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Effect of spin-density waves on the lattice dynamics of lead
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The phonon spectrum of Pb, first determined by Brockhouse et al. in 1962, exhibits large depres-
sions in both longitudinal and transverse modes at the zone-boundary points [100). The origin of
this behavior has remained unclear. We show that a possible explanation involves the existence of a
cubic family of small-amplitude spin-density waves (SDW s), having wave vectors [Q) at each of the
twelve [211], or alternatively [210I, superlattice points. Each SDW causes a peak in the
conduction-electron charge response function y(q) near the points q=+Q. SDW's have built-in
charge modulations, equal in magnitude but opposite in sign, for both spin states. Only a small shift
in the spatial phase 5/= co „depending on the spin cr„creates an additional charge response for q
near +Q. When this spin-split-phase contribution to y(q) is incorporated into the theory for the
phonon spectrum, the anomalous behavior at [ 100) can be understood.

I. INTRODUCTION

There has been a challenge for more than 25 years to
understand the lattice dynamics of lead, which is one of
the most complicated members of the simple-metal
group. Beginning with the work of Toya' and of Vosko
et al. , many attempts have been made to explain Pb's
phonon dispersion curves. Pseudopotential calculations
have been less successful for Pb than for Al or alkali met-
als. Models which fit some phonon frequencies fail to
reproduce other features in the spectrum. Imaginary
phonon frequencies are often found in calculations using
Heine-Abarenkov pseudopotentials or Harrison's first-
principle scheme, ' as well as with other models. '

In attempts to remedy the poor agreement between
theory and experiment, investigators have included addi-
tional effects in their calculations, such as a third-order
perturbation correction to the electron-ion pseudopoten-
tial, "' conduction-electron —core exchange, nonlocal
pseudopotentials, ' relativistic spin-orbit interaction, '

and effective electron-mass corrections. ' However, the
results remain unsatisfactory. Recently, Wang and
Overhauser' pointed out that vibrations of the (last-
filled) 5d electron shell play an important role in the lat-
tice dynamics of lead. Accordingly they introduced a dy-
namic pseudopotential and found phonon dispersion
curves in fair agreement with experimental data. But the
frequency dips near the [ 100 I zone-boundary points
remained unexplained.

Compared with other fcc metals the phonon spectrum
of Pb is so peculiar that even a 26-parameter Born —von
Karman fit' (including eight neighbor shells) does not
sufFice. An analysis in terms of interplanar force con-
stants indicated that measurable forces extend to dis-
tances greater than 20 A (17th neighbor). ' This con-
clusion does not depend on small features in the disper-
sion curves (such as Kohn anomalies), but primarily on
the frequency dips near [100I mentioned above.

To the best of our knowledge, there is as yet no qualita-
tive explanation for the frequency dips (in both longitudi-

nal and transverse modes) near [100I. Distortions of the
Fermi surface from a free-electron shape' seem to be too
minor to be relevant. Another possibility is that the nor-
mal plane-wave ground state of an electron gas is not
suitable for Pb. In this paper we investigate the possible
consequences of a spin-density-wave (SDW) structure on
lattice dynamics.

It is well known that in the Hartree-Fock approxima-
tion an interacting electron gas always tends to have a
SDW state. ' ' Static sinusoidal modulations of spin-up
and spin-down electron densities are then exactly out of
phase. As we will show below, the charge response of a
SDW state is quite different from that of a normal plane-
wave state. A spin-split-phase mechanism, developed by
Giuliani and Overhauser ' for the spin response of a
CDW state, allows an external charge perturbation, hav-
ing a spatial periodicity close to that of the SDW, to
create a phase shift between spin-up and spin-down
charge modulations. This phase shift causes a charge
response which adds to the ordinary Lindhard response
of an electron gas. As a consequence small peaks in the
electronic dielectric function e(q), arise for q near Q,
where Q is the SDW wave vector. We will show that this
modification of e(q) can explain the observed anomalies
in the phonon spectrum of Pb.

We shall assume the existence of a cubic family of
SDW's in lead and shall employ the dynamic pseudopo-
tential theory for phonon spectra recently developed by
Wang and Overhauser (hereafter referred to as WO).
The SDW families we shall consider are three SDW's
with Q =

[ 100I, six SDW's with Q =
[ 110I, twelve

SDW's with Q= [210I, and twelve SDW's with
Q= [211I. The last alternative would be the a priori
choice since ~Q2» ~

=0.987(2kf), a value close to 2kf, the
Fermi surface diameter, as required by the SDW instabil-
ity theorem.

It turns out that the first two choices mentioned above
fail to provide an explanation of the frequency anomalies.
However the last two choices for the SDW family can ac-
count for the frequency depressions near [100I in both
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longitudinal and transverse branches.
The plan of the paper is as follows. In Sec. II the spin-

split-phase mechanism is described and shown to cause
an extra charge response of a SDW state. In Sec. III the
core-shell exchange energy is discussed, and its role in
lattice dynamics is introduced. In Sec. IV, WO theory is
reviewed and extended to include both the effects of the
SDW's and the core-shell exchange energy. In Sec. V the
phonon spectrum of lead is calculated for several SDW
families and compared with experiment. Brief con-
clusions and remarks are presented in Sec. VI.
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II. CHARGE RESPONSE OF A SDW STATE

Let us first consider the jellium model of an ion-
electron system. In the Hartree-Fock approximation the
ground state of the system, in general, is a mixed SDW-
CDW state characterized by modulated spin-up and
spin-down electron densities

O
0

LLJ 8$ = lO

Total

n (r)= —[1+p cos(Q r+Po+tr P)],

—cr, sing sin( Q.r+ Po )], (2)

where 6 is the resulting energy-gap parameter. It is easy
to see the relation of P to the charge distribution of the
state: For /=0 one has a pure CDW; for P=rr/2 one
has a pure SDW. The spin response of a pure CDW
state, incorporating a shift 5P of a spin-split phase, was
developed by Giuliani and Overhauser. ' In this section
we employ the same mechanism to discuss the charge
response of a pure SDW state.

For a pure SDW state, the first term in the single-
particle potential of Eq. (2) is zero. The remaining spin-
dependent term produces spin-up and spin-down densi-
ties which are exactly 180' out of phase. The total elec-
tron density of a SDW state is uniform, as shown in Fig.
1(a). Suppose we now impose an external potential 5V,
having a wave vector q equal to that of the SDW, e.g. ,

5V(r) =5V& cos(Q r+P&) . (3)

where P& is the phase of the perturbation. This spin-
independent perturbation will induce a small spin-split
phase 5P. Consequently the extra shift between spin-up
and spin-down modulations will introduce a small total
electron-density modulation, as shown in Fig. 1(b),

5n(r) = np sin(5$—)cos(Q r+Po)

np 5P cos(Q—r+Po) . (4)

In the deformable jellium model the positive-ion back-

where o., is the usual Pauli spin variable, n is the average
density of the electron gas, and p is the fractional modu-
lation of each charge density. Po is an arbitrary phase
which exhibits the translational degeneracy of the state.
P is the so-called spin-split phase and plays a very impor-
tant role in our discussion. The single-particle self-
consistent potential felt by electrons in the state described
by Eq. (1) is

V(r, o, )= —G[cosgcos(Q r+Po)

FIG. 1. Total spin-up, and spin-down electron densities vs

spatial coordinate r- (/ is parallel to Q of the SDW). (a) Spin-

split phase 5$ =0; (b) spin-split phase 5P = 10 .

ground will introduce a compensating charge modulation
so as to maintain microscopic neutrality of the system.
In a real metal, however, the positive ions are not perfect-
ly free to move. In order to study the spin-split-phase
response, we shall now take the ions to be fixed at their
lattice sites. The change in energy (per unit volume) re-
sulting from the perturbation (3) can be written (after in-
tegration over r) as

bE„,= —
—,'np 5V& 5P cos(P& —Po)+bE„~ .

The first term is the interaction energy of the perturba-
tion (3) with the induced electron density (4). b.E„~ is the
energy increase of the electron gas caused by the presence
of the spin-split phase 5P. Two terms contribute to it.
The first one is the Coulomb energy b,E, of 5n (r) with it-
self, which equals men p (5$) /Q .. The second is the
change in electronic correlation energy AE, caused by
the relative shift of up- and down-spin densities. This
latter effect was evaluated by Csiuliani and Overhauser. '

Accordingly,

AE„=hE, +hE,

n p (5$) —bE, && [cos(25$)—1]

2(5y)2+2 bEcDW(5y)2

where Ir =rre n p /Q, and b,E, t &, a negative quantity,
is the correlation energy contribution of a pure CDW '

caused by virtual scattering of antiparallel-spin pairs.
(There are no shifts in exchange energy resulting from the
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relative displacement of up- and down-spin electron dis-
tributions. ) Notice that the correlation energy contribu-
tion in Eq. (6) tends to lower the energy. It follows that
v )2~6,E,&& ~

for a metal with a stable SDW state.
Upon substituting Eq. (6) into Eq. (5), and minimizing

AE„„the equilibrium condition is

5 np5 icos(P& $0—)

4(sc +26,E )

and the corresponding EEL g
is

( np 5 V& ) cos2( P&
—$0)

16(a +2~EcDw )

It is now evident that the phase Po of the SDW can shift
to the value P& of the perturbation, so as to optimize the
energy (8).

Thus the spin-split phase shift leads to an additional

charge response (over and above the usual Lindhard
response):

en p 6V&—e5n(r)= cos(Q r+P&) .
4(a +2b.E, ) 2 )

(9)

It is important to appreciate that this additional response
applies only for a perturbation having wave vector Q.
We will now show that the magnitude of Eq. (9) is the
maximum value of a peak in three-dimensional q space;
i.e., the magnitude falls off as q deviates from Q in all
directions.

Consider a perturbing potential having wave vector q
very close to Q:

5V(r)=5V cos(q. r+Pz) . (10)

This potential can be decomposed into two parts, one in
phase with the spin-independent part of Eq. (2), and the
other out of phase:

5V(r)=5V Icos[(q —Q) r+(P —$0)]cos(Q r+Po) —sin[(q —Q).r+(P —$0)]sin(Q r+$0)I . (11)

Because ~q
—

Q~ is small, the coeIIicient of the first term in Eq. (11) is slowly varying. Accordingly it induces a slowly
varying spin-split phase

50cos[(q —Q) r+(0,—No)l

which we will call a (static) spin-split phason (SSPN). The response of the electron density to this SSPN is obtained by
substituting this r-dependent phase modulation for the (constant) 5$ in Eq. (4),

5n (r ) = —np sin I 5$ cos[(q —Q) r+ (P —$0) ] I cos(Q r+ $0)

np 5$ Icos(q r+P )+cos[(q—2Q).r+P —2/0))I . (12)

Notice that 5n(r) has split into two parts, one with wave
vector q, and the other with wave vector q —2Q. The
second term in Eq. (11) induces a (static) spin-split ampli-
tude modulation which also causes a density response,
since it is in phase with the second term (the o, -

dependent one) of Eq. (2). For simplicity we shall neglect
this efFect because amplitude modulation is generally in-
hibited (energetically) relative to phase modulation.

The Coulomb energy associated with 5n(r), Eq. (12),
now has two terms:

from b.E„ in Eq. (14), and the q-independent part of the
electronic correlation energy, which can be derived from
Eq. (A13) of Ref. 21. This latter contribution is,

bE, = —b,,ti [Jo(25$)—1],
where Jo(x) is the zeroth-order Bessel function. It is easy
to show that the energy b,E„ofa (static) normal phason
with wave vector W+ is proportional to 8'+ W~+ (5P) .
Thus, to second order in 5P, the electronic energy incre-
ment caused by the induced SSPN can be written as

ere n p (5$)
s 4

1 1

q (q —2Q)'
(13) hE„=—AE, +hE, +AE„

2(5y )2+ g~CDw (5y )2

This expression can be expanded to second order in the
small quantity, q —Q. We find

+8 p W+ 8'~~ (5P ) (16)

b,Z, = ( —,
' a +C p 8'+ W'~+ )(5$ ) (14)

where ~ is the same as in Eq. (6), W+=q —Q, and
C &=a. (4Q Q&/Q —5 &)jQ . a and P denote the axes
in an arbitrary Cartesian coordinate system. 5 & is a
Kronecker 5 function (and we have employed a summa-
tion convention over repeated indices).

One should expect that the energy of an SSPN diC'ers

slightly from that of a normal phason having the same
amplitude and wave vector. The only differences come

All of the q-dependent terms in EE„and AE, have been
included in the last term of Eq. (16). 8 &, which is ex-
pected to be a positive definite, second-order tensor, de-
pends on the band structure and on the Fermi surface of
the metal, as well as the on amplitude of the SDW.

The total-energy change, Eq. (5), becomes in this case
[on using Eq. (16)]

b,E„,—= ,'np 5V„5$+—,'x (5—$—)

+DE (5$) +B W W (5$)
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The additional factor —,
' in the first three terms [when

compared to Eqs. (5) and (6)] can be attributed to the fact
that the density response has split into two Fourier com-
ponents, as found in Eq. (12). From Eq. (17) we can ob-
tain the equilibrium value for 5$:

tributable to the SSPN mechanism. From Eqs. (10) and
(12), it is easy to see that a complex external perturbation,

5V(r) =5 V& e e'q'

=5 Vq cos( q.r+
Pq )

np 5Vq

4(&2+ 2 QEcDW +2B Wa WP
(18) +i 5V cos q.r+P ——

q 2

We are now ready to find the charge susceptibility at- induces a charge response,

e[5—n (r)]=- ,'enp —5)Icos(q. r+Pq)+cos[(q —2Q).r+P —2)0] I

+ ,'ienp 5—$I cos(q.r+ P —
—,'m )+cos[(q—2Q) r+ Pz

—
—,'m —2/0] J

i .r i [(q—2Q).r —2/0]=
—,'enp 5ge 'e'q'+ ,'enp—5ge 'e

—=y" (q, q)5V e 'e'q'+y"i'(q —2Q q)5V e 'e' ' (20)

where 5P is given by Eq. (18). It must be noted that the SSPN mechanism leads to a charge susceptibility having both a
diagonal term y"i'(q, q) and an off-diagonal term y"i'(q —2Q, q). Both terms have the same magnitude:

x"'(q' q)= .

en p
8(a. +26E +2B W+W~ )

2 2
—2'&0

en p e

8(ir +2 b.E +2B W+ W~+ )

0, otherwise.

(21a)

(21b)

(21c)

Recall, of course, that these expressions are valid only for q close to Q. These extra charge responses (over and above
the usual Lindhard response) decrease rapidly as q moves away from the wave vector Q of the SDW, as defined follow-
ing Eq. (14), i.e., W+ =q —Q.

There is a general symmetry property for a charge susceptibility

x(q' q) =x*(—q' —q»
where y is the complex conjugate of g. So for q close to —Q,

(22)

en p
8(~ +26,E +2B W W )

x"'(q' q)= . enpe'~ q'=q+2
8(lc +26,E +2B pW W~

0, otherwise,

(23a)

(23b)

(23c)

with W =q+Q.
A schematic plot of the diagonal charge susceptibility

of a SDW state is presented in Fig. 2 and is essentially the
Lindhard response plus the additional contributions from
Eqs. (21) and (23). The most important features appear-
ing in Fig. 2 are the three-dimensional anisotropic peaks
located at +Q in q space. As we will show in Sec. V,
these peaks will provide an explanation of the frequency
dips in the phonon spectrum of Pb near the [100I zone-
boundary points.

HI. CORK-SHELL EXCHANGE ENERGY

The dynamic pseudopotential theory of phonons pro-
posed by WO has been successful in reproducing phonon
dispersion curves for more than a dozen cubic metals. ' '

One key point of the theory is the division of each ion
into an inner core and a last-filled electron shell, so that
the shell may be allowed to vibrate relative to the core.
The only interaction, considered by WO, between the
shell and the core was the Coulomb interaction, screened
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and shell displacements. AU, „will be an additional po-
tential energy term in the lattice-dynamics formulation.

It is interesting to note from Eq. (24) that a positive p
for the core-shell exchange interaction is equivalent to
putting a spring between the core and the shell, as first
suggested by Dick and Overhauser. Obviously, p=O
corresponds to the normal deformable shell model dis-
cussed by WO. A positive p makes it harder for a shell to
vibrate (relative to its core) and increases the zone-
boundary frequencies. The limit of large p leads to
recovery of the rigid-ion pseudopotential model. There-
fore p is a measure of the rigidity of the ions and allows
the dynamic pseudopotential model to range between the
deformable-ion model and the rigid-ion model.

FIG. 2. Charge susceptibility of an electron gas vs q in a
direction I, parallel to Q of the SDW. The peaks at +Q arise
from the statice spin-split phase (SSPN) mechanism. The
dashed line is the Lindhard response (when there is no SOW).
The SSPN peaks are sharp in all three (q space) directions, near

q =+Q.

(of course) by the conduction electrons. In heavy metals
(such as Pb) allowance for the shell vibration causes a
reduction in the zone-boundary frequencies by as much
as 60%, compared to a rigid-ion model. It is to be ex-
pected that for a real ion, besides the Coulomb interac-
tion, there is also a significant exchange interaction be-
tween electrons of the core and those of the shell (because
their wave functions overlap). Naturally core-shell ex-
change should be included in the lattice dynamics of
heavy metals. The core-shell exchange energy will de-
pend on the electron-density distributions in both the
core and the shell, and the overlap will change when the
shell moves relative to the core. It can be shown that the
core-shell exchange energy for a single ion has the follow-
ing form:

IV. REVIEW OF LATTICE DYNAMICS

D (cc)+pI D (cs) pI A, a—
D (sc) pI D (ss)+—pI g p

co A, o.
M

co A, pq4mn

In Sec. II we found that the existence of a SDW state
introduces two extra charge-response components: one
at q, the applied periodicity, and the other at q —2Q.
When q is near Q both response components exhibit a
peak. Whether or not such a peak leads to cusps in the
phonon dispersion curves depends on the phonon polar-
izations and on the parameters describing the peak. It is
straightforward to extend the WO theory to include both
the effects of SDW's and of the core-shell exchange in-
teraction discussed in the previous section. For the sake
of simplicity, only the diagonal charge response will be
taken into account. We have found that neglect of the
off-diagonal response e(q —2Q, q) does not alter
significant1y any features in our calculated phonon spec-
tra. With the core and shell displacements given by Eqs.
(25) and (26), the equations of motion are found to be

ne
u,„=u,„o+p, iu —vi',

(2n )
(24) (28)

where u„o is the value of u,„ for a rigid ion. u and v are
the displacements of the core and shell, relative to the lat-
tice site. p is a core-shell exchange energy parameter
which, together with the other parameters in WO, can be
used to fit the phonon dispersion curves. The factor in-
volving ne, in the second term of Eq. (24), was intro-
duced so that p would be a dimensionless quantity. The
sign of p could be either positive or negative, depending
on the electron-density distributions of the core and shell.

The change in core-shell exchange energy (per unit
volume) arising from the core displacements,

where a monoatomic Bravias lattice has been assumed. n

is the density of atoms, and z is the number of electrons
in each last-filled shell. M and m are the ion and electron
masses. I is the 3 X 3 unit matrix, and the 3 X 3 D 's are
given by

p, (G+q)p, (G+q)
[D~(cc)];~=g

2 (G+q);(G+q)„G+ q e„(G+q)

p, (G)p, (G)
(G);(G),

~G~'e„(G)

u(L) = A, aqcos(q. L),
and the shell displacements,

v(L)=A, Pqcos(q L),

(25)

and

p, (G)p, (G)+ (G);(G).
iGi e, (G)

(29)

can be easily found by summing over lattice sites I LI,
b, U,„=p~n e

~ A, a —A, pq ~
(27)

where a and p are unit polarization vectors of the core

p, (G+q)p, (G+q)

G IG+ql'e„(G+q)
D (cs); =

X (G+ q);(6 +q) (30)



39 EFFECT OF SPIN-DENSITY WAVES ON THE LATTICE. . . 10 575

p, (Q) = 14e exp( —
—,'R, Q ), (31)

D (sc) is the transpose of D (cs), and D (ss) can be ob-
tained from Eq. (29) by interchange of c and s. In Eqs.
(29) and (30), [GI and I G'I are reciprocal lattice vectors,
and the prime on the second sum in Eq. (29) indicates
omission of the term with G'=0. p, (Q) and p, (Q) are
Fourier transforms of the core and shell pseudocharge
densities. For Pb, the last-filled shell is 5d, hence p, (Q)
and p, (Q ) are, according to WO,

QT'(q)=g[Q g(q)+Q Z(q)], (3g)

non spectrum, show no indication that the symmetry is
less than cubic. The broken symmetry which would re-
sult, for example, from a single SDW would contradict
the data at the outset. Accordingly we shall use a
multiple-Q SDW state, for which there is a full cubic
family, having wave vectors IQ; I, such that any rotation
of cubic symmetry reproduces IQ; I. The charge
response derived in Sec. II must be amended to include
contributions from all SD%"s. The total response is then

p, (Q)= —10e(1——', R, Q + —,', R, Q )exp( —
—,'R, Q ),

(32)

with

Q ~ (q) =—,'x';Y(q)
q

(39)

e,, '(q)=1—

e,, '(q) =1—

Qo(q)+ QT(q)

1+(1—G+ )[Qo(q)+QT(q)]

(1—r, G+ )[Qo(q)+QT(q)]
1+(1—G+ )[Qo(q)+QT(q)1

(33)

and

where e is the electron charge. R, and R, are radius pa-
rameters for the core and shell and are adjusted to 6t the
dispersion curves.

The core-core dielectric function e„(q), the core-shell
dielectric function e„(q), and the shell-shell dielectric
function e„(q) are given by the same expressions as in

WO, except that the usual Lindhard response function
Qo(q) is replaced by Qo(q)+QT(q), where QT(q) is the
extra (diagonal) response caused by the SDW's, defined
below in Eqs. (38) and (39),

g';f(q) is the diagonal response (for q close to +Q; ) of the
ith SDW component having wave vector Q, The num-
ber of components depends on the direction of Q: For
Q = (2m/a)(2, 1,0) or (2m /a)(2, 1, 1) there are 12
equivalent axes; for Q=(2'/a)(1, 1,0) there are 6; and
for Q=(2n. /a)(1, 0,0), there are 3.

The most important feature of y';g(q) is that near
q= +Q; it has sharp peaks, which will (as we shall show)
explain the unexpected dips in the phonon dispersion
curves of Pb. Although the peaks in y"", derived in Eqs.
(21) and (23), have a Lorentzian shape, it must be remem-
bered that the derivation was based on the smallness of
~q

—Q~. Consequently the Lorentzian tails for large
~q

—g~ are not of physical significance. There is a practi-
cal advantage in not having such tails when summing
over thousands of reciprocal lattice vectors. So we re-
place the Lorentzian forms with Gaussian ones:

(1—y, G+ )'[Q&(q)+Qr(q)]
E' =1

1+(1—6+ )[Qo(q)+QT(q)]
(35)

and

Q +~(q) = exp( —II;+),
X

(40)

G+(x)= 1.1x
1+1.7x

(36)

y, is the parameter characterizing the exchange interac-
tion between shell electrons and the conduction-electron
sea, and G+ (q) is the spin-symmetric exchange-
correlation local-field function. We use the form sug-
gested by Hubbard,

rr, =a.~w, ,rvP, (41)

where W;+=q+Q;, x =q/2kF, and B
& is a positive-

definite second-order tensor, i.e., Eq. (41) represents an el-
lipsoid centered at Q; in reciprocal space. If t, I, and v
are unit vectors along the three principal axes, Eq. (41)
becomes

but with coe%cients which lead to the correct limiting be-
havior near x =0 and x = ~. (x =q/2kF, and kF is the
Fermi radius. ) The usual Lindhard density response
function is given by

g 2~t2 +g2pr12 +g2~v2ik t ik 1 ii U ik (42)

mme 1
2 2

Qo(q) = —+ ln~2k 2 2 g~
(1—x) +5
(1—x) +5

jl, [2 {0]

(37)

For Pb the band mass mb is 0.77 times the free-electron
mass. ' A small quantity 6 has been introduced to
prevent the singularity in the logarithmic term from
creating artifacts in the computer calculations. We set
6=0.001 as in WO.

The physical properties of Pb, and especially its pho-

( OO I ) PLANE

FIG. 3. Principal axes t, I, and v of an SSPN ellipsoid for a
SDW with Q=(2m. /a)(2, 1,0). v, not shown, is perpendicular to
the paper [i.e., an (001) plane]. I is parallel to Q. t' and I, ob-
tained by rotating the ellipsoid about the v axis by 0, together
with v is an alternative set of principal axes.
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in the t, 1,v coordinate system. B„BI,and B, are the in-
verse widths of the peaks along each principal axis. The
coefficient A in Eq. (40) and the 8's in Eq. (42) are deter-
mined by fitting the observed cusps near I 100I points in
the phonon spectrum.

V. RESULTS AND DISCUSSION

In the following, we will show that the existence of
commensurate SDW's with IQ; I along special symmetry
directions gives a unique explanation to the frequency
cusps that appear in Pb's phonon dispersion curves. As
mentioned before, we omit the off-diagonal charge
response of the SDW's, i.e., the terms with q'=q+2Q, in

Eqs. (21) and (23). We have found that inclusion of such
off-diagonal terms merely forces us to readjust A and the
8's in Eqs. (40) and (42) and does not have a significant
effect on the phonon dispersion curves. The downward
cusps in both longitudinal and transverse modes are cen-
tered at the I 100I points of the Brillouin zone. We have
found the SDW families must involve IQ; ] located at su-

perstructure points in order to reproduce this feature.
The SDW families we have investigated are the following
ones.

A. [210] SDW family

For this case we assume that Pb has twelve SDW's,
each one with a Q equal to one of the twelve I210I super-
lattice vectors. Consider the SDW with
Q=(2m. /a)(2, 1,0). The directions of some related vec-
tors in reciprocal space are shown in Fig. 3, in which we
have set the principal axis v, defined in Eq. (42), parallel
to the [001] direction (because such a choice is required
by symmetry). t is the unit vector parallel to Q, and
t=vX1 is the third principal axis. However, symmetry
does not require that 1 be parallel to Q, so we have enter-
tained all alternatives, i.e., I' and t' (both perpendicular
to v) rotated by an angle 8 about the v axis. The SSPN
function II+, given in Eq. (42), but expressed in the t, l, v

We studied the lattice dynamics for several values of 0
(from 0 to ~) and became convinced that 8=0 was the
best. Therefore we fixed t, 1, and v as the three principal
axes of the SSPN ellipsoid located at Q. Obviously, cubic
rotations generate the principal axes appropriate to the
23 remaining ellipsoids.

It should be emphasized that the present work cannot
be expected to fit all details of the phonon dispersion in
Pb because we have not included effects that could arise
from the (relatively small) anisotropy of the Fermi sur-
face. ' ' Figure 4 shows the experimental data and the
calculated dispersion curves resulting from a I 210 I SDW
family (solid lines). The dashed lines are the computed
spectra with 3 =0, i.e., no SDW's. The cusps created by
the SDW's are satisfactory, and the overall agreement
with the experimental data is very good.

The discrepancy in the [gg]L branch near the zone
boundary is usually attributed to an enhanced Kohn
anomaly. ' Experimental data from Pb-Tl alloys ' ' re-
veal that the location of the Kohn anomaly moves away
from the zone boundary and that the longitudinal pho-
non frequencies near the (0.5,0.5,0.5) point increase rap-
idly. Therefore, if there were no enhanced Kohn anoma-
ly, the calculated frequencies would likely be quite close
to the experimental ones.

Since the value of A needed to fit the data is quite
small, the particular shape (Gaussian, Lorentzian, etc. ) if
the SSPN charge response g';g(q) is not important. To
demonstrate this point we show in Fig. 5 the calculated
phonon spectrum based on Lorentzian peaks,

SSP( )—
x (1+II;+)

(44)

II;+ is still given by Eq. (42). Of course, the parameters

coordinate system is, for this alternative,

II+=(B,cos 0+8&sin 0)(W'+ )

+(8 sin 8+8 cos 8)( W' )

+(8, —Bi )sin(28) JY'+ W++8„(W+ ) . (43)
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FIG. 4. Theoretical phonon spectrum of Pb with a cubic
family of (twelve) [210I SDW's. The data points were taken
from Brockhouse et a/. , Ref. 17, for T= 100 K. The parameters
used in computing the solid curves are R, = 1.273/(2k+),
R, =2.04/(2kF ), y, =0.08, p =Or A =0.026~ Bt =8/(2k@
BI=15/(2k+), and B„=2.8/(2kF). The SSPN charge response
used for the solid curves was the Gaussian type, Eq. (40). The
dashed curves were computed with A =0, i.e., no SDW; R„R„
and y, were unchanged.

FIG. 5. Theoretical phonon spectrum of Pb with a cubic
family of (twelve) (210) SDW's. The data points were taken
from Brockhouse et al'. , Ref. 17, for T=100 K. The parameters
used in computing the solid curves are R, = 1.273/(2kF),
R, =2.0/(2k~), y, =0.07, p=0, A =0.02, B,=10/(2kF),
BI=25/(2k+), and 8, =3.2/(2kF). The SSPN charge response
used for the solid curves was the Lorentzian type, Eq. (44). The
dashed curves were computed with A =0, i.e., no SDW; R„R„
and y, were unchanged.
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g,[a ii]

[goo]

( Ol I ) PLANE.

FIG. 6. Principal axes t, I, and v of an SSPN ellipsoid for a
SDW with Q=2m(2, 1, 1)/a. v, not shown, is perpendicular to
the paper [i.e., an (011) plane]. I is parallel to Q, t', and I, ob-
tained by rotating the e11ipsoid about the v axis by 8, together
with v is an alternative set of principal axes.
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R„y„A, and B have been readjusted. Comparison of
Fig. 5 with Fig. 4 shows that the fits are comparable.

B. [211]SDW family

For a SDW with Q=(2n. /a)(2, 1, 1), the crystal sym-

metry allows us to choose the principal axis v, defined in

Eq. (42), along the 1011[ direction. Some related vectors
are shown in Fig. 6. By the same trials described above,
we found that the best choice for I is parallel to Q. The
remaining principal axis is, of course, t=v Xl. Figure 7
compares the best ftt obtained using I211I SDW's with
the experimental data. In this case a positive core-shell
exchange parameter p was optimum. The two cusps near
the t100j zone-boundary points are again reproduced.
However the agreement is not quite as good as that found
using the I210I SDW family. With I211j SDW's the
size of the dip for the transverse branch is generally two
to three times smaller than the one for the longitudinal
branch.

The appearance of the downward cusps in the calculat-
ed curves of Fig. 7 does not depend on using a nonzero p.
The dotted curves were obtained upon setting @=0 and

FIG. 8. Phonon spectrum of Pb along the [100] direction
with a cubic family of (three) [100) SDW's. The parameters
used are R, =1.273/(2k+), R, =2.04/(2kF), y, =0.08/(2k+),
p=0, A =0.025, B=8.6/(2kF). The SSPN charge response in
Gaussian. The dashed curves were obtained upon setting A =0,
i.e., no SDW. {Solid and dashed curves coincide for the trans-
verse mode. )
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FIG. 7. Theoretical phonon spectrum of Pb with a cubic
family of (twelve) [211] SDW's. The data points were taken
from Brockhouse et aI., Ref. 17, for 7= 100 K. The parameters
used in computing the solid curves are R, = 1.273/(2k+),
R, =2.04/(2k'), y, =0.115, p=35 A =0.045, B,=10/(2k'),
BI=15/(2k+), and B,=6.5/(2kF). The SSPN charge response
used for the solid curves was the Gaussian type, Eq. (40). The
dotted curves were computed with @=0. The dashed curves
were computed with A =0, i.e., no SDW; R„R„and y, were
unchanged (and p, =35).

FIG. 9. Phonon spectrum of Pb along the [100] direction
with a cubic family of (six) [110]SDW's. The parameters used
were the same as in Fig. 8, except A =0.02. The dashed curves
were obtained upon setting A =0, i.e., no SDW. (Solid and
dashed curves coincide for the longitudinal mode. )
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leaving all other parameters unchanged. In this case p
has its largest effect on the longitudinal modes near the
zone boundary.

Qo q
1+(1—G+ )Qo(q)

QT(q)

[1+(1—G+ )Qo(q)]

—= e~, '(q) —esDw(q) & (46)

where e«(q) is the ordinary test-charge —test-charge
dielectric function, and esDw(q) is defined by

[1+(1—G )Q (q)]'

Since QT(q) has a finite value only when q is near +Q for
each of the SDW wave vectors, esDw(G) is usually negli-
gible. Therefore, upon substituting Eq. (46) into Eq. (45),
co (q) is approximately

4~n p'«+q) I«+q) a, l'
co (q) =cue(q)—

M G I
G+ ql'&sDw(G+ q)

(48)

coo(q) is the phonon frequency in the absence of SDW's.

C. [100] and [110]SDW families

For either the [ 100] or the [110I SDW family, we find
that only one of the cusps at the [100I zone-boundary
points can be qualitatively reproduced. To illustrate this
point schematically we choose all three B's in Eq. (42) to
equal the average of the three B's found for the [210I
SDW family. The calculated phonon spectra for the
{100I family is shown in Fig. 8 and that for the [110I
family is shown in Fig. 9. The [110I SDW family causes
a large cusp in the transverse mode but has little effect on
the longitudinal mode. The [100I SDW family reverses
the result: A large cusp appears in the longitudinal
branch, but the transverse branch remains unchanged.
These observations can be understood easily by using the
(simpler) rigid-ion model of lattice dynamics. In this
model there is no need to diagonalize a matrix, and the
phonon frequencies along symmetry axes are given by

4~„p (G+q)l(G+q). a
I

«i (q)=
I'G+ ql ~e„(G+q)

p (G)IG a I'
(45)

IGI'e„(G)

p(q) =p, (q)+p, (q) is the Fourier transform of the total-
ion charge density, and e„(q) is the core-core dielectric
function given by Eq. (33). For small SDW contributions
QT to the charge response,

Consider now the [ 100I SDW family, for which
esDw(G+q) is negligible excePt when (G+q) is near a

[ 100] zone-boundary point. For q = ( 1,0,0), the only
G's which satisfy this condition are G=(0,0,0) or
( —2, 0,0), for which (G.+q) =(+1,0,0). However,
( 1,0,0) is perpendicular to the polarization vector a
for transverse modes along [100]. So (G+q) a =0; and
from Eq. (48), the {100) SDW family has little effect on
the transverse branch along [100]. The absence of a cusp
in the longitudinal branch with a [110I SDW family can
be understood in the same way. We have also investigat-
ed the effects of a [300I SDW family, and found the same
result as that for a [100I SDW family: Only a cusp in
the longitudinal branch could be explained.

VI. CONCLUSIONS

We have shown that a cubic family of small-amplitude
SDW's, having Q's equal to [210I or [211I can explain
the observed cusps in both longitudinal and transverse
modes near the [100] zone-boundary points of Pb. The
best fit was obtained using the [210I family, i.e., there are
twelve SDW's, each having a wave vector Q of the type
Q=(2m/a)(2, 1,0). (a is the lattice constant. ) IQI
=0.90(2kF) for this case; and IQI =0.99(2kF) for the
[211[ family. A definite choice between these two alter-
natives cannot be made at this time. The latter possibili-
ty satisfies the theoretical expectation, IQI—=Zk~, but
the former possibility allows the closest fit to the experi-
mental phonon spectrum. (It is likely, of course, that
band-structure effects might modify naive expectations
about IQI. )

The temperature dependence of Pb's phonon spectrum
has also been measured. As is usually the case, the fre-
quencies decrease (with increasing 1) almost everywhere
in reciprocal space. However, near the [100[ zone-
boundary points they increase. It seems fair to say that
the sizes of the (downward) cusps become smaller with in-
creasing temperature. One way to interpret such behav-
ior in terms of SDW theory is that thermally-induced
phase modulation of the SDW's causes a reduction (and
broadening) of the SSPN peaks in the charge response,
which gives rise to the cusps.

It has been shown recently that SDW's have pro-
found effects on some superconducting properties. For
example, the low-temperature tail in the electronic heat
capacity of Pb, which at 0.5 K is four orders of magni-
tude higher than it "ought" to be, can be explained with
the SDW model envisioned in this paper. A fit to the
heat-capacity data leads to an estimate for the SDW tran-
sition temperature at or above the melting point of Pb.
Anomalous behavior in ultrasonic attenuation at low
temperatures and in the tunneling conductance of
quench-condensed Pb NIS junctions can also be ex-
plained by the presence of SDW's.

It goes without saying that the presence of SDW's in
Pb would never be firmly established until magnetic
scattering of neutrons is observed. Such experiments are
feasible, though predictably difBcult. The fractional
modulation of each SDW is expected (from the heat-
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capacity tail mentioned above) to be p —1%. Not only is
this amplitude quite small, but also the neutron magnetic
scattering function S(q, co) may have most of its strength
in inelastic channels.

In this paper we have assumed that the SDW Q's are
commensurate and have values that coincide exactly with
superstructure points in reciprocal space. We have also
investigated the phonon spectrum if the Q's do not exact-

ly coincide. The cusps near I 100I can still be explained,
but only if IQl differs from the commensurate value by
less than 1 or 2%.
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