An external
electric field E is applied along the x axis, from t=O.

In the momentum representation the current-density
operator is diagonal and given, in a second-quantization
scheme, by

5~5~ —&u. Id 'Ky(I+@,„d 'Kv) 'Izb) K„;
d„+&zbIK,(I+@,„d-'K, ) -'Izb) E„

Substituting, next, J„and KF from Eqs. (29) and (30), we have

ie k„q 5,5q —
& XXIdl 'K~(I+Q, qual 'K~) 'Izb )

d,~+ &zb K~(I+Q,~d 'Kv) 'Izb )
xcpob +c ~ C. (32)

The particular zero-order term, A.A, =zb, is separated out
in the numerator [which then reduces to 1 as shown in
Eq. (23)], whereas the restriction AA&zb is implie, d , in the
brackets ( & I I ) ). Since, on the other hand, the brackets
( & I I

) ) in the denominator starts from second order, to
lowest order Eq. (32) reduces to

Since, from expression (30), x is a sum of one-electron
operators, there only remains in the numerator of the
fraction (33) matrix elements of po between b and c states
which differ from each other by a one-electron transition,
say k~k'. This can be expressed by

Ic & =c„.c„Ib & .
ie I. k "lbx pot +C.C.
Vm r-' —&bbIK, q„d-'K, Ibb)

(33)

po& is, otherwise, necessarily diagonal with respect to any
individual state distinct from k, k. Thus, one can write
in a simplified form
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pob =pa«' k) (34)

In the present case, assuming a large number of empty
individual states in the band, electrons can be regarded as
undergoing V transitions independent from one another.
Correlation effects in electron motion are negligible and,
according to the remark at the end of the preceding sec-

tion, the one-electron point of view can be adopted.
Thus, the initial state will be broken up into individual
contributions involving only one active electron, say that
occupying a given k state at t=O, and every other one
remains "quenched" in its initial state. Let us first write
out, accordingly, the resulting expression of the denomi-
nator in Eq. (33). Making use again of the definition (8)
and the ordering rule (21), we obtain

—(bb IKi Qbb& 'Ki ebb ) =& ( V 5 ' —5" V ')d '
( V '5" —5 ' Vb)

( ~) Vb Idq(b+ Vb) Vb Idbb) )

—(bb IK,q„d-'K, ~bb &

& le, I'l(r '+icosi, q)+c.c.
kl

(35)

The index restriction c,b, &bb is automatically satisfied
by the assumption that diagonal matrix elements are
missing. Since only the k state is relevant, this can be
more explicitly written as follows:

The detailed value of (35), which represents twice the re-
laxation frequency, depends on both the collision poten-
tial and the dispersion law in the band. As pointed out
above, as far as the electron relaxation is strongly dom-
inated by the V processes, the ~ ' frequency can be re-
garded as an infinitely small quantity, thereby giving the
summation in Eq. (35) the form of a Cauchy-type in-
tegral.

Now, from Eqs. (29)—(31) and the definition (34), ex-
pression (33) of the o conductivity becomes

k [V„,5(k —k')]po(k', k)+c.c.

'+2A' Re g l Vi,
' l'/(r '+i~ )

kl

The integration over k' is easily carried out by parts

g [V,5(k —k')]po(k', k) = —J [V„,po(k', k)]5(k—k')dk'= —[V„,po(k', k)]„
k' X X

(36)

Hence, ignoring again ~ as compared with the V-
collision relaxation frequency defined by

rv'(k)=A' Re+ ~

V&'~ /(r '+ice& z), (37)
kl

we found the Boltzmann-like result

tion, involves to lowest order the unperturbed collective
density matrix which k and k' enter through the Fermi
occupation factors, say f (k)[1—f (k')]. The predom-
inant contribution to the gradient in Eq. (38) is thus ex-
pected to be

—V„ f(k')li, =i, = —&vi, &f(~i, )/&8
cr„=(e IVm) g k„ri,(k)[V„,po(k', k)]i, =i, .

k X
(38)

leading to the usual result

To proceed further, the knowledge of nondiagonal ma-
trix elements of the equilibrium density matrix is needed.
Second-quantization expressions can be derived in the
form of expansion with respect to the commutator
[Hp V]. It is physically intuitive that the result of such a
study, ' which is out of the scope of the present illustra-

~f (Eu)
o „=—(Re IVm) g K„vi,„rv(k)

BEp
(39)

vi, =A' 'Vi, s(k) stands for the electron group velocity.
Thus, the first-principles quantum theory directly

yields a Boltzmann-type expression without using the
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random-phase approximation, which is a basic assump-
tion in the elementary derivation. The reasons for which
the random-phase approximation is superfIuous in a
quantum treatment have been already discussed, ' ' in
connection with the Van Hove fundamental analysis. '

The question remains as to what occurs to higher or-
ders of the collision potential in Eq. (32). Upon exatnina-
tion of the possible transitions to second, third order in
V, . . . in the numerator, one finds a net trend of complete
cancellation of all terms, as in the trace of a commutator.
Thus the only change in the result (36) is likely to replace
the second-order relaxation frequency ~z' by a new ex-
pression of increasing order.

VI. CONCLUSIONS

The general theory previously elaborated has been ap-
plied to work out a steady-state solution of the
Schrodinger equation, in transport problems. General
expressions involving the applied field and the collision
potential to increasing orders have been derived. Sub-
stantial simplifications are obtained in the case of linear
response, and also by taking carefully into account that
natural broadening is often completely negligible com-

pared to collision broadening. To some extent, the con-
tribution of the collision potential to the initial thermo-
dynamical equilibrium is also taken into account.

The theory is capable, as well as Kubo's formalism, to
handle with the relevant physical quantities taken in their
quantum nature. It has, however, the advantage of
straightfowardly yielding a trace-conserving form of the
response from first principles, using quite elementary and
simple mathematics. This is the main reason that relaxa-
tion effects arise in a simple and natural way. The frac-
tional form permits one, in addition, to overcome
difhculties associated with divergences such as those
occurring in the old problem of the cyclotron-resonance
linewidth in the quantum limit. A preliminary report
about it has been published. ' A treatment of the quan-
tum Hall effect should likely constitute another fairly at-
tractive test of the theory. Finally, higher orders of the
collision potential together with nonlinear effects in the
applied field could be included.

In this paper some of the above capabilities of the
method have been examplified in a simplified illustration
dealing with the quantum theory of dc conductivity, in
which the expression derived from the elementary
Boltzmann theory can be recovered.
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