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Sample-dependent resolution in scanning tunneling microscopy
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In any microscopy or spectroscopy, quantitative analysis of data requires some knowledge of the
instrumental resolution function. Analysis in fact often involves image deconvolution, at least im-

plicitly. However, for scanning tunneling microscopy (STM), the very definition of resolution be-

comes problematic and has until now been addressed only for metals, the simplest case. Here a nat-

ural general expression for the resolution of STM is developed. This definition gives a resolution
function which may be strongly sample dependent in the case of semiconductors or semimetals, and

which has an anomalous line shape and linewidth in certain cases. Thus image deconvolution is not

generally possible, even in principle, without an understanding of the sample electronic structure.

I. INTRODUCTION
In any microscopy or spectroscopy, the image or spec-

trum is viewed as an "ideal" image containing the desired
information, convoluted with an instrumental resolution
function or line shape. The resolution is therefore one of
the most crucial properties characterizing the instru-
ment. Quantitative analysis of data can depend critically
on knowledge of the instrumental resolution function.
Under favorable circumstances, it is even possible to
deconvolute the image, reducing or eliminating the dis-
tortion associated with the instrumental resolution. In
addition, the first step in improving the instrumental
resolution is understanding the factors which determine
the resolution.

The purpose of this paper is to present a unified discus-
sion of the resolution of scanning tunneling microscopy
(STM), in which the very diff'erent cases of metals'
(normal resolution) and certain semiconductors and
semimetals (anomalous resolution) are seen to be partic-
ular instances of the general sample-dependent resolution.
In particular, the case of anomalous resolution, first men-
tioned in Ref. 4, is here discussed in detail for the first
time. In order to isolate the role of the sample in deter-
mining the eff'ective resolution of STM, we restrict our-
selves to a simple model for the tip' throughout most of
this paper.

STM itself has been described in detail by its inven-
tors. In the "constant current" mode, the operating
voltage between surface and tip is fixed, and the height of
the tip is constantly adjusted so that the tunneling
current remains equal to some specified value as the tip is
scanned laterally along the surface. While other modes
of imaging exist, this mode is by far the most generally
useful, since in certain limits the path of the tip corre-
sponds directly to a topograph of the surface.

The central result here is that, with the most natural
definition of the resolution function, the resolution de-
pends critically upon the electronic structure of the sam-
ple. If states from throughout the surface Brillouin zone
(SBZ) contribute to the tunnel current, as for simple or
noble metals, then the resolution assumes a weil-defined
limit' which is approximately sample independent, and

which corresponds closely to one's intuition. However, if
only states from a small part of the SBZ contribute to the
current, as is often the case for semiconductor surfaces at
low tunnel voltage, then the resolution function can ex-
hibit very anomalous behavior.

The most extreme situation arises if only states near
the edge of the SBZ contribute to the current. In that
case there is a striking apparent enhancement of the abili-
ty to resolve the unit cell. However, the resolution for
features within the unit cell is not enhanced. Thus the
"line shape" of the instrument in this case depends upon
the lattice constant of the surface.

This very peculiar situation is perhaps best appreciated
by considering the surface as imaging the tip, instead of
vice versa. While the two perspectives must yield identi-
cal predictions for the image, the former view makes it
easy to appreciate how the apparent instrumental line
shape could depend on the surface periodicity and elec-
tronic structure. From that viewpoint, perhaps the re-
markable thing is that, for metals, this dependence con-
veniently disappears.

II. DEFINING THE RESOLUTION OF STM

A. Resolution of linear measurements

Defining the resolution of STM raises tricky issues for
two reasons. First, STM is inherently nonlinear, so the
usual definition of resolution in terms of convolution with
an instrumental function cannot be applied directly.
Second, resolution can only be defined relative to what
the instrument should ideally measure. In many other
rnicroscopies and spectroscopies, one knows exactly what
the instrument is intended to measure, and the resolution
is a measure of the deviation from this ideal. In STM,
the ideal image is not so well defined, making the
definition of the resolution correspondingly ambiguous.
Choosing a convention for the "ideal" STM image is
therefore an unavoidable first step in defining the resolu-
tion.

More formally, one defines resolution by assuming that
there exists some ideal image or spectrum Io(x), which
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would be seen in the case of perfect instrumental resolu-
tion. The variable x here may represent one or more di-
mensions of space, time, energy, etc. , depending upon the
microscopy or spectroscopy in question. The actual mea-
sured image I(x) is then

I(x)= J Io(x —y)F(y)dy .

Equation (1) should be viewed as the definition of the
resolution function F(x).

The resolution [i.e., the width of F(x)] should not be
equated with the size of the smallest distinguishable
feature in the image. The latter size is actually deter-
mined by the signal-to-noise ratio, as discussed else-
where. In principle, if F(x) is known, and in the ab-
sence of noise, the actual image I (x) contains no less in-
formation than the ideal image Io. However, the convo-
lution (1) tends to suppress the components of I(x) with
high spatial frequency, and even a little noise or uncer-
tainty in F(x) can then render deconvolution impossible,
so that information is truly lost.

It is often convenient to Fourier transform (1) to obtain

I(q) =ID(q)F(q) .

Here I(q) and F(q) are the Fourier transforms of I(x)
and F(x), e.g. ,

I(q)= j I(x) exp(iqx)dx,

neglecting normalization. An obvious advantage of (2) is
that F(q) can be determined directly as I(q)/Io(q).

It is important to recognize that F(x) is a well-defined
function, independent of the specific image, only if the
measured image I (the "output") is a linear function of
the ideal image Io (the "input"). While the meaning of
the ideal image Io may be obvious in the case of an opti-
cal microscope, it is not so for STM.

The task here is to determine F(x). To do so, howev-
er, we must first identify a natural choice for the
definition of Io. Moreover, it is essential to make this
choice in such a way that the linearity condition men-
tioned above applies.

B. Form of the STM image

We now consider the form of the STM image, in order
to motivate a choice of Io and to set the groundwork for
evaluating the resolution function F. In general, the reso-
lution must depend on the tip shape and electronic struc-
ture. For example, several authors ' have presented evi-
dence that experimental STM images sometimes are
grossly distorted by the tip shape, in particular when
there are multiple distinct tunneling sites (in effect, multi-
ple tips).

Here we are primarily concerned with the dependence
of the resolution on the sample, so for simplicity we re-
strict ourselves to the idealized tip model of Tersoff and
Hamann, ' in which tunneling matrix elements are ap-
proximated by those for an s-wave tip wave function. In
addition, we neglect such extrinsic factors as finite instru-
mental response time, vibrational noise, and mechanical
interactions between the tip and surface. (It should, how-
ever, be stressed that these extrinsic effects may often be

p(x, z) =pr, (4)

where pT is proportional to the tunneling current at
which the microscope is operated.

Unfortunately, this imaging process is inherently non-
linear, whereas resolution is only well defined for a linear
measurement. It is therefore useful to work in the limit
of weak corrugation, so that the imaging process can be
linearized. We then write

z =zo+((x,zo),

where zo is an average tip height defined below, which de-
pends on pT but is not easily accessible experimentally,
and g is the small corrugation which constitutes the im-
age, and which depends on the tip height zo or
equivalently on pT. Expanding p(x, z) about z =zo, (4)
and (5) give

d
g(x, zo)=[pT —p(x, zo)] p(x, zo) .

dz

Because of the approximately exponential decay of the
wave function, for weak corrugation one can write

dp(x, zo)/dz= —p(x, zo)/A, .

the factors which actually limit the STM resolution in
practice. )

The resulting image corresponds to a contour of con-
stant surface local density of states p(r, EF ), where

(3)
v~kii

More specifically, the center of curvature of the tip fol-
lows one of these contours, the particular contour de-
pending upon the voltage, current, and other factors.
Here E„& is the energy of eigenstate i' k, ki is the sur-

face wave vector (in the case of a periodic surface), and
the index v runs over the remaining quantum numbers.

The approximations involved in this model are expect-
ed to be rather accurate in most cases, especially for
monatomic tips. Moreover, the model has proven ade-
quate for the quantitative interpretation of STM im-
ages, ' and has been tested by comparison with more ex-
act calculations in simple cases. ' We therefore accept
without further discussion that the STM image does in
fact correspond to a contour of p(r, EF), to sufficient ac-
curacy for the present purpose.

For finite voltage, assuming a structureless density of
states for the tip, it is merely necessary to integrate
p(r, E) over the appropriate range of energy. In princi-
ple, P should be calculated in the presence of the electric
field, but for small voltages this complication can be
neglected in practice. " Thus while, for convenience, we
will generally discuss tunneling at small voltage, the dis-
cussion and results carry over directly to imaging at
larger voltages.

Let us rewrite p(r, EF ) (or the corresponding integral
in the case of finite voltage) as p(x, z), where we separate
lateral and vertical position as r=(x, z), suppressing the
energy argument for notational simplicity. The STM im-
age z(x) in the constant-current (topographic) imaging
mode is implicitly defined by
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The decay length k is discussed below, as is the range of
validity of this expression. Also, we define the charac-
teristic tip height zp by the condition that the lateral
average of p(x, zo) is

r4 p xzp dx =pp zp —pT (8)

where A is the area of integration. Thus zp represents
(within the model of Ref. 2) the average height of the
effective

center of curvature of the tip.
To lowest order in the quantity

[p(x, zo) —pT]/pT one can then write
small

g(x, zo)=A[p(x, zo) pT]/pT . (9)

Io(x) :=k[P(x,0) —Po(0)]/Po(0) . (10)

Note that this convention does not require that the corru-
gation be weak in the reference plane. The implicit
dependence of A. on z due to the spatial variation of the
potential is neglected, since this variation is actually rath-
er weak except very near the surface.

There remains an ambiguity in the choice of the refer-
ence plane z =0. A reasonable choice might be the aver-
age classical turning point for electrons at the Fermi lev-
el, or a point slightly further away from the surface. The
treatment here is most rigorous when the plane is chosen
relatively far from the surface. However, this gain in
rigor is balanced by a loss of substantive content, since
more of the smoothing of the wave functions is then in-
cluded in Ip instead of in the resolution function, where it
intuitively belongs. In the limit that the reference plane
is taken as the plane zp in which the tip moves, the nomi-
nal resolution becomes perfect (within the present model
for the tip), merely because the convention for the ideal
image corresponds to the actual image. Conversely, if
the reference plane is chosen very near the surface, then
Ip will reAect topographic features of the surface in fine
detail.

Equation (9) is a very simple but central result. It states
that, in the limit of weak corrugation, the image g(x, zo)
is simply proportional to the fractional variation of
p(x, zo) about its mean value in the plane z =zo.

In analogy with (9), we therefore propose to identify Io
with the fractional variation of p(x, zo) about its mean
value, evaluated in some reference plane which is taken
here as the origin. Thus

G ( Z 0 ) —kP G ( Z 0 ) /P 0( Z 0 )

Io(G)=kpG(0)/po(0) .

(12)

(13)

Combining (12) and (13) with (2) gives the desired expres-
sion for the resolution function:

F(G) =pG(zo)po(0)/po(zo)pG(0) . (14)

This formula may, of course, be Fourier transformed to
give an explicit line shape F (x).

Equation (14) is a central result here, providing an ex-
plicit statement of how the resolution of STM depends
both on the tip height, and on the sample electronic
structure. Any more specific statement requires detailed
knowledge of the specific sample, i.e., of pG(z).

While (14) was derived under the assumption of weak
corrugation, this restriction represents an unavoidable
limitation, reAecting the limited applicability of the very
concept of resolution to the highly nonlinear STM mea-
surement. For practical purposes, (14) can no doubt be
usefully applied well beyond the range of strict validity,
as a working definition of resolution. Additionally, if the
corrugation g is weak even in the reference plane, then
(14) can be rewritten entirely in terms of observable im-

ages,

F(G)=. g (z )/g (0) .

D. Role of the tip

The STM tip can, of course, have a major effect on the
image. This can be included in a straightforward way
into the definition of the resolution. Specifically, from
(2), F(q)=I(q)/Io(q). If we take I(q) as the image ob-
tained with the actual tip, but continue to define the ideal
image Io(q) as that for a point tip via Eq. (4), then in

analogy with (14) one obtains

F (G) =j G(zo )po(0) /jo(zo )pG (0) (15)

III. EVALUATING THE RESOLUTION FUNCTION

where jG is the two-dimensional Fourier transform of
j(x,z), the actual tunneling current (for the given tip) as
a function of tip position. However, it is dificult to go
further without specific assumptions about the tip wave
functions.

C. Form of the resolution function

It is now convenient to assume that the surface is
periodic, and to work with the Fourier-transformed
quantities. The periodicity can later be taken to be arbi-
trarily large, to include nonperiodic surfaces. We then
write

p(x, z) = QPG(z) exp(iCx x), .
G

where G denotes the surface reciprocal lattice vectors, a
tilde indicates a reciprocal-space quantity, and pp was
defined above to be just the G =0 term of (11). Now (9)
and (10) may be rewritten as

A. General approach

ljr/,
= y a (k~~, a) exp[i(k~~+a). x] exp( —KGZ), (16)

In order to evaluate the resolution (14) in any specific
case, one must in principle know the surface 1ocal density
of states (3), i.e., pG(z). This can, of course, be computed
numerically, at least in principle. In order to draw some-
what more general conclusions, however, we follow Ref.
2 in making use of the known asymptotic behavior of the
wave functions. Specifically, by neglecting the variation
in the potential V(r) over the region of interest, the wave
functions can be expanded in generalized (complex) plane
waves, i.e.,
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where ~G = ~k~~+G~ +~, and A' ~ /2m = V E—z . Here

V is the average potential in the region of interest, and
the index v of (3) has been suppressed for brevity. One
can then combine (3) and (16) to express pG(z) in terms of
products of such complex plane waves. In particular,
from (16) one can, following Ref. 2, identify A, in (7) as 21'.
Moreover, one finds that (7) is accurate so long as either
the corrugation is weak (g«k), or the lateral length
scale of interest is long (G «21').

B.Results for metallic surfaces

In principle, a precise evaluation of the resolution from
(14) requires a detailed knowledge of the surface electron-
ic structure. However, for metals, it has previously been
noted' that one can derive some results concerning the
resolution from fairly general considerations. In particu-
lar, an ansatz based on the superposition of atomiclike
densities gives a description which corresponds remark-
ably well the exact asymptotic behavior. ' These previ-
ous results are combined and restated here for complete-
ness.

The conclusion to be drawn from from the discussion
below is that for metals, the instrumental resolution for
STM may be adequately described by a Gaussian line
shape. Thus the effect of finite resolution in this case cor-
responds closely to one's intuitive expectations, and so
the interpretation of images is generally not complicated
by the sort of subtleties discussed later for the case of
semiconducting surfaces.

Consider a spherical atomiclike charge density p, of
the form

pG (z) =BG exp[ —(4x +G )
' z], (17)

where B is a constant for each G, depending only on ~
and on the arrangement of atoms, and the values of their
coefficients C. [For the present discussion, it is actually
unimportant whether realistic values of BG can be ob-
tained by superposition of spherical charges; our concern
is simply to motivate the model form (17) of the exponen-
tial dependence '' on z and G.]

Combining (14) and (17), one may immediately obtain
an explicit model form for the resolution function,

F( G) = exp[21~zo —(4~ +G )
'

zo ] . (18)

Since ~ is proportional to the square root of the work
function, which itself does not vary too much among
metals of interest here, (18) represents a resolution func-
tion which is nearly independent of the specific sample.

The "justification" for this ansatz is relatively sim-

p, (r) =C exp( —2Irr)/r .

(The denominator is for analytical convenience only,
since the behavior at large r is dominated by the exponen-
tial. ) We imagine that p(r, EF ) can be mimicked by a sum
of such atoms, perhaps with a different coefficient C for
each inequivalent atom. Then an arbitrary sum of such
"atoms, " restricted to the half-space z & 0, gives a charge
density which in the half-space z )0 can be Fourier
transformed to yield

pie. z' It can be shown that (a) the term po(z) is asymp-
totically dominated by states near kl =0 (if such states
exist at the relevant energy), giving a behavior po(z)
=Bo exp( —2~z); (b) the term p~(z), where g is the small-
est G, is asymptotically dominated by states near the SBZ
edge, k~~ =g /2, giving a behavior

p~(z)=B~ exp[ —(4a. +g )' z];
and (c) the terms pG(z), where G ))g, are approximately
independent of k~~, with a behavior

PG(z)=BG exp[ —(4a +G )'~ z] .

Thus (17) is asymptotically exact for the large-G com-
ponents of pz, regardless of the detailed electronic struc-
ture, and also for the lowest two G components (G =0
and G =g) if both k~~

=0 and
k~~~

=g contribute to the
charge density from states at EF (or in the energy range
relevant for the specified voltage).

In general, for metals the observable G components
obey G «2~, i.e., typically G 0.8 A, while 2~-2
A '. (There may, however, be cases where this is less
well obeyed. '

) Then (18) may be expanded as

F(G) = exp( —G zo/4a) .

This simplified model resolution function is simply a
Gaussian with rms width (zo/21')'

It is worth stressing that the approximate applicability
of (17) only requires that a substantial range of k~~ con-
tribute to the tunneling current. For example, the "most
typical" k point (in the sense of "special point" schemes)
is k~~ =g/4. That point alone contributes' terms which
go asymptotically as

exp[ —2(a. +g /16)'~ z]

and

expI —[x+(i~ +9g /16)' ]z I

for Po and p, respectively. For G «2v (generally valid
for observable features on metals), these decay constants
are a good approximation to the asymptotic values from
states at the zone center and edge. The decay constant
for po differs from the k~~

=0 value by only g /16~, and
that for p~ differs from the k~~=g/2 value by only

g /32~. Thus that one point alone gives very similar
asymptotic behavior to the full SBZ sampling for all G
components. If, for example, there are no states near
k

~~

=0 which contribute to the tunneling current, or none
near g/2, the characteristic metallic behavior (18) will
hardly be affected.

C. Results for semiconducting and semimetallic surfaces

Equation (18) gives an explicit result for the resolution
function, i.e., the instrumental line shape, for the case of
STM of metal surfaces. In the analysis below, we show
that (18) is approximately valid in general, even for semi-
conducting surfaces, except for the lowest Fourier com-
ponent of the image. However, the lowest component
F(g) (where g is the smallest reciprocal lattice vector)
may in general have a value which deviates grossly from
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(18), and which depends sensitively upon the electronic
structure of the surface.

This effect distorts the image in a manner which is sim-
ple, but which can have profound consequences for the
interpretation of STM images. For example, in the ex-
treme case that F(g) is greatly enhanced relative to the
higher components, the image will have a simple
sinusoidal' variation, with the periodicity of the surface,
giving the misleading appearance of a single topographic
feature per unit cell. This effect has been observed ' ''
on Si(111)-(2X1),GaAs(110), and IT-TaSz. Fortunately,
in each case a prior knowledge of the electronic structure
permitted a correct interpretation.

We now proceed with the analysis of STM resolution
for semiconducting surfaces. The results for metal sur-
faces, Eqs. (17)—(19), are based on the assumption that
the entire SBZ (or at least some "typical" k~~) contributes
to the tunneling. This assumption is certainly appropri-
ate for metals, and in addition it may often apply well to
semiconductors, especially at moderately large tunneling
voltage or for large unit cells or disordered surfaces.
Moreover, the assumption is not critical when the struc-
ture of interest is well localized within the unit cell
(G))g). Thus Tromp et al. ' were successful in inter-
preting images of Si(111)-(7X 7) based on this atom-
superposition ansatz.

In contrast, in STM of semiconducting surfaces at the
lowest possible tunneling voltage, tunneling takes place
into or out of states at the band edge. In that case only
one or a few states ( or pockets of states) contribute to (3).
Consider, in particular, tunneling to states which are
quasi-two-dimensional. These could be either surface
states, as for Si(111)-(2X1),' or states of a quasi-two-
dimensional material such as 1T-TaSz or graphite. Then
for semiconductors (and often for semimetals), the states
at the band edge (or Fermi level) generally fall at either
the center or edge of the surface Brillouin zone. The case
of tunneling to zone-edge states is particularly interest-
ing, and has been discussed in Ref. 4.

For tunneling to states at the edge of the surface Bril-
louin zone, k~~ =g/2, where g is again the smallest G.
Substituting this into (16), and assuming reflection sym-
metry, one finds that'

pi= sin(k~~x) exp[ —(ir +k
~~

)' z]

plus higher Fourier components.
Substituting into (3) gives

P, =2p, =
—,
' exp[ —2(1~'+ k

Thus the g Fourier component decays no more rapidly
than the zero Fourier component, and substituting into
(14) gives F(g) = 1, independent of z. For G )g, however,

pz decays faster with increasing G, as expected, so for
G )g, F(G) still decreases with increasing z as for a met-
al. In fact, it is easy to verify explicitly that (18) is still
valid even for the second-lowest Fourier component
F (2g) in this case, at least for G ((2'.

This is a very peculiar result. It implies that, for large
z (i.e., large tunneling distance or tip radius), the ability
to resolve structure within the unit cell decreases and is

lost, just as for a metal surface, since this structure corre-
sponds to G )g. But because F(g) =1, the unit cell itself
is well resolved even if it is very small (large g), and even
if the tip is relatively blunt or far from the surface, as
long as the model of Ref. 2 is applicable.

This enhanced resolution of the unit cell is particularly
striking for graphite, where the 2-A unit cell is easily
resolved, even though such small structures are not
resolved on metal surfaces. In fact, it may well be the
case for most semiconductor surfaces that the resolution
is enhanced over that expected for metals by electronic
structure effects. This has been explicitly verified in the
case of GaAs(110) by a reexamination of earlier results.
In that case, the realistic buckled geometry shows a much
larger enhancement of F(g) than does they hypothetical
ideal (unbuckled) surface, consistent with the fact that
the latter is metallic.

Of course, it the states sampled have k
~

slightly dis-
placed from g/2, as will generally be the case (e.g. , be-
cause of the finite applied voltage), the enhancement of
F(g) will be correspondingly reduced. A quantitative
analysis of this reduction is straightforward, but not par-
ticularly interesting.

Other cases may also be interesting, although less
dramatic. For example, if only states near k~ =0 contrib-
ute to tunneling, the resolution F (g ) of the lowest
Fourier component is suppressed relative to the metallic
case, rather than enhanced. However, no striking cases
of this effect have yet come to light.

IV. CONCLUSIONS

Because of its inherently nonlinear character, the reso-
lution of STM cannot be treated in complete generality.
This difhculty is compounded by the lack of an obvious
definition of the "ideal" STM image, with respect to
which the resolution can be defined. Nevertheless, a use-
ful working definition of the instrumental resolution may
be formulated.

The two crucial steps are, first, restricting ourselves (at
least formally) to the small-corrugation regime, where the
imaging process can be linearized, and second, making a
natural and intuitive (although, strictly speaking,
nonunique) definition of the ideal STM image, corre-
sponding to the hypothetical limit of ideal resolution.

With the resulting definition of the instrumental reso-
lution function, embodied in Eq. (14), we have considered
the dependence of the resolution upon the sample elec-
tronic structure. For features that are well localized
within the unit cell, the resolution is well described by
(18) for any sample. However, the behavior of the funda-
mental Fourier component of the image may depend
dramatically on the sample electronic structure.

For metals, the validity of (18) extends to all Fourier
components, giving a well-defined instrumental line shape
which is essentially independent of the sample. However,
for semiconductors and semimetals, the resolution F(g)
of the fundamental Fourier component corresponding to
the unit cell may be drastically enhanced (or suppressed),
distorting the image. Since one makes assumptions (often
unconsciously) about the resolution function when inter-
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preting images, the anomalous line shape can be mislead-
ing, making correct interpretation more diScult.

Based on heuristic considerations, and on an analysis
of previous results for GaAs(110}, we speculate that this
enhancement of the resolution of the unit cell is a com-

mon phenomenon for semiconducting surfaces with small
unit cells. In these cases, considerable care is necessary
in interpreting the STM images in a quantitative way,
precisely because of the nonintuitive form of the effective
instrumental line shape.

'J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983).
~J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).
3E. Stoll, Surf. Sci. 143, L411 (1984).
4J. Tersoff, Phys. Rev. Lett. 57, 440 (1986).
~G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982);

Surf. Sci. 152/153, 17 (1985).
P. K. Hansma and J. Tersoff, J. Appl. Phys. 61, Rl (1987).

7S. Park, J. Nogami, and C. F. Quate, Phys. Rev. B 36, 2863
(1987).

H. A. Mizes, S. Park, and W. A. Harrison, Phys. Rev. B 36,
4491 (1987).

R. M. Feenstra, J. A. Stroscio, J. Tersoff, and A. P. Fein, Phys.
Rev. Lett. 58, 1192 (1987).

N. D. Lang, Phys. Rev. Lett. 56, 1164 (1986).
N. D. Lang, Phys. Rev. B 34, 5947 (1986).

' J. Tersoff, M. J. Cardillo, and D. R. Hamann, Phys. Rev. B 32,
5044 (1985).

' Recently, the resolution of atoms on Au(111) was reported by
V. M. Hallmark, S. Chiang, J. F. Rabolt, J. D. Swalen, and

R. J. Wilson, Phys. Rev. Lett. 59, 2879 (1988). In this case, G
is no longer much smaller than 2v, and Eq. (18) cannot be re-
duced to (19). In any case, it was not anticipated theoretically
that Au(111) could be resolved with such a significant corru-
gation amplitude, under the assumption of a significant tun-
neling gap and no mechanical interaction between surface
and tip. The mechanism underlying this unexpected observa-
tion has not yet been established.

' Actually, the image corrugation in this case is sinusoidal only
in the weak-corrugation limit. A full nonlinear treatment is
given in Ref. 4, for the case that higher Fourier components
are negligible compared with F (g).

'5J. A. Stroscio, R. M. Feenstra, and A. P. Fein, Phys. Rev.
Lett. 57, 2579 (1986).

' R. V. Coleman, B. Drake, P. K. Hansma, and G. Slough,
Phys. Rev. Lett. 55, 394 (1985).

' R. M. Tromp, R. J. Hamers, and J. E. Demuth, Phys. Rev. B
34, 1388 (1986).


