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Penrose tilings have become the canonical model for quasicrystal structure, primarily because of
their simplicity in comparison with other decagonally symmetric quasiperiodic tilings of the plane.

Four remarkable properties of the Penrose tilings have been exploited in the analysis of the physical

issues: (1) the class of Penrose tilings is invariant under dejfation (a type of self-similarity transfor-

mation); (2) the class contains all tilings consistent with a set of matching rules governing the orien-

tations of neighboring tiles; (3) a certain decoration of the tiles produces grids of quasiperiodically

spaced Ammann lines; and (4) the tile vertices can be obtained by projection of a subset of hypercu-

bic lattice points. Each of the first three properties can be explicitly displayed by means of a simple

decoration of the tiles, a decoration in which all the marked tiles of a given shape are related by the

operations in the orientational symmetry group of the tiling. In this paper, analogues of the Pen-

rose tilings are presented for the cases of octagonal and dodecagonal symmetry, the only other cases

in two dimensions for which such analogues exist. The octagonal tiling is composed of two types of
decorated tiles: a square and a 45 rhombus. The dodecagonal tiling is composed of three tile types:
a regular hexagon, a square, and a 30' rhombus. Defiation procedures, matching rules, and

Ammann-line decorations are explicitly displayed, secondary Ammann lines are defined and their

significance with regard to the long-range order of the tilings is elucidated. The quasiperiodic se-

quences specifying the positions of the Ammann lines are derived and the appropriate projections
from hypercubic lattices are described. Both the su%ciency of the matching rules and the

equivalence of tilings produced by deAation and projection are demonstrated. The tilings are then

used as a basis for a treatment of the elasticity of octagonal and dodecagonal quasicrystals. The ir-

reducible phason strains are derived and the signatures of the di6'erent types of phason strain in real

space and reciprocal space are determined. Standard analysis of a harmonic free energy reveals that
there are three phason elastic constants for octagonal and dodecagonal quasicrystals (as opposed to
two for decagonal ones) and there is no coupling of phason strain to conventional strain in the dode-

cagonal case. In each case, one linear combination of the phason elastic constants is irrelevant for
phason fluctuations of wavelengths smaller than the sample size. Finally, some remarks are made

concerning the applicability of standard elasticity theory to quasicrystals that are well described as

simple decorations of tilings.

I. INTRODUCTION

The study of quasicrystal tilings with octagonal or
dodecagonal orientational symmetry has become relevant
for several reasons. The only noncrystallographic orien-
tational symmetries observed to date in real materials are
icosahedral, decagonal (or perhaps pentagonal), octago-
nal, and dodecagonal' and analysis of quasicrystal til-
ings of the plane indicates that these may be the only
symmetries that support an ordered quasicrystalline
phase. In addition, studies of eightfold and twelvefold
tilings may yield important information relating to gaps
in our understanding of icosahedral and tenfold tilings.
It is not known, for example, what determines the re-
quisite complexity of matching rule decorations or what
features of the tiling are necessary for the existence of a
local growth algorithm. Comparison of the eightfold,
tenfold, and twelvefold tilings is useful for determining
whether relations that occur in the tenfold case are neces-
sary or merely coincidental. The Penrose tilings have
played a special role in the study of decagonal quasicrys-
tals because they display many remarkable properties in a

particularly simple way. In this paper, octagonal and
dodecagonal analogues of the Penrose tilings are present-
ed and then used to illustrate certain features of the elas-
ticity theory of octagonal and dodecagonal quasicrystals.
It is shown that several techniques developed for the
analysis of Penrose tilings can be carried over to these
other symmetries.

It is possible to treat the cases of eightfold, tenfold, and
twelvefold orientational symmetry together, since they
share many essential properties. The most prominent
feature that distinguishes these symmetries from all oth-
ers in two dimensions is the appearance of quadratic irra-
tionals in the ratios of incommensurate, collinear wave
vectors in the diffraction pattern. [In two dimensions,
cos(2m. /Q ) is a quadratic irrational only for Q =5, g, 10,
and 12.] As will become clear below, this allows similar
constructions to be made in the dN'erent cases that great-
ly simplify the analysis. Each has a few unique features,
so a complete analysis requires that they be treated sepa-
rately at certain points, but the differences between the
symmetries arise only in the detailed results; the same
general concepts apply to all three cases.
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The concepts of local isomorphism (LI) and orienta-
tional symmetry play an essential role in the analysis of
quasicrystalline structure. In the literature, subtly
different definitions of both terms have been used in order
to emphasize different points, so it is necessary to give ex-
plicit definitions that will apply throughout this paper.

Local isomorphism T.wo tilings are said to be locally
isomorphic if and only if every finite region contained in
either tiling can also be found (oriented the same way) in
the other. The set of all tilings locally isomorphic to a
given tiling is the "LI class" of the tiling. All members of
a given LI class have identical physical properties, the
distinct members being related by translations and
phason shifts only.

Orientational symmetry. Let jg J be the set of opera-
tions in the point group G. If for all g, operating with g
on a tiling yields another tiling in the same LI class, and
if 6 is the largest point group for which this is true, then
6 is the orientational symmetry of the tiling. In this pa-
per, only tilings with symmorphic space groups are con-
sidered. For such tilings, an equivalent definition of
orientational symmetry is as follows: A tiling is said to
have a given point-group orientational symmetry if and
only if there exists a member of its LI class whose
diffraction pattern, including phases, is invariant under
the symmetry operations of the point group. Note that
under this definition, Penrose tilings (the original tilings
introduced by Penrose ' ) have decagonal symmetry (even
though they are often called "pentagonal quasicrystals").
Their point group is C&0, and they will be referred to as
tenfold symmetric.

For any given orientationa1 symmetry, it is possible to
construct a multiply infinite number of quasicrystalline
tilings, which can be grouped into LI classes. For the
case of tenfold symmetry, the original Penrose tilings
form a single LI class (the "PLI class" ) that stands out as
the most amenable to analysis. [Penrose tilings are
infinite, space-filin tilings of the plane with two types of
oriented rhombus. An example is shown in Fig. 1(a)].
They possess the following four properties, which have
been exploited in various ways to address issues in quasi-
crystal diffraction and elastic deformation, ' facet forma-
tion, growth, and atomic structure. '

1. Self similarity. Ther-e exists a "defiation" operation
on any Penrose tiling that generates another Penrose til-
ing composed of smaller tiles, as well as an "inflation"
operation that is the (unique) inverse of deflation. More-
over, the delation operation can be realized as a simple
decoration of the original tiling, where "simple" means
that every tile of a given shape is decorated the same way.

2. Matching rules. There exists a set of rules con-
straining the relative orientation of neighboring tiles in
such a way that the only infinite space-filling tilings con-
sistent with the rules are Penrose tilings. These "match-
ing rules" can be implemented via simple decoration of
the tiles and a rule for how decorations on adjacent tiles
must join.

3. Ammann lines. There exists a simple decoration of
the tiles with line segments that join to form infinite
straight lines in any Penrose tiling. The infinite lines

form five sets of parallel lines, each of which is called a
"grid." The spacings between consecutive 1ines in each
grid form a Fibonacci sequence of long and short inter-
vals, so the equation of the Nth line in the nth grid can
be written as

1 Nx„z.e„=S %+a„+——+P„
7

where e„=(cos(2mn/5), sin(2irn/5)), v is the golden
mean, (1+&5)/2, a„and P„are constants, S is the
length of the short interval, and the Iverson "Aoor func-
tion" [x J denotes the greatest integer less than or equal
to x. The requirement that the five grids taken together
form a simple decoration of a Penrose tiling limits the
number of degrees of freedom available in the choice of
the a„'s and P„'s to four. (See Ref. 6.)

4. Projection from a hypercubic lattice The .vertices of
a Penrose tiling can be obtained as the orthogonal projec-
tions of a subset of five-dimensional (5D) hypercubic lat-
tice points onto a 2D plane. ' The subset consists of all
lattice points whose orthogonal projections onto the 3D
complement of the tiling plane lie within the projection of
a unit hypercube.

It should be emphasized that the special quality of the
Penrose tilings is that properties 1 —3 involve simple
decorations. (See property 1 above. ) This greatly
simplifies the analysis of the tilings, but it does not distin-

guish them in any more fundamental sense. Other decag-
onal tilings do exhibit similar properties; it is just that
analysis of them requires that distinctions be made be-
tween various tiles of the same shape, or, equivalently,
that more than two types of tile be employed.

In this paper, PLI classes with eightfold and twelvefold
symmetry (tilings having properties 1 —4) are presented.
The intent is to provide enough information so that the
reader can exploit the properties of these tilings in inves-
tigating the physics of octagonal and dodecagonal quasi-
crystals. While other authors have considered tilings
with these symmetries, " ' this is the first analysis that
properly addresses the issues of matching rules and Am-
mann lines, as well as deAation and projection pro-
cedures. In addition, it is demonstrated here that certain
general results of elasticity theory are rejected in these
tilings in a natural way, the different irreducible phason
strains having distinctive effects both in real space and re-
ciprocal space. The nature of the defects associated with
phason strain in the tilings raises questions about the
relevance of standard treatments of their energetics.

We begin, in Sec. II, with a description of the Penrose
tilings and their eightfold and twelvefold analogues. The
section includes the information required for the reader
to reproduce them and a discussion of some differences
among the three symmetries. In Sec. III proofs of the as-
sertions of Sec. II (proofs of properties 1 —4 for the til-
ings) are provided, with some details relegated to appen-
dixes. In Sec. IV, the subject of phason strains is treated,
with an emphasis on the characterization of the different
types of irreducible strains. In Sec. V the free energy as-
sociated with phason strains is discussed. Finally, in Sec.
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VI, some implications of this work are suggested.
Throughout the paper, emphasis is placed on new re-

sults for the octagonal and dodecagonal tilings. The de-
cagonal case has been treated extensively in the litera-
ture. It is assumed here that the reader is familiar with
the basic properties of the Penrose tilings, including their
construction via the generalized dual method (GDM) ap-
plied to periodic pentagrids' or Ammann quasilattices
and the strip projection method, ' ' the effect of phason
strain upon them, ' and the structure of their diffraction
patterns. ' ' Results for the decagonal tilings are simply
quoted here, when appropriate, for the purpose of com-
parison.

Two topics relevant to the octagonal and dodecagonal

tilings that are not addressed here are the diffraction pat-
tern and the nature of dislocations. General analyses of
quasicrystal diffraction have appeared in the literature'
and application of them to these two symmetries is
straightforward. The analysis of the'Burgers vector lat-
tice that characterizes dislocations is so similar in all its
details to the analysis of dislocations in Penrose til-
ings' ' ' that it is unnecessary to repeat it here.

II. DESCRIPTION OF THE PLI CLASS TILINGS

This section contains descriptions of the PLI class til-
ings, unencumbered by derivations of the properties they
are claimed to have. Further discussion, including proofs

(b)

L + LI " L LI I LI iI

FIG. 1. The Penrose local-isomorphism (PLI) class tilings. The arrows on the tiles contain essential information about their orien-
tations (see text). Below each tiling, a single tile of each type is displayed. Below them the result of the deflation procedure applied to
single tiles with vertices at the solid dots is shown. The orientation of the deAations corresponds to the orientation of the arrows in
the displayed single tiles. (a) Decagonal symmetry (the original Penrose tiling). (b) Octagonal symmetry (first discovered by Am-
mann). (c) Dodecagonal symmetry.
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of the significant claims, can be found in Sec. III.
Throughout the current section, references to the
relevant subsections of Sec. III are given at the end of
each paragraph. The absence of a reference indicates
that the results discussed in that paragraph are straight-
forward (though perhaps tedious) to derive and are not
discussed further.

A. Delation rules

PLI class tilings with tenfold, eightfold, and twelvefold
symmetry are shown in Fig. 1, along with the delation

(c)

L

rules that generate them. The arrows in the figure re-
move all ambiguities in the defIation prescription. If the
arrows are ignored, there are certain tiles for which the
deflation breaks the symmetry of the tile shape (tenfold
tiles, the eightfold square, and the twelvefold hexagon).
In order to debate one of these tiles, one must know how
the defIated configuration is to be oriented within the tile
shape. The tiles have therefore been marked with arrows
that indicate the orientation of the delation decoration.
Given the arrows on the hexagons, it is now found that
the symmetry of the twelvefold square is broken, al-
though it retains its mirror plane along one of its diago-
nals. The breaking of the diagonal symmetry of the
twelvefold square and of both mirror symmetries in the
eightfold and twelvefold rhombi is included in anticipa-
tion of the matching rule decorations, which require
these distinctions.

It is the marked tiles that will be considered as the fun-
damental units of the tiling. To fully define the orienta-
tion of a tile, one must specify the orientation of the ar-
row as well as the orientation of the tile shape. The
specification of the orientations of the debated tiles is an
essential element in the definition of the defIation pro-
cedure. A scheme must be found that is consistent with
repeated defIation, and Fig. 1 shows the only such
scheme, up to equivalent redefinitions of the arrow direc-
tions.

The orientational symmetry of the tiling requires that
all tiles obtained from a given tile by a point-group opera-
tion must appear (with equal frequency) in the tiling.
Since all the point groups under consideration contain
mirror planes, any marked tile that does not have mirror
symmetry must come in two versions, a "right-handed"
and a "left-handed" version related by reflection. These
two versions will generally be referred to as the same type
of tile, although there is no rigid transformation that
takes one into the other (in the 2D space of the tiling).
The eightfold rhombus and all of the twelvefold tiles
shown in Fig. 1 all have mirror image partners whose
deviations are also mirror images of the ones depicted.

The ratio of the edge length of the original tiles, l, to
the edge length of the deAated tiles, I*, is

r:—(1+&5)/2 for the tenfold
I co=—1+&2 for the eightfoldI*

/=2+&3 for the twelvefold .

(2a)

(2b)

(2c)

The ratios of the frequencies of occurrence of the various
tile types is easily determined from the deAation rules to
be

Rf.R, =r:1, S8.Rs= I:+2,
H, ~:S,2:R i2

= I:&3:&3,
(3)

FIG. 1. (Continued).

Where Rf and R, are the densities of fat and skinny
rhombi in the tenfold tiling, S8 and R8 are the densities
of the squares and 45' rhombi in the eightfold, and H, z,
S&p and R &2 are the densities of the hexagons, squares,
and 30 rhombi in the twelvefold. In every case, the fre-
quencies of mirror-image partners are the same (Sec.
III B7).
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B. Ammann quasilattices

The decoration of the PLI class tilings with Ammann
lines is shown in Fig. 2. For the case of Q-fold symmetry,
the Ammann lines form Q/2 grids (sets of parallel lines).
In each grid, the sequence of spacings between successive

I

lines is a quasiperiodic sequence of two lengths, T& and
S&. The equations of the Ammann lines can be written
as follows: Let e„and e„be defined as shown in Fig. 3
and let x„& be a point on the Nth line in the grid with
lines perpendicular to e, . Then

So N+a + +p1 N
n =0, 1,2, 3,4 (tenfold),

1
x„q e„= Ss N+a„+ ——+P„ n =0, 1,2, 3 (eightfold), (4b)

1 NS N+a ———+P12 n
g g

n n =0, 1,2, 3,4, 5 (twelvefold), (4c)

with

1 +u+ e„+p„+q„ /r (tenfold),
2%

(5a)

w e„—q„+p„/r (tenfold)

P = w e„—q„+p„ /co (eightfold)

w e„—q„+p„/g (twelvefold),

(5a')

(5b')

(5c')

a n

1 +u e„+p„+q„/co (eightfold),2'
—1

2
+u e„+p„—q„ /g ( twelvefold ),

(5b)

(5c)

where u and w are arbitrary vectors and p„and q„are ar-
bitrary integers. Note that the expressions for a„and /3„
contain the same p„and q„. (Section III 8 2).

The union of the Q /2 Ammann line grids will be called

FIG. 2. Primary Ammann-line decorations. The orientations of the displayed single tiles are identical to those in Fig. 1.
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e2

~30 01 =eo

(b)
&4S

01 e,
e2

e3

23

FIG. 3. Definitions of vectors e„,e„, and f„. (a) Octagonal
symmetry: 0=m/4; e„=(cos(n0), sin(n0)); e„=e5„(,d8). (b)
Dodecagonal symmetry: 0=~/6; e„=(cos(n 0), sin(n 0) ) for
n =0, 1,4, S; e„=—(cos(n0), sin(n0)) for n =2, 3; e„
=e,„I,d, z~. [See text (Sec. III B) for definition of f„.]

(6)

where the length of a tile edge is taken to be unity.
Note that Eqs. (4) and (5) are all of the form

~x.e„=Sg N+a„+, —+P„1

CT 0

1
o:,=, +u-e„+p, +q, /o. ',

20

/3„=w e„—q„+p„/o. ,

the Ammann quasilattice. Different values of u in Eq. (5)
simply produce Ammann quasilattices related by an
overall translation. Different values of w produce
different Arnmann quasilattices belonging to tilings in the
same LI class; i.e., tilings related by a uniform phason
shift The values .of S& are

where o =r, co, or g and cr'=r, co, or —g for the cases of
tenfold, eightfold, and twelvefold symmetry, respectively.
For the remainder of this paper, whenever a formula can
be written so as to apply to all three cases simultaneously,
we will use cr and o' rather than writing out each of the
cases. For example, we can write the ratio of the two
different intervals between Ammann lines as T& /S&= 1+1/o. .

A property of the Ammann quasilattice that has prov-
en useful for a variety of purposes is that its "dual" tiling,
defined according to the generalized dual method, is
very simply related to the tiling that is decorated to form
the Ammann quasilattice. In the tenfold case, the dual of
the Ammann quasilattice is the delation of the original
tiling. In both the eightfold and twelvefold cases, the
dual of the Ammann quasilattice is precisely the original
tiling. In the eightfold case, this is obvious from the
Ammann-line decoration (Fig. 2). There is a one-to-one
correspondence between the tiles and the Ammann-line
intersections. Furthermore, for each tile, the orientation
and shape of the tile correspond exactly to the dual of the
Ammann-line intersection in its interior. In the twelve-
fold case, the correspondence between the squares and
rhombi and their dual Ammann-line intersections is ap-
parent. In the hexagon, there are three Ammann-line in-
tersections whose duals, strictly speaking, are three 60'
rhombi. Such rhombi always occur grouped together to
form hexagons, and so it is simpler to view the hexagon
as a single unit. (A good reason for doing so becomes ap-
parent when the tiling is constructed as the dual to a
periodic 6-grid, as discussed below. )

For reasons that will become apparent in the discus-
sions of matching rules and phason strains, it is useful to
define another decoration of the eightfold and twelvefold
tilings. Decorations of the tilings with "secondary Am-
mann lines" are shown in Fig. 4. (Henceforth, the origi-
nal Ammann quasilattice will be referred to as the "pri-
mary" Ammann quasilattice. ) The fact that the secon-
dary Ammann-line decoration of each tile extends
beyond the tile boundary must be accepted if one insists
upon a simple decoration. It should also be noted that
when the decorated tiles are joined to form the PLI class
tiling, the decoration line segments do not all join just at
their endpoints; in some cases they overlap.

In order to obtain a compact form for the equations of
the lines in the secondary Ammann quasilattice, the fol-
lowing definitions are made (see Fig. 3):

e„+e, e4 ———eo, n =0, 1,2, 3 (eightfold),
f e„+(—1) +'e„, e6—:eo, n =0, 1,2, 3, 4, 5 (twelvefold) .

a, and p„are defined such that the grid defined by x ( —e„)=N+a„+1/o' In /o +p„J is identical to that defined by
x e„=N+a„+1/cr' [N/cr+P„J .

The equations of the secondary Ammann lines for the tiling defined by Eqs. (4) and (5) are
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x fnm

Ss N+a„+——+P„1 N

S)2 N+a„———+p„1 N

nm =01,12,23, 30 (eightfold),

nm =01,12,23, 34,45, 50 (twelvefold),

where

1P„=P„+P and a„=a„+a
20

(10}

The secondary Ammann quasilattice is locally isomorph-
ic to the primary Ammann quasilattice rotated by m/Q
and scaled down by a factor of ~~eo+e, ~~. (Secs. IIIB3
and III B4).

There is a simple interpretation of the primary and
secondary Ammann lines as analogues of Bragg planes in
periodic crystals. Peak positions in the Fourier trans-
forms of decorations of the tenfold, eightfold, and twelve-
fold tilings lie at wavevectors q = g„k„e„, sometimes

denoted (kok, . . . ), where k„ is any integer. (Note that
this labeling is redundant in the tenfold and twelvefold
cases since (11111)=0 in the tenfold case and
(101010)= (010101)=0 in the twelvefold case. )

Diffraction from a single grid of primary Ammann lines,
the lines perpendicular to eo for example, would produce
the familiar one-dimensional Fourier transform of the
quasiperiodic sequence in the (100. . . ) direction, just as
diffraction from a single set of Bragg planes normal to the
x axis produces peaks in the (100}direction. In the same
sense, the secondary Ammann lines are associated with
peaks in the (1100. . . ) directions.

(a} (b}

FIG. 4. Secondary Ammann line decorations. The orientations of the displayed single tiles are identical to those in Fig. 1. Note
that decorations of individual tiles extend beyond the tile boundary.
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C. Matching rules

Matching rules for the eightfold and twelvefold PLI
class tilings are shown in Fig. 5. Both cases are similar to
the tenfold case in that the rule that a single triangle
must be formed along each edge in the tiling is equivalent
to the requirement that primary Ammann lines be con-
tinuous, infinite, and straight. In the tenfold case, forcing
the primary Ammann lines to be continuous and straight
is sufhcient to force nonperiodicity, but in the eightfold
and twelvefold cases an additional rule is needed. The

black shape formed at each vertex must be identical (up
to rotations) to the "key" shown in Fig. 5. Constraining
these vertex keys to have the right shape ensures the con-
tinuity of the secondary Ammann lines and, together
with the edge restrictions, guarantees that any infinite,
space-filling tiling is in the PLI class (Sec. III 8 5).

The use of a rule that constrains the orientations of
tiles that share only a vertex in common is not absolutely
necessary. Matching rules that apply only across tile
edges can be derived from the secondary Ammann-line
decoration; the catch is that many types of decorated

V

FIG. 5. Matching rule decorations. The orientations of the displayed single tiles are identical to those in Fig. l. The shape of the

key that must be formed at every vertex is shown in black. (a) Octagonal symmetry. (Rules first discovered by R. Ammann. ) (b)

Dodecagonal symmetry. {c)The vertex keys of the eightfold and twelvefold matching rules. The thick lines are tile edges at a typical
vertex. The other radial lines are included to elucidate the structure of the key. Note that in both cases, the segments of the key that
he opposite each other (the ones marked with arrows, for example) are related by a single reflection, never by a full inversion {i.e., the

arrows point in the same direction).
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squares, rhombi, and hexagons must be defined; i.e., the
decoration is no longer simple. This decoration can be
constructed by inspection of a tiling decorated with both
primary and secondary Ammann lines. Since parts of the
secondary Ammann-line decoration of Fig. S extend
beyond the tile borders, tiles of the same type appear to
have different decorations, depending on their local envi-
ronments. If the figure is now viewed as being composed
of tiles with decorations that do not extend beyond their
borders, many types of tiles can be identified. For the
eightfold case, there are nine types —four 4S' rhombi
(and their mirror) images plus five squares (three of which
have distinct mirror images). For the twelvefold case,
there are thirteen types —three rhombi, five squares, and
five hexagons (all of which have distinct mirror images).

D. Projection from a hypercubic lattice

It is well known that the vertices of the Penrose tilings
can be generated by orthogonal projection of a SD hyper-
cubic lattice onto a properly oriented 2D plane' and it is
assumed here that the reader is familiar with this con-
struction. As one might expect, the eightfold PLI class
can be obtained as the projection of a 4D hypercubic lat-
tice and the twelvefold from a 6D hypercubic lattice.
The following notation will be used in discussing the pro-
jections for the case of Q-fold symmetry (Q = 8, 10, 12).

tween LI classes. For particular choices of g'" ', the til-
ings produced by projection are identical to those pro-
duced by delation or by taking the dual of an Ammann
quasilattice (Sec. III 8 6).

The different symmetries must now be treated separate-
ly.

Tenfold: The Penrose case has been treated in detail in
the literature. ' E'" ' is the 1D space spanned by the vec-
tor (11111).Let I be the sum of the components of g' ".
There are two values of mod, I, namely 0 and —,', that give
tilings with tenfold symmetry; all others give tilings with
only fivefold symmetry. The value corresponding to the
Penrose tilings are mod, I =0. Note that, although C is
three dimensional, the projected lattice points P R lie in
2D planes that are filled densely and uniformly. ' ' In
general, five of these planes intersect C in more than a
single point. In the case of a Penrose tiling, however,
only four of them do.

Eightfold: In this case, E" and E exhaust E, so there is
no E'"". C is an octagon lying in E, filled densely and
uniformly by P(R+g). Points in difFerent regions of C
correspond to different types of vertices in the tiling, as
shown in Fig. 6. The type of vertex is determined as fol-
lows. If, for a given point z EC, the point z +e„ is also
in C, then there is an edge in the e„direction emanat-
ing from the vertex at z ~.

E: The (Q/2)-dimensional space of the hypercubic
lattice.

R: A generic point in the hypercubic lattice.
b„(n =0, 1, . . .Q/2 —1): The basis vectors of the hy-

percubic lattice: bo=(100 . ), b, =(010 ), etc.
E: A 2D subspace of E, chosen such that the orthog-

onal projection of b„onto E is e„(defined in Fig. 3). E '

is the "physical space" of the tiling.E: The orthogonal complement of E ~~ in E (sometimes
referred to as "perp-space")

E: A 2D subspace of E, chosen such that the orthog-
anal projection of b„onto E is e„(defined in Fig. 3).E'"": The orthogonal complement of E in E . (For
the eightfold case E' "is null. )

P ~~ P P P' '. Matrices that project onto E E E
and E' ", respectively:

P)' =&2/Q e e, P; =&2/Q e e

P'=I —P ~~ P'~"=P' —P

z, z~ z, z, z'" ': An arbitrary point in E and its projec-
tions onto the various subspaces. z~~ =P~~z, etc.

C: The image of the unit hypercube in E . C is the
set of z obtained from all z satisfying 0 ~ z b„& 1,V n.

F

The vertices of the tiles in E" are the points p~~(R+g),
where g is an arbitrary vector and Pi(R+g)ZC'i. The
choice of g fully specifies the tile positions. The different
terms in the decomposition g =g +g+ g'"" have distinct
meanings. Uniform shifts in g~~ correspond to overall
translations of the tiling in E~~~; uniform shifts in g to
shifts between different members of the same LI class
(phason shifts); and uniform shifts in g' " to shifts be-

FIG. 6. Perp-space structure of octagonal PLI class tiling
Above: The projection of the 4D unit hypercube onto the 2D
perp-space. Letting (kok, k, k, ) represent g„k„e'„,the vertices
of the large octagon, beginning with the solid dot and moving
clockwise, are (1010), (1011), (1001), {1101), {0101), (0100),
(0110), and (0010). Below: The configuration of edges around
vertices in the tiling corresponding to points in each of the la-
beled regions.
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Tweluefold: Here E'"" is two dimensional and is
panned by e'i""=(010101) and e~2

"—= (101010). Let
(a b ) denote the pair [mod&(g'"" e'," '}, modi(g'""
~ e2"")]. The tilings corresponding to (0,0) and ( —,', —,

'
) have

twelvefold symmetry, those corresponding to (0, —,
'

) and
( —,', 0) have sixfold symmetry, and the rest have only
threefold symmetry. The PLI class tilings are produced
by (0,0). The projected lattice points fill 2D planes that
intersect C to form twelve polygons in the PLI case, as
shown in Fig. 7. The triangular regions residing in the
(0,1), (0,2), (1,0), (2,0), (3,1), (3,2), (1,3), and (2,3) planes
represent vertices shared by three 60' rhombi that can al-
ways be grouped to form a hexagon. Eliminating these
pieces of C produces the PLI class tiling with hexagons,
squares, and rhombi.

A /

F

(ij)=(01).

(ij)=(02):

(ij)=(10):
(ij)=(20):

{&j)=(13):
{ij)=(23):

(ij)=(31):
(ij)=(32):

{ij)=(11):

(ij)=(12):

(ij)=(21):

(ij)={22):

(100000),(000010),(001000) .
(101000),(100010},(001010}.

(010000),(000001),(000100) .
(010001),(000101),(010100) .

(111010),(101011),(101110).

(111011),{101111),(111110).

(011101),(110101),(010111}.
(111101},{110111},{011111).
{011000),(001001),(100001),
(100100),(000110),(010010) .

(101001),(100011);(100110),
(001110),(011010),(111000) .
{011001),(110001),(100101},
(0001111),{010110),(011100) .
(111001),(101101),(100111),

(110110),(011110),(011011).

Below: The configuration of edges around vertices in the tiling
corresponding to points in each of the labeled regions.

FICx. 7. Perp-space structure of dodecagonal PLI class tiling.
Above: The projection of the 60 unit hypercube onto the 40
perp-space. Only the intersection of the projection with planes
defined by g„,i,x e'„=i and g„o,4x' e„=j, where i and j
are integers. Each row in the table corresponds to the indicated
value of i, each column to the indicated j. Letting
(kok&k2k3k4k5) represent g, k„e„,the vertices on the perime-
ters of each entry in the table, beginning with the solid dot and
moving clockwise, are

The derivations of the "perp-space" structure of the pro-
jected eightfold and twelvefold tilings are straightfor-
ward, and similar enough to well-known analysis of the
tenfold case that they need not be detailed in this paper.

The projection construction is completely equivalent to
the application of the GDM to periodic N-grids. (A
periodic X-grid is defined by x„~ e„=M+y„, n =0,
1, . . . , N 1.} The—PLI class tilings can all be produced
by the GDM applied to periodic (Q/2)-grids. The above
results for projections can be translated directly into their
GDM counterparts: the n th component, y„, of g is the
distance to the origin of one of the lines in the periodic
grid with normal e„. The tenfold Penrose tilings corre-
spond to g„y„=O (mod 1). In the eightfold case there is
no restriction on y„. In the twelvefold case, the PLI
class is given by yc+y2+y4=y, +y3+y, =O (mod 1).
The periodic 6-grid in this case is singular at every inter-
section of grids 0, 2, and 4, or grids 1, 3, and 5, each of
these triplets of grids forming a triangular lattice. The
duals of the singular intersections are the hexagons in the
tiling. The method of taking the dual of two overlapping
triangular lattices was the technique used by Ammann,
who first produced the twelvefold PLI class tiling, ' and
it provides the aforementioned reason for considering the
hexagon as a single unit.

III. PROOFS OF THE PLI CLASS
PROPERTIES

A. De6nitions and outline of reasoning

This section contains derivations of the results present-
ed in Sec. II. We begin by determining the values of a„
and p„ that define the Ammann quasilattice. We then
show that the dual to the Ammann quasilattice has the
delation, matching rule, and projection properties that
characterize the PLI class. The following de6nitions and
notation are employed.

(i) For the purposes of this paper, a quasiperiodic grid is
a set of parallel lines with the points x& on the line with
(integer) index N defined by

r

1 Nxz.e=S N+a+, —+p0
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where o. and o' are the values appropriate to either the
eightfold, tenfold or twelvefold Ammann quasilattices
and e is a fixed vector called a star vector. ( o =a ' =r,
o =o'=co, or o = —o '=g. ) This is not the most general
form for quasiperiodic grids, but it covers the cases of in-
terest here. The spacing between consecutive lines in the
grid is either S or T=S(1+I/cr'). (a,P) denotes a
quasiperiodic grid with specified values of the parameters
a and P.

(ii) A quasiperiodic M grid-is the union of M quasi-
periodic grids with M different star vectors. Each grid is
determined by its star vector, e„, the parameters a„and
P„, and the values of o and a'. We will be concerned
only with 4-grids and 6-grids with e„s defined by Fig. 3.
(5-grids are treated in Ref. 5.) I a„,P„ I denotes a specific
quasiperiodic M-grid.

(iii) In keeping with the convention of Ref. 5, two M-
grids are called locally isomorphic if the tilings dual to
them are locally isomorphic. If the M-grids themselves
satisfy the conditions of local isomorphism, they are
called locally congruent.

(iv) An Ammann quasilattice is a quasiperiodic M-grid
with a„and P„chosen such that its dual tiling is in the
PLI class.

(v) The unscaled defi'ation of a tiling is the result of di-
viding the tiles into smaller ones according to a deflation
operation. The rescaled de+ation is the result of rescaling
the lengths in the unscaled deflation so that the tiles have
the same size as those in the original tiling. Quasiperiod-
ic grids can also be deflated, and (a*,/3* ) specifies the res
caled deflation of (a,P).

(vi) A periodic M grid is co-mposed of periodic grids
defined by xtv„e„=N+y„(where n =1,2, . . . , M) and
is denoted by Iy„ I.

Imagine now that we do not know what the eightfold
or twelvefold PLI class tilings look like (or whether they
even exist) and we wish to derive them. The method Pen-
rose used in discovering the tenfold PLI class, construc-
tion of a deflation operation by trial and error, requires
inspired guesswork. Two other approaches seem more
promising. The first is to construct the tilings corre-
sponding to the simplest choice of parameters in the pro-
jection method or the GDM. Deflation transformations
can then be derived by inspection or by investigation of a
certain class of operations on the acceptance volume, C,
and Ammann lines could be constructed by inspection
and trial and error. The second approach would be to
construct the Ammann quasilattice directly, using the
constraints imposed by the PLI class properties to deter-
mine the values of Ia„,P„ I, and then take the dual of the
Ammann quasilattice to form the tiling. It could then be
determined whether or not the tiling corresponded to the
projection of a hypercubic lattice. The latter approach
will be used here because it provides the most direct in-
sight into the nature of the matching rules and the
phason strains discussed in Sec. IV, but neither approach
can be claimed to have logical priority.

The line of reasoning used in establishing the PLI class
properties is as follows.

analogy with the Penrose case. The form of the deflation
operation will determine the values of o. and o' in Eq.
(11).

(ii) Derive the relation between the parameters of local-
ly congruent quasiperiodic X-grids.

(iii) Derive the values of a„and P„ for which the re-
scaled deflation of the individual grids produces a quasi-
periodic N-grid that is locally congruent to the original.
As is shown for the case of tenfold symmetry in Ref. 5,
this criterion selects the Ammann quasilattices from
among all possible quasiperiodic X-grids.

(iv) Determine the deflation rule induced on the tilings
dual to the Ammann quasilattices. The direct deflation
of the Ammann quasilattice will induce the deflation
operations depicted in Fig. 1 (although the orientations of
the marked tiles will not be specified).

(v) Demonstrate that the secondary Ammann quasilat-
tice decoration is consistent with all tilings produced by
the deflation operation.

(vi) Derive the values of a„and P„ for the secondary
Ammann quasilattice in terms of a„and P„.

(vii) Demonstrate that the edge arrow and vertex key
matching rules are equivalent to the requirements of con-
tinuous, infinite, and straight primary and secondary
Ammann lines and that this excludes the possibility of
constructing a periodic tiling.

(viii) Demonstrate that any tiling obeying the matching
rules at all edges and vertices must be a member of the
PLI class.

(ix) Demonstrate the equivalence between the dual of
the Ammann quasilattice and the dual of the appropriate
periodic X-grid, thereby showing that the tilings defined
by deflation are the same as those defined by projection.

The tenfold case has been treated in detail in the litera-
ture. In this section only the eightfold and twelvefold
cases will be discussed.

B. Derivations and proofs

We begin with two ansa'tze motivated by their simplici-
ty and by the known structure of the Penrose tilings.

A1: The Ammann quasilattice is indeed composed of
quasiperiodic grids of the form defined above.
A2: The way to form the unscaled deflation of the Am-
mann quasilattice is to deflate each grid independently
according to the following rule:

D1 T= T S~~ T* S= T S~(" &)
T*

2 2 ' 2 2

where S*"denotes n S*'s in a row and T*/2 denotes half
of a T* interval. Figure 8 illustrates this rule. For the
twelvefold case, we will see that this ansatz must be
modified to

D2: T= S*'" ";S= S*"
2 2 ' 2 2

Note that S)T in this case.

(i) Define the deflation of a single quasiperiodic grid by We will find, of course, that Al and A2 (using D2 for
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N =0 yields a. '= —g'. Inspection of the positions of the N=O
line before and after defiation (see Fig. 8) leads to the
deflation rule for a:

a*=o. a+, [/3J—
1 1

0 20
1+',

0
(16)

$g $0 TW $0
Here, 0* has been scaled so that it corresponds to the re-
scaled deflation, in which the interval lengths are the
same as those in the original grid.

FIG. 8. Unscaled deAation of a single quasiperiodic grid.
Rule D1 is illustrated for the case n =2.

the twelvefold case) lead to tilings with the desired prop-
erties and therefore are sufficient for our purposes.

1. De+ation of single grids

de Bruijn has shown that the only sequences of the
form of Eq. (11) that can be infiated infinitely many times
according to (Dl) are those with o. =[n+(n +4)'~ ]/2
and that the defiation rule for /3 is

2. The fa„,P„J of the PLI class

The I a„,/3„J that produce Ammann quasilattices
(quasiperiodic N-grids in the PLI class) can be found by
applying the condition that Ia„*,/3„* J is locally congruent
to Ia„,/3„J. The analysis leading to Eq. (5) is closely
analogous to the treatment of the tenfold case in Ref. 5.
For completeness, the modified analysis for the eightfold
and twelvefold cases is given in the appendixes. In Ap-
pendix A, it is shown that all locally congruent Ia„,/3„J
can be written in the form

1
Q.„=a„+u.e„+p„+,q„,0

1/3„=b„+w e —q„+—p„,

(12)

(13)

Note that since S is longer than T, o' must be negative.
Since the grid itself is of interest here, not just the or-

der of the intervals, we must also consider cx and o.'. The
value of 0' is determined by the requirement that the ra-
tio T/S= 1+(1/cr') be invariant under defiation; for the
eightfold case,

=T=
S

T*+2S*
+SQ

(14)

yields o. '=co; for the twelvefold case,

T +2S*
T*+3S* (15)

The value of n that is appropriate for Q-fold symmetry is
one for which 0 turns out to be of the form
m+2l cos(2'/Q) for some integers I and l. It can be
shown that this is the only choice for which there can ex-
ist a minimum separation between intersections of the Q-
fold Ammann quasilattice, as must be the case if the Am-
mann quasilattice is to be obtainable via tile decoration.
The tenfold Ammann quasilattice corresponds to the
choice n =1. For Q =8, the appropriate choice is n =2,
yielding cr = I+&2=co. For Q =12, however, we require
that o. be m+1&3, which cannot be achieved for se-
quences of the form considered. A slight modification of
de Bruijn's analysis reveals that the deflation rule D2
with n =3 corresponds to a sequence of the form of Eq.
(11) with cr =2+&3—:g. The defiation rule for /3 is
modified slightly:

where a„and b„are specified constants, u and w are arbi-
trary vectors, and p„and q„are arbitrary integers. In
Appendix B, the local congruence of the deflated quasi-
lattice and its parent is shown to lead to the values of a„
and b„quoted in Eq. (5).

3. The secondary Ammann quasi1attice decoration

Given the PLI class tiling, we can attempt to find a
decoration that produces continuous straight lines nor-
mal to the e„+e„+Idirections. The decoration shown in
Fig. 4 is the result of some guesswork guided by the goal
of producing appropriate spacings between parallel lines.
To see that this decoration can be consistently applied to
produce infinite lines in the tiling, one need only check
the properties of the decoration under deflation. Begin-
ning with a single tile of any shape and performing
enough deflations to ensure that all the allowed nearest-
neighbor configurations are deflated at least once, one
finds that the decoration of the deflated tiles always con-
sists of continuous, straight lines. Since the deflation of
the tiles around an allowed vertex is unique, repeated
deflation must always yield continuous lines. Further-
more, the behavior of the decoration lines under deflation
is given precisely by the rule for deflation of the Ammann
quasilattice. The new decoration is therefore called the
"secondary Ammann quasilattice. "

An important aspect of the secondary Ammann quasi-
lattice decoration is that it breaks the mirror symmetries
of the primary Ammann quasilattice decoration. It is
found that the different ways in which the tiles are
decorated by the primary and secondary Ammann quasi-
lattices distinguish tile orientations in a manner
equivalent to the arrows marking the tiles in Fig. 1. Note
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that the primary Amm ann-line decoration is not
sufficient for fully determining the orientation of every
marked tile, in the following sense: For an arbitrarily
large, but finite distance, d, even if the examination of re-
gions of radius d surrounding each tile is permitted, there
will be an infinite number of tiles whose proper orienta-
tions cannot be determined. This point will be clarified in
Sec. IV, where special configurations will be identified in
which tile orientations can be Aipped without any conse-
quent alteration of the primary Ammann lines.

The {a„,P„ I of the secondary Ammann quasilattice

Since the secondary Ammann quasilattice is debated
according to the same rule as the primary Ammann
quasilattice, it can be specified by equations similar to
Eqs. (4) and (5). It is clear that f„[see Eq. (8) and Fig.
3] plays the role of e„on the left-hand side. All that
remains is to determine the values of a„and P„ in Eq.
(10).

There are two eightfold tilings that have a center of
eightfold symmetry (in a sense that will soon be made ex-
plicit): the "star" pattern and the "cartwheel" pattern.
(The names derive from analogous patterns in Penrose til-
ings. ) In the star pattern, both the undecorated tiles and
the primary Ammann quasilattice are invariant under ro-
tations by 2ir/8 about a central point. The tiles sharing
the central vertex form a star of eight rhombi. The
center of the cartwheel pattern is depicted in Fig. 9. It is
completely invariant under rotation by 2~/8 except for
the tiles in the central octagon and those that are shaded
in the figure (the tiles intersected by sixteen rays emanat-
ing from the center). The cartwheel pattern is said to
have a center of symmetry because the set of shaded tiles
has measure zero in the set of all tiles in the pattern and
the diffraction pattern, including phases, has perfect C8,
symmetry. Similarly, there is a cartwheel pattern in the
twelvefold case whose diffraction pattern has perfect C&z,
symmetry. The twelvefold cartwheel tiling has perfect
C,2, symmetry outside of a central dodecagon and 24
rays of tiles emanating from it.

The {a„,p„I for the cartwheel pattern can be found
using the fact that there exist infinitesimal shifts in w that
affect only the lines passing closest to the center of sym-
metry (one in each grid). If these lines are taken to have
index X=O, then p„must differ only by an infinitesimal
amount from some integer. Umklapp equivalence (see
Appendix A) allows this integer to be chosen to be zero.
Thus P'„'""""'=5we„=O—, where 5w is infinitesimal.
From simple geometry and the primary Ammann quasi-
lattice decoration applied to Fig. 9, it can be determined
that a'„'"' ""'=1/(2o') for all n Applying . the secondary
Ammann quasilattice decoration to the cartwheel pattern
reveals that it is also a cartwheel Ammann quasilattice,
implying that Pcartwheel —()+ and acartwheel —1/(2tT )

(Since the tiling has a center of eightfold symmetry, the
secondary Ammann quasilattice had to be either a star or
a cartwheel. It is amusing to note that the secondary
Ammann quasilattice for the star pattern is also a
cartwheel Ammann quasilattice, as could be surmised
from the observation that the matching rule decoration

breaks the symmetry of the central star. )

Now the effect of a translation by u on a„ is simply
given by he„=u.e„. Similarly, one has ha„=u f„
=u (e„+e ) =b,a„+ba . Consideration of p transla-
tions (see Appendix A) establishes that f„=—e„+e
plays the role of e„ in Eq. (5) and b,p„=b,p„+b p
Combining these relations with the known cartwheel
values immediately yields

a„=a„+a —,, p„=p„+p1

20
(18)

5. Matching rules, nonperiodieity, and quasiperiodieity

r ', si (nn8 —tt ', ) p„
r2»n(« —p2)

(19)

It is obvious by inspection of Fig. 2 that enforcing the
edge arrow rules is equivalent to requiring that the pri-
mary Ammann lines be continuous, straight, and infinite.
The vertex key rules and the continuity of the secondary
Ammann quasilattice are not completely equivalent, but
the following can be established by exhaustive checking
of relevant configurations: Regardless of whether the
edge arrow rules are obeyed, if the secondary Ammann
lines are continuous over a set of tiles, then the vertex key
rules are obeyed at all vertices surrounded by that set.
Thus, enforcing the continuity of the secondary Ammann
lines guarantees that the vertex key rules will be satisfied.
Furthermore, if the edge arrow rules are obeyed, then en-
forcing the vertex key rule guarantees that the secondary
Ammann lines will be continuous. To prove these asser-
tions, it is sufFicient to examine all possible neighbor-
hoods consisting of a single tile and the ones that share at
least one vertex with it.

The mere fact that the Ammann lines are straight and
continuous is sufFicient to ensure that no periodic struc-
ture is compatible with the matching rules. It is easy to
see by placing just a few tiles consistent with the match-
ing rules that at least one line in each of the orientations
of the primary and secondary grids must appear in the
tiling. (In fact, every allowed neighborhood containing a
single tile and all those sharing a vertex with it contain
Ammann lines in all of the directions. ) We will show that
it is impossible to form a periodic structure that incorpo-
rates continuous lines in all of the Ammann-line direc-
tions with a nonzero minimum spacing between parallel
Ammann lines (an obvious property of the Ammann
quasilattice decorations).

The following proof relies only on simple geometry:
Assume a periodic (crystalline) structure exists that con-
tains infinite lines making angles of no with the x axis,
where 8=2m. /Q and n =0, 1, . . . , Q/2. Let b', and bz,
with polar coordinates (rl, p', ) and (r2, pz), be the basis
vectors of the unit cell of the structure. The simultane-
ous requirements that the lines be continuous at the unit
cell borders and that there be a minimum spacing be-
tween parallel lines place a constraint on the values of r
and P,'. In Fig. 10, x/~~bz~~=x/r2 must be rational, im-
plying
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FIG. 9. Center of the octagonal cartwheel pattern. Outside of the sixteen rays of shaded tiles and the central octagon, this pattern
has perfect C„symmetry. The ray of shaded tiles comprises a semi-infinite primary or secondary worm. (See text, Sec. IV A, and
compare Fig. 11.)

where p, and q, are integers. Without loss of generality,
a new unit cell can be chosen with basis vectors

qobl pob,
' and b, =q, b', —p, b,'. Simple geometry

shows that bl and bz can be written as (rI, O) and (r2, 0),
respectively. With this choice of basis vectors, the con-
tinuity and minimum separation condition becomes

r, sin(n 0) p„ b'n&1 . (2O)

For n =2, the condition reduces to (rl/r2)2cos0
=p2/q2; for n =3 we get (r, /rz)cos0(2 —

—,'sec 0)
p 3 /q 3 . Combining these we find a necessary condition

on 0:

4u3q~
cos 0= 4—

P2q3

=a rational number . (21)

The only values of 0=2vr/Q that satisfy the condition are
0=m, n/2, ~/3, ~/4, and ~/6. Now including both pri-
mary and secondary Ammann lines in the case of g-fold
symmetry corresponds to 0=~/Q Thus contin. uous pri-
mary and secondary Ammann lines are incompatible
with periodicity for g=8, 10, or 12. This completes the
proof.

Note that if the primary Ammann lines alone are con-
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qqe
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«IR

~ Ammann Line

FIG. 10. Aid for proof of nonperiodicity (Sec. IIIB5). A
unit cell of a periodic structure is shown with an Ammann line
running through it. If the Ammann lines are to be continuous
and parallel ones are to be separated by a minimum distance,
then x /[(bz() must be rational.

sidered, the relevant value of 8 is 2m. /Q. For Q=10,
periodicity is still ruled out, but not for Q =8 or 12. We
will see, in Sec. IV, that it is indeed possible to construct
periodic tilings using the eightfold or twelvefold tiles with
only primary Ammann line (or edge arrow) matching rule
constraints. For these cases, the secondary Ammann
lines (or the vertex keys) are essential for the exclusion of
periodic tilings.

The preceding proof has the virtue of being easily un-
derstandable, but does not establish the fact that the
matching rules actually restrict the infinite tiling to be
quasiperiodic and a member of a particular LI class. We
now show that any infinite tiling obeying the matching
rules is indeed a member of the PLI class by demonstrat-
ing that it can be repeatedly inflated ad infinitum accord-
ing to the rules depicted in Fig. 1. Recall that the condi-
tion of repeated inAatability was the basis of the proof of
quasiperiodicity of the Ammann grids (Sec. III B 1).
Furthermore, since local isomorphism under deAation is
guaranteed by the repeated inAatability condition, the
values of (a„,P„J are also determined. To establish the
property of repeated inAatability, we will show first that
any tiling obeying the matching rules can be inAated
once, and next that the inAated tiles also obey the match-
ing rules.

To see that any tiling can be inAated once, it is
sufBcient to consider the local configurations around indi-
vidual tiles. Let O denote a single tile in an infinite pat-
tern where the matching rules are everywhere satisfied,
let I denote the (unscaled) inflated tile or set of tiles that
include all or part of O, and let D denote the set of tiles
in the original tiling that overlap at least one tile in I.
(One of the tiles in D is O. ) We must show that I always
exists, that O is completely covered by I, and that I is
uniquely determined by D. Under such conditions, it can
be concluded that every tile in the original pattern is in-
cluded in inflated tiles in exactly one way and therefore
that the entire inAation can be consistently pieced togeth-
er from the inAations of local regions. To show that I al-
ways exists, we need only construct all possible neighbor-
hoods of a given tile O that are consistent with the
matching rules and check them to see that O can indeed

be covered by some I. These same neighborhoods can
also be checked to see that D determines I uniquely.

In contrasting the possible neighborhoods, it is useful
to classify tiles that can be added to a given cluster as
"forced" or "unforced. " Consider a finite cluster of tiles
and the possible ways of adding a tile to it. At certain
edges on the perimeter of the cluster the matching rules
may leave no choice as to the type of tile that must be
added or its orientation. The tile that must be added at
such an edge is called "forced." At other (unforced)
edges, there may be several possible choices of tiles to
add, all consistent with the matching rules.

An efficient way to generate the complete list of neigh-
borhoods is as follows: Begin with a single tile and
choose an edge where a new (unforced) tile will be added.
Label the possible choices consistent with the matching
rules 1& 12 ~ ~ . , 1„. Add choice 1, to the original tile and
fill in all tiles that are forced by this choice. Now choose
an edge on the perimeter of the cluster and label the pos-
sible additions there 2„22, . . .. Do the same for tiles 12
through 1„. Continuing this procedure in the obvious
way generates all possible neighborhoods of the original
tile, each specified by the labels of the choices made in
generating it. (Note that a "2,." following a "1 " may
correspond to a difFerent tile than does a "2;"following a
"lk".) Each sequence of choices (1;,2J. , 3i„.. . ) need
only be extended to the point where the inAated tiles in a
set (I) that completely covers the original O are them-
selves completely covered by the smaller tiles (D), so the
number of sequences that must be checked is finite. In
addition, that number can be minimized by symmetry
considerations, judicious choices of unforced edges at
which tiles are added, and some observations relevant to
the particular tiling in question. For example, for the
matching rules of the eightfold tiling, it is not necessary
to check the neighborhoods of the 45 rhombus. In
checking the neighborhoods of the square, one sees that
any 45' rhombus sharing an edge with a square is already
included in the inAation that covers that square and it is
easy to check that every 45 rhombus must share an edge
with a square. For the twelvefold case, it is sufhcient to
check the neighborhoods of the hexagon and one neigh-
borhood of the 30' rhombus (the one that occurs in the
middle of an inflated 30' rhombus). The procedure of
checking all relevant neighborhoods for consistency with
inAation has been carried out in full for the eightfold and
twelvefold PLI class matching rules using a system for
which no sequence longer than five choices was necessary
and all choices after the first in each sequence involved
only two alternatives.

It is a bit easier to see that the inAated tiles must obey
the matching rules. With regard to the edge arrow rules,
one need only note that the orientations of the edges of
the inAated tiles are unambiguously determined by the
position of the deAated square tile along the edge in the
eightfold case and the orientation of the deAated hexagon
on the edge in the twelvefold case —the two inflated tiles
sharing an edge obviously must match along it. The fol-
lowing observations make it clear that the vertex key
rules are also obeyed. Each vertex in the inAated tiling
coincides with a vertex in the original tiling. We now
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compare the section of the original vertex key that is
covered by a single inflated tile with the section of the
inflated vertex key contributed by the same inflated tile.
In the twelve-fold case, inspection of the deflated decora-
tion immediately reveals that these two sections are iden-
tical in shape and orientation. Thus the shape and orien-
tation of the key occurring at any vertex shared by the
original and inflated tiling are guaranteed to be preserved
under inflation;. the vertex key rule is obeyed in the
inflation if it is obeyed in the original. In the eightfold
case, the same result holds, but the reasoning involves a
surprising twist. Consider each vertex key to be divided
into eight sections as shown in Fig. 5(c). When a given
vertex is deflated or inflated, the orientation of each sec-
tion of the key is reversed, as can be seen by inspection of
the deflation decoration. (Each section is refiected about
the bisector of its angle at the vertex. ) Note, however,
that when all the sections are flipped in this manner, a
new vertex key is formed which has the correct form (!),
though its orientation is opposite to the original.

These results establish rigorously the fact that any
infinite tiling that is everywhere consistent with the
matching rules of Fig. 5 is a member of the PLI class. It
must be emphasized, however, that a jtnite portion of a
tiling may be inconsistent with the PLI class tilings, even
if it does not contain a matching rule violation, as is well
known for the decagonal case. Such a configuration will
support only a finite number of inAations before a match-
ing rule violation occurs. Let r be the radius of the origi-
nal configuration and n be the number of inflations that
can be carried out. It is straightforward to show that it is
impossible to extend the configuration to cover a circle of
radius re"+' centered on the original cluster, where a. is
the inflation scale factor.

6. Duals ofAmmann quasiiattice
and periodic (Q /2) grid arein same LI class

To establish the isomorphism between the tilings
defined by the dual of the primary Ammann quasilattice
and those produced by projection, it is sufficient to show
that one particular Ammann quasilattice dual is
equivalent to one particular projected tiling. The most
convenient choice is the cartwheel tiling, which, as will
be demonstrated, is identical to the dual of the periodic
Q/2-grid with y„=O for all n The proo. f is given here
for the eightfold case; a similar procedure establishes the
same result for the twelvefold case.

Recall that the Ammann quasilattice of the cartwheel
tiling has complete eightfold symmetry outside of the
N=O lines (those passing to the center of symmetry).
The N =0 lines are "singular" in the sense that their posi-
tion can shift for infinitesimal shifts in w, since P„=O.
Similarly, the periodic 4-grid with y„=0 for all n is
singular in the sense defined in Ref. 10; the grid intersec-
tions containing 2V =0 lines are all points at which more
than two lines intersect. In the following proof, the tiles
dual to these singular intersections will be ignored. It is
straightforward to show that the singularities can be
resolved in the same way for the Ammann quasilattice
and the periodic 4-grid.

To show that the two dual tilings are the same, it
su%ces to verify that the square tiles in them occur in
identical positions. In the dual construction, the position
of the tile vertex dual to a given open region in the 4-grid
is given by g„k„e„,where the open region lies between
grid lines of index k„and k„+1 for all n. The vertices of
a square tile dual to the intersection of line M in grid e0
and line N in grid e2 occur at the points (M —i)eo
+(N —j)eo +k&e&+k3e3, where i =0, 1 and j=0,1.
We will show that k', q" and k'& '"', the values obtained
for k& from the Ammann quasilattice and the periodic 4-
grid, are identical. The octagonal symmetry of both the
Ammann quasilattice and the 4-grid then implies that
both yield the same value of k3 as well and that similar
identities hold for square tiles in the other orientations.

It is easy to compute k'& '"'. In the singular periodic
4-grid, an intersection point x dual to a square is deter-
mined by x e0=M, x.e2=N. By definition, k'& '"' is equal
to [x e, J, which is equal to [1/&2(M+N ) J . For the
cartwheel Ammann quasilattice, on the other hand, we
have

1 1 Mx.e =M+ +—0 2CO CO CO

1 - 1 Nx e2=N+ +-
2CO CO CO

(22)

N+M 1 1=--.x e&=
&2 &2co &2co

and k'& q'' is def ned as t e value of k fo. which

1 1 k 1 1 k+1k+ +——& x.e & k+1+ +-
2CO CO CO 2CO CO CO

(23)

These inequalities can now be directly verified for
k =k'& '"'. Consider first the left inequality. We want to
show that

x e, —k~,'-jj— k (Proj)

2CO CO CO

)0. (24)

Substituting the above expressions for x.e& and k'& '"', we
have for the left-hand side of Eq. (24),

1 —&2 1Z+ 2' V 2'
—[zJ ——

1 1

2co V'2co
M2[x j

—[2z j+1— +

+—I&2[zjJ . (26)

(25)

where z = (1/&2)(M+N ). Let [x j denote the fractional
part of x. The identities x = [xJ+[x j and [x+yj= [x j + [y j

—
[ [x j + [y j J can be used repeatedly to

reduce Eq. (25) to
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The identity 2Ix /2 J
—Ix J

= [x J (mod 2) allows the final
result

Rf.R, =r:I, Ss:R s
= I:v'2,

H, 2:S,2:R,2=1:V3:&3 .
(30)

1 + 1

2co V 2oi
I+ [ [z J (mod 2)]— M

CO

(27)

Since 0~ Ix J (1, Eq. (27) can take on only the values
1/co( —,'+p/2+q), with p=0, 1,2 and q=0, 1, and Eq.
(24) is satisfied. The inequality on the right in Eq. (23)
can be established in a similar fashion, or it can be in-

ferred immediately from the left inequality and the sym-
metry of the Ammann quasilattice under rotation by m.

We have demonstrated the equivalence of the duals to
the Ammann quasilattice with a„=l/(2'), P=O, and
the projected tilings with y„=0 and thereby shown that
the Ammann quasilattice duals and the projected tilings
belong to the same LI class.

Rf
R*

S

S*
8

Rf
=M)o

S

S8

8
(28)

S» —M» S»
R ].2 R»

The ratio of tile frequencies after an infinite number of
deAations is given by the eigenvector corresponding to
the maximal eigenvalue of M&. Inspection of Fig. 1 im-
mediately establishes

3 2
M8= 4 (29)

7 2+x 2 x
M» = 12 1+y 6—y

12 4 3

where x =(3+5' 3)/9 and y =4v'3/3. For the infinite
tilings, one obtains

7. Calculation of tile frequencies

As a check of the last result, we compute the ratios of
the frequencies of occurrence of the various tile types in
two different ways. First, the ratios implied by the
deAation rules are calculated: Let the number of each
type of tile be denoted by Rf (fat rhombus in tenfold), R,
(skinny in tenfold), R, (rhombus in eightfold), Ss (square
in eightfold), R,2 (rhombus in twelvefold), S,z (square in
twelvefold), and H, i (hexagon in twelvefold), and let a su-

perscript "e" denote values in the once-debated tiling.
Substitution matrices, M&, are defined by

A straightforward extension treating mirror-image
partners as distinct confirms that in every case they occur
with the same frequency.

Next, we compute the frequency ratios implied by the
GDM applied to periodic (g/2)-grids: All the tiles of a
given type and orientation are dual to the intersections of
the lines in two particular grids. The density of the inter-
sections of two grids is simply given by sinO, where O is
the angle between the vectors normal to the grids. The
frequency of occurrence of a rhombic tile having an acute
angle O is therefore given by sinO times the number of
ways two grids can be chosen such that the acute angle
formed by the intersecting lines is O. Thus, for example,
the frequencies of occurrence of the 45 rhombus and the
square in the eightfold case are 4 sin(ir/4) and
2sin(m. /2), respectively, in agreement with the defiation
result. The density of hexagons in the twelvefold tiling is
obtained by computing the density of 60 intersections
and dividing by three, since each hexagon can be com-
posed from three 60' rhombi. The other cases are all
straightforward and agree with Eq. (30).

IV. IRREDUCIBLE PHASON STRAINS

The canonical methods of elasticity theory can be ap-
plied in a straightforward way to quasicrystals. ' ' '
For eightfold, tenfold, and twelvefold quasicrystals, the
2D vectors u and w of Eq. (5) are associated with con-
tinuous symmetries that are spontaneously broken in the
perfectly ordered state. Uniform shifts in u merely
translate the entire system, so a particular choice of u
breaks the continuous translational symmetry of the free
energy. Similarly, uniform shifts in w produce different
members of the same LI class, and a choice of w is said to
break the continuous phason symmetry of the free ener-

gy. Elastic distortions of the quasicrystal are slow spatial
variations of u and w and, in the long-wavelength limit,
are the deformations of lowest energy.

A given linear elastic distortion, or uniform strain, is
specified by 8;uj =pMI~"' (the conventional strain tensor)
or a, wJ=VM(j) (the phason strain tensor), where i and j
index the two spatial dimensions, p and v are positive
constants that determirie the magnitude of the strain, and
M is normalized such that M,-.M, . = 1. For a uni-

form phason strain, we have w. =x, vM', ."' or
w=x. vM' '. The set of all M' ' can be spanned by a set
of basis elements whose members transform among each
other under an irreducible representation of the orienta-
tional symmetry group of the quasicrystal. A strain ten-
sor that can be formed as a linear combination of the
basis elements corresponding to a single irreducible rep-
resentation is called an irreducible strain. Familiar exam-
ples of irreducible strains are the comp ressions and
shears of an isotropic solid. The strain tensor corre-
sponding to compression, for instance, is a multiple of the
identity matrix and transforms under the scalar represen-
tation of the symmetry group O(2).



10 536 JOSHUA E. S. SOCOLAR 39

In this section, the number and form of the irreducible
strains is derived for quasicrystals with eightfold, tenfold, .
and twelvefold symmetry. %'e begin, in Sec. IV A, with a
preliminary discussion of the signature of phason strain
in the PLI class tilings. Phason strain induces isolated
matching rule violations in a tiling which correspond to
certain discontinuities induced in the Ammann quasilat-
tice. In Sec. IV 8, the irreducible strains are derived and
some of their distinguishing features are presented. In
the eightfold and twelvefold cases, there exist irreducible
phason strains that induce discontinuities in only the pri-
mary Ammann quasilattice, and others that induce
discontinuities in the secondary Ammann quasilattice. In
the tenfold case, all phason strains induce discontinuities
in the primary Ammann quasilattice (which is why the
secondary Ammann quasilattice has not been treated in
this paper for the tenfold case).

A. Phason strains in the PLI class tilings

The determination of the tiling configurations associat-
ed with phason strain is made on the basis of the GDM
applied to strained Ammann quasilattices. Since w ap-
pears in Eqs. (4) [with P„defined in Eq. (5)] only within
the greatest integer function, smooth spatial variations in
w produce discontinuous "jags" in the Ammann lines.
(The distribution of jags associated with differe'nt types of
phason strain is discussed in the next section. ) Jags cor-
respond to particular kinds of isolated matching rule
violations in the tilings. Figure 11 illustrates the match-
ing rule violations associated with variations in w in the
eightfold and twelvefold tilings. (The tenfold case is
treated in Ref. 18.) Each panel of the figure shows the re-
gion surrounding a single jag in one Ammann line.
Panels (a) and (b) each show a jag in a primary Ammann
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FIG. 11. Primary and secondary matching rule violations. The two line segments shown extending from the shaded tiles lie on the
Ammann line that contains a jag. (a), (b) Primary mismatehes in the eightfold and twelvefold PLI class tilings. The shaded tiles form
a single worm, but the right side of the worm has been flipped with respect to the left, leaving a single edge (in the middle of each pic-
ture) where the edge arrow directions do not match. (c), (d) Secondary mismatches in the eightfold and twelvefold PLI class tilings.
In the case of a secondary worm, flipping one of its halves with respect to the other produces an illegal key at one vertex.
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line. The shaded tiles comprise a primary "worm seg-
ment. " Note that the matching rule decorations on the
tiles bordering the worm segment do not determine the
orientation of the worm segment; i.e., the worm segment
could be reAected through its horizontal axis without
violating any matching rules. The jag in the Ammann
line divides the worm segment into two pieces, each of
which is consistent with the surrounding tiles. The two
pieces are "Hipped" with respect to each other, however,
so that a matching rule violation occurs at the edge
where they meet.

It can be shown that for phason strains of small

enough magnitude so that the jags are separated by at
least several tile lengths, the jags in the primary Ammann
quasilattice always occur along worm segments such as
the ones shown in the figure. Thus, jags in primary Am-
mann lines are always associated with violations of the
edge-arrow matching rules in the tiling.

Panels (c) and (d) show a jag in a secondary Ammann
line. The shaded tiles form a secondary worm segment.
The situation is exactly the same as for the primary
Ammann-line jag, except that a jag in the secondary Am-
mann quasilattice appears as a single violation of a vertex
key matching rule, rather than an edge-arrow mismatch.

4IL ~~ av ~~ ~ i

A~

/~I: vg
'i+a a'i 1+ ha~ &am.~o ~.~.~ ~ yr 3g +

.jlj« l« lktI, ~ ~/LE lh
I~

'«F '«7 ««Pi" 'j't-'' 'i::~- wii:,:,:::,:,«I «T «7)g~=-=Kg
iIe

1h ~ IE ill h

FICx. 11. (Continued).
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B. Irreducible strains

The transformation properties of M'"' and M' ' can be
derived from the transformation properties of 8, u, and w
and some elementary group theory. The gradient
operator 8 and the displacement field u clearly transform
under the ordinary vector representation of the orienta-
tional symmetry group. This representation will be
denoted by I . The way in which w transforms is deter-
mined by the requirement that any w that corresponds to
a P translation (which is equivalent to some u) is
transformed such that the new w corresponds to the
transformed f3 translation (i.e., the ordinary vector repre-
sentation acting on u). (The details of the derivation in
each symmetry are left to the reader. ) The representation
that acts on w will be denoted I

In the discussion of phason strains, it is useful to
represent the phason strain tensor as a linear combina-
tion of dyadics:

M';, '= g c„(e„);(e ), ,
n, m

(31)

(i) Co, consisting of the identity element.
(ii) Q /2 —1 two-element classes, C„ for

n = 1,2, . . . , Q/2 —1, each consisting of the rotations by
+2n rr/Q about the origin.

(iii) C&&z, consisting of rotation by rr about the origin.
(iv) C, consisting of the Q/2 reflections about lines of

slope tan(2n m. /Q ).
(v) C, consisting of the Q/2 reflections about lines of

slope tan[(2n + 1)~/Q ].

where c„ is a real coefficient. With this notation, the
transformation of M' ' under a point-group operation is
easily obtained. The e s have been chosen such that if ck
is transformed into cI by the ordinary vector representa-
tion of a given operation, then e~ is transformed into cI
under the same operation in I . These transformation
rules can be applied independently to the vectors compos-
ing M'"'. For example, under rotation by ~/6 in the
twelvefold case, co goes to c& and c& goes to —c2, so coe&

goes to —c]e2.
The orientational symmetry groups of interest here are

the groups C&„C,o„and C,z„. The group C&„(for even

Q ) has N =2Q elements that form 3+Q /2 classes.

In the following subsections, the different orientational
symmetries are treated. Owing to slight variations
among the different symmetries, a completely unified
treatment becomes too cumbersome. Nevertheless, the
method of analysis and many of the results are quite simi-
lar and repetition of the details for all three cases is not
necessary. The formalism developed in the discussion of
the eightfold case extends in a straightforward way to the
twelvefold and tenfold cases. All differences that arise
are noted in the relevant subsection.

l. Eightfold symmetry

Table I shows the characters for the irredicuble repre-
sentations of the point group Cs, . Each entry X„(C&) is
the character of the operations in the class C& in the rep-
resentation r. (The character is the trace of the d
dimensional matrices corresponding to the operations in
a given class, where d is the dimension of r )Rec.all that
8 and u transform under I, the ordinary vector repre-
sentation, and w transforms under I

The conventional strain tensor has both indices trans-
forming like ordinary vectors. Equation (32) with
r =s =2 implies that there exist M'"'s of three different
types, transforming under the representations r', r",
and I '. These are identified as compressions, rotations,
and shears, respectively. Note that the continuous rota-
tional symmetry of the free energy of the system implies
that rotations do not contribute to the elastic energy.

In a similar manner, the irreducible phason strains can
be identified. The phason strain tensor has one index
transforming as an ordinary vector and the other as a
"phasonlike" vector. Equation (32) with r =2,s =2 im-
plies that there exist M' 's of three different types, trans-
forming under the representations I'", I ", and I '. For
lack of a better idea, these are termed I' -strain, I "-
strain, and I '-strain (respectively, of course). It is
straightforward to show that the linear combinations of
c„c that transform irreducibly are

M" '= (eoeG+eze2)v'2

1
(e,e, +e3e, )

2

For these groups, the dimensionalities d„of the 3+Q/2
irredicuble representations are completely determined by
the well-known formula g„d„=N. The characters
X„(C&) of the operations in the class C& in the represen-
tation r can be determined with the aid of the orthogo-
nality relations g„X„(Ck )X„(C& ) =5k&N /N& and

gi NiX„(Ci )X,(Ci ) =5„,N, where N& is the number of ele-
ments in CI. The decomposition of a product of a irre-
ducible representations I " and I' into a direct of irredi-
cuble representations is given by the formula

1 1 0
0 1

CiCp C2C)

=C2C3+ C3C2

=c3co+coc3

(33)

a„,t =—gX (Ci)X (C&)Xt(Ci) .
1

(32)

and the pair
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TABLE I. Characters of the group C8, .

E 2Cl 2C2 2C3 C4 4C 4C

I 1

I la

gib

pic
p2
p2
+20

1

1

. 1

1

2
2
2

1

1
—1

:1
v'2
—v'2
0

1

1

1

1

0
0
—2

1

1
—1
—1

V'2

0

1

1

1

1
—2
—2
2

1
—1

1
—1

0
0
0

1
—1
—1

1

0
0
0

(2a)
1

,—(epep —e,e, ) =~2 2 .
(34)

~g (2a)
LVL. 2

1 1

2
—(e,e, —e,e3) = ~2

0

(The explicit matrices in these formulas depend upon the
choice of coordinates in the e space. The ones listed cor-
respond to the definitions in Fig. 3, where eo is taken as
the positive x axis and e2 as the y axis. )

The different types of uniform irreducible phason
strains have distinguishable effects on both the tiling and
its diffraction pattern. That is, it is possible to discover
which types of irreducible strain are present by inspec-
tion of a tiling or its diffraction pattern. We consider first
the diffraction pattern, then examine the real-space
analogues of the results.

The diffraction pattern of an ideal (unstrained) eight-
fold PLI class tiling with tile edges of unit length consists
of Bragg peaks at the wave vectors q= g3 p2rrk„e„, for
all sets of integral k„. (The intensities of the peaks de-
pend on the details of the decorations of the tiles with
scatterers). The notation (kpk, k2k3) is used to represent
the wave vector with indices k„. Under a uniform
phason strain M' ', the peaks remain sharp, but are shift-
ed in position, the peak at wave vector q being shifted to
q+M' '

q, where q—= g„k„e„ for the same set of k„'s
that define q. The analogous formula for conventional
strains is q+M'"'q. Since q is a wildly varying function
of q, uniform phason strains are easily distinguished from
conventional strains. Given a set of peak positions and
knowledge of the ideal positions it is straightforward to
calculate M'"' and M' ' and to decompose them into
their irreducible components. The four elements of M'"'
and the four of M'"' are determined by the vector shifts
of any four integer linearly independent wave vectors.

it is well known that the two types of conventional
strain, cornpressions and shears, are easily distinguished
by inspection of the diffraction pattern; compression
preserves the eightfold symmetry while shear breaks that
symmetry. The different irreducible phason strains can
also be distinguished quickly by inspection of the
diffraction pattern. In anticipation of the discussion of
the real-space tilings, it is useful to define the following
quantities.

(i) D„—:e„M' 'e„. D„ is the magnitude of the e„
component of the shift of the peak at wave vector e„.

(We will see below that D„ is related to the density of
Ammann lines in the primary grid associated with e„.)

(ii) J„—=e'„"'M' 'e„, where e'„"' is defined as the (coun-
terclockwise) rotation of e„ through n. /2. J„ is the mag-
nitude of the shift of the peak at e„ in the direction per-
pendicular to e„. (J„ is also related to the density of jags
in the primary grid associated with e„.)

(iii) D „and J „are defined as f„M' 'f„and
f'„"' M' ' ~ f„, respectively. They are related to the
parallel and perpendicular shifts of the peak at f„
(They are also related to the density of Amrnann lines
and jags in the secondary grid associated with f„.)

Now for a 1D representation r, if y„(CI ) = 1, then an
object transforming under this representation is invariant
under the operations of CI. Thus, M" ' is invariant un-
der rotations by m. /2 and under refiections about the e„
directions. This means that for I' strain, J„must be
zero for all n, as can easily be verified by direct computa-
tion. J„=O is a unique signature of I' strain. Similarly,
M"' is invariant under rotation by m/2 and under
reAections about the f„directions, implying that for I "
strain J „must be zero for all mn. Diffraction patterns
exhibiting I ' strain and I "strain are shown in Fig. 12.
The size of a spot at q has been made inversely propor-
tional to the magnitude of q. (Most quasicrystal models
exhibit a nearly monotonic increase in intensity with de-
creasing f/q//. )

The quantities J„,D„,J „, and D „have direct inter-
pretations in terms of the real-space tiling. Consider first
the strained primary Ammann quasilattice, which con-
sists of the points x satisfying

1
x e„=N+a„+——+P„+w e„

=N+a +——+P +x M .e1 N (w)—
CO CO

n (35)

where a„and P„correspond to some member of the PLI
class. For D„) (()0, as the e„component of x is in-
creased, w e„ increases (decreases) linearly. Thus with
increasing N the argument of the greatest integer func-
tion increases faster (slower) than N/co, which produces
more (fewer) large spacings in the grid. A grid for which
D„)0 has a lower density of Ammann lines (more large
spacings); one with D„(0 has a higher density of Am-
mann lines. If J„WO, then w. e„varies linearly as one
moves along an Ammann line in the nth grid, creating
jags in the line at each point where N/co+w e„crosses
an integer. The density of such jags is proportional to J„.
D „and J affect the secondary Ammann quasilattice
in exactly the same ways that D„and J„affect primary
Ammann quasilat tice.

Nonzero values of D and J are easily distinguished
from the effects of conventional strains. Conventional
strains affect the Ammann quasilattice through the terms
a„+e„u(x) and produce changes in the slopes of the
Ammann lines and in the values of the large and small
spacings, but have no effect on the sequence of spacings.
To fit the tiles to an Ammann quasilattice with such dis-
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(a)
0

L

0

dary jags, as is shown in Fig. 13(b). On the other hand,
I ' strain necessarily contains both primary and secon-
dary fags.

Of the sixteen quantities, J„,J„,D„, and D„, only
four can be chosen independently, constraints on them
arising from the relations among e„, f„,e„, and f„
Using e, =(1/&2)(eo+e2) and e, =( —1/ &2)(eo+e2),
for example, it is straightforward to derive the identities

(b)

0
L

FIG. 12. Diffraction pattern for an eightfold quasicrystal
with uniform phason strain. The lines show the (1000) and
(1100) directions. In the unstrained pattern, peaks would align
directly along these directions. The size of each dot is roughly
proportional to the intensity of the peak. Note that the peaks of
smaller intensity a'ie shifted further from their ideal positions.
(a) I'" strain. The peaks in the (1000) directions remain in line,
but those in the (1100) do not. (b) I "strain. The peaks in the
(1100) directions remain in line, but those in the (1000) do not.

tortions, it is necessary to distort the shapes of the tiles;
the effect of conventional strain on the tiling are exactly
the same as familiar distortions of unit cells in strained
crystals.

The fact that J„=O for all n in an eightfold tiling ex-
hibiting pure F''" strain implies that there are no viola-
tions of the edge-arrow matching rules in the tiling. An
example of such a tiling is shown in Fig. 13(a). Note that
this is an example of a periodic tiling with continuous
primary Ammann lines, as is allowed by the reasoning in
Sec. III B 5. The pattern does contain discontinuities in
the secondary Ammann lines, though, as it must to be
consistent with that same reasoning. It is also possible to
construct a tiling with pure I "strain that has no secon-

V

~
gMNPWNW~ ~ . ~

~@&„':&@;",Q~ZNW ~

~N ~
„' ",NWZNW ~

FIG. 13. Octagonal PLI class tilings with uniform phason
strain. The strain magnitude has been chosen such that the pat-
tern is periodic. The shaded tiles highlight the periodicity. (a)
I ' strain. There are no primary mismatches (no violations of
the edge arrow matching rule). (b) I" strain. There are no
secondary mismatches (no illegal vertex keys).
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2Di=Jz —Jo —D2 —Do ~

1
Do) =Do+D) + —(Jo+J2)

2

(36)

g J„=O and g D„=O . (37)

Cyclic permutation of the indices (0123) produces identi-
ties related to these by symmetry operations. Two impor-
tant identities that can be derived from these are

A„N+y=S N+a„+—1 —+( A„N+y)D„+P„

1—' A„=S 1+
CO

1
1 ——SD„

CO

' A„+~=S 1+ +—A„D„+01 1 1

N (3&)

It is instructive to compute the number density of jags
and the change in the densities of the different tile types
as functions of J„and D„. To do so, we exploit the exact
geometric relation between the Ammann quasilattice in-
tersections and the tiles dual to them. The density of
square tiles is given by the density of 90 intersections in
the primary Ammann quasilattice, and the density of
rhombi by the density of 45' intersections.

For the purposes of computing the densities of
Ammann-line intersections, it is useful to define an "aver-
age grid" corresponding to each grid in the Ammann
quasilattice. The average grid is a periodic grid com-
posed of continuous lines with slope equal to the average
slope of the Ammann lines with jags. The spacing be-
tween the lines is chosen to produce the same density of
lines as is found in the Ammann quasilattice grid. A„ is
defined as the spacing between lines in the average grid
corresponding to the Ammann quasilattice grid with nor-
mal e„, a„ is the unit normal to the average grid, and P„
is the angle between e„and a„.

The density of intersections between lines of two aver-
age grids is easily calculated. Any two periodic grids
with spacings A„and A, considered by themselves,
form a periodic lattice of parallelograms of area
A„A /~sin8~, where 8 is the angle between the normals
to the grid lines. Thus the density of intersections be-
tween grids n and m in the Ammann quasilattice is equal
to ~sin(8 „+P —P„)~/(A„A ), where 8 „ is the angle
between e„and e

Recall that J„and D„are both of order v, the magni-
tude of the phason strain tensor. We wish to compute
the tile densities to leading order in v. Consider first a
grid for which J„ is zero but D„ is not. A„can be de-
rived from Eq. (35) by approximating x e„by A„N+y
and solving for A„ in the limit of large X:.

tang„=SJ„ /to . (39)

A slight change in A„, arising from the nonzero value of
P„, will enter the lowest-order calculations. Some simple
geometry reveals that A„ is given by S(1+I/to )(1

Dn /to) —'cosP„, which finally yields

A, =S 1+ 1

CO

1
1 ——SD„

69
(1+S2J2/ 2) —1/2

(40)

The number density of jags in a given grid is just the den-
sity along a single line,

~ J„,divided by the average spac-
ing, A„. The total density of jags in the Ammann quasi-
lattice, pz, is therefore given, to order v, by

S(1+I/co )
(41)

The density ofj ags is linear in the strain magnitude
The density of square tiles, p„ is given by the sum of

the densities of intersections of grids 0 and 2 and of grids
1 and 3

For n =0 and nonzero Jo, the magnitude of the slope of
the average grid lines, tango~, is given by the width of a
jag, S/co, divided by the spacing between jags on the
same line. A good approximation to the spacing between
jags is the distance in the e'„"' direction over which
x vM' 'e„changes by unity, which is just 1/~ J„~.
Corrections to this arise if D„ is nonzero, since w varies
slightly over the width of the jag, but such corrections
will not enter the leading-order calculations. The sign of
the slope is determined by the sign of J„.For J„) ( ( )0,
the Ammann line jags to the right (left) as it is traversed
in the e'„"' direction. Thus J„&0implies a positive value
of tang„, and we have simply

ps
sin($2 —Po+ ~/2) sin($3 —P, +~/2)

AoA2

1 —(S/to)(DO+Di+D2+D3)+(S /co )(JOJ2+JiJ3+DOD2+DiD3)
S (1+ I/co )

(42)

to second order in v. Now, because of the identity
Q„D„=O, the term linear in v vanishes. It can be shown
that the linear term in the density of rhombic tiles van-
ishes also. The gist of the argument is that if a term with
denominator A„A occurs in the expression for the den-
sity of a given tile type [top line in Eq. (42)], then all

I

terms AI, A& related to it by symmetry must appear.
Hence the (1 D„) terms generat—ed from substitution of
Eq. (40) into Eq. (42) come in symmetric sets, always
producing a linear term proportional to g„D„. The con-
clusion is that even though the densities of lines in the in-
dividual grids include terms linear in D„, the leading
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term in the expansion of the tile densities about their
ideal values is quadratic in the magnitude of the phason
strain.

An exact formula for the changes in tile densities asso-
ciated with phason strains has been obtained by Henley
in the context of the projection construction. The
above calculation in terms of Ammann lines is in agree-
ment with Henley's result.

2. Tteeivefold symmetry

1—(eoeo+e3e, )
(2b)

2

=&2( —e,et
—eze2)

=&2( —e4e4 —e~e~ )

1 0
0 1

M 2
= —(eoe3 —e3co)(2b)

2

(44)

M" '= —(eoeo —e3e3)
2

1—(
—e,e, +e4e4}

2

1—(C2C2 CgC5)
2

1 0
0 —1

M"' = —(eoe3+ c,eo)
2

= 1—(e,e4+e4e, )
2

(43)

Table II shows the characters for the irreducible repre-
sentations of the point group C,2, . The similarity be-
tween this case and that of C8, is quite extensive: 8 and u
transform under I", and w transforms under I, there
exist M'"'s transforming under the representations I',
I"", and I ' corresponding to compressions, rotations,
and shears, respectively, and there exist M' 's of three
different types, transforming under the representations
I lb I lc andI2b

The linear combinations of e„e that transform irredu-
cibly are

=&2( —e,e4+ eze~)

=v'2(e4e, —e~ez)

0 1
—1 0

The identity eoe3 —e3eo= v'3/2(e4e4+e2ez) and others re-
lated to it by symmetry are useful for checking that M',
and M2 ' transform into linear combinations of each oth-
er. The identity is itself easily verified by writing out the
matrices explicitly.

As in the case of eightfold symmetry, F' strain yields
J„=O for all n and I "strain yields J„=O for all nm.
Examples of typical diffraction patterns with the different
irredicuble phason strains are shown in Fig. 14 and til-
ings exhibiting I' and I " strain are shown in Fig. 15.
Once again there are no primary jags for M" ' and no
secondary jags for M"'.

The extension of the jag density and tile density
analysis to the twelvefold case is straightforward. The
principal conclusions, that the jag density goes like the
strain magnitude while the tile densities go like the
square of the strain magnitude, are unaltered. Note,
however, that because a'(0 for the twelvefold case,
D„&0 implies more short intervals and J„)0 implies
jags to the left. The analogues of the identities of Eq. (36)
are

0 —11 —1 0

and the pair

= 1—(C2C5+C5C2)
2 4D, =D3 —3DO —&3(J +. J )

2Doi 2Do +2D1 J3 Jo ~

We still have Q„J„=Q„D„=O.

(45)

TABLE II. Characters of the group C», .

I 1

I la

I lb

I lc

p2
p2
+20

I 2b

p2c

2Cl

1

1
—1

:1
—v'3
1
—1

0

1

1

1

1

1

1
—1
—1
—2

2C3

1

1
—1
—1

0
0
—2
2
0

2C4

1

1

1

1
—1
—1
—1
—1

2

2C5

1

1
—1
—1
—v'3
v'3
1
—1

0

1

1

1

1
—2
—2
2
2
—2

1
—1

1
—1

0
0
0
0
0

6C ~

1

—1

1

0
0
0
0
0
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TABLE III. Characters of the group C&p, .

E 2C ) 2C2 2C3 2C4 C5 5C 5C ~

FIG. 14. Diffraction pattern for the twelvefold quasicrystal
with uniform phason strain. The lines show the (100000) and
(110000) directions. In the unstrained pattern, peaks would

align directly along these directions. The size of each dot is
roughly proportional to the intensity of the peak. Note that the
peaks of smaller intensity are shifted further from their ideal po-
sitions. (a) I ' strain. The peaks in the (100000) directions
remain in line, but those in the (110000) do not. (b) I "strain.
The peaks in the (110000) directions remain in line, but those in
the (100000) do not.

3. Tenfold symmetry

Table III shows the characters for the irredicuble rep-
resentations of the point group C,o, . There are
significant difterences between this case and the others, as
might have been anticipated from the geometric argu-
ment of Sec. III B. The fact that a secondary Ammann
quasilattice is not necessary for enforcing the matching
rules suggests that all uniform phason strains produce
primary jags, and this is indeed the case. Though the
analysis of conventional strains in the tenfold case mir-
rors quite closely that of the eightfold and twelvefold
cases, it is found that there exists only two types of irredi-
cuble phason strain, transforming under I and I

The easiest way to distinguish between I strain and
I strain is to examine the signs of D„. Figure 16 shows
the patterns produced by I and I strain. The sign of
D„ is marked at both e„and —e„. I strain produces a
dipolelike pattern that has the appropriate symmetry for
coupling to shears, while I strain does not. Of course,
the phonon and phason strain matrices can be deter-
mined completely from measurement of J„and D„ for
four values of n and we again have g„J„=Q„D„=O.

V. ENERGETICS OF PHASON STRAIN

The question of how the free energy of a quasicrystal
depends on the phason strains present involves several
subtleties that are not fully understood. The most im-
mediate problem is that the conditions under which the
usual harmonic approximation to the free-energy density
is applicable are not known. This issue will not be
resolved here. The canonical elasticity theory, based on
the harmonic form of the free energy, is presented be-
cause it may well apply to physical systems and, in any
case, is a useful reference point for the discussion of other
forms of the free energy. Following the treatment of the
harmonic free energy, the question of whether it is appl-
icable to quasicrystals that are well described by ordered
tilings is brieAy discussed.

A. Canonical elasticity theory

Standard treatment of elasticity theory begins with the
assumption that the free-energy density F,&

to lowest or-
der in the strain magnitude is a quadratic function of the
strain. The theory then applies to strains of small enough
amplitude that higher-order terms can be neglected. Un-
der this assumption, the most general form of F,&

for a
2D quasicrystal with eightfold, tenfold, or twelvefold
symmetry is

r'
I la

I-ib

I lc

I 2

p2

r" 2

I 2b

1

1
—1

1

1

1

1

1

1

1
—1
—1

1

1

1
—1
—1

1
—1

1
—1

I
—1
—1

1

0 0

0 0

0 0

0 0

S„=re,',"„I(a,u, )(a„u, )+re,~;„I(a,w, )(a„w, )

+K,"kt '(3;uj )(Bkwt ), (46)

where the elastic tensor K kI is a constant with elements
determined by the details of the system. For a phason
strain vM';J ', where v is the magnitude of the strain and
M' ' is normalized, the pure phason strain contribution

form + ( ) ~ M( )I ( )

The requirement that F,&
behave as a scalar under the

orientational symmetry group of the quasicrystal imposes
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severe constraints on the elements of the elastic tensors.
One independent element (called an elastic constant) ex-
ists for every identity representation occurring in the
decomposition of (8;u. )(Bku&), (8;wj )(Bzw&), and
(B,u )(c)kw&) into irredicuble representations.

Consider first the eightfold case. For conventional
strains, we have Bu transforming under I'+ I ', implying
that BuBu transforms under (I'eI ')(I'$I '). (Re-
call that the I "terms are just rotations and cannot con-
tribute to F,&. ) Two identity representations arise, one
from the I'(3I' term and one from the I 'g I ' term.
The elastic constants associated with these contributions
to F,&

are the familiar bulk and shear moduli, respective-
ly. For phason strains, similar reasoning yields three
elastic constants that determine the energies of the three

types of phason strain. Finally, the I ' pieces of Bu and
Bw combine to produce a scalar, so there is one elastic
constant associated with the coupling of shears and I
strain, which will be referred to as the phonon-phason
coupling constant. Thus there are a total of six elastic
constants in a generic eightfold quasicrystal. In the ten-
fold case, the situation is similar to that of the eightfold
case, but there are five elastic constants: the bulk and
shear moduli, two phason elastic constants, and one
phonon-phason coupling constant.

The twelvefold case has one significant and unexpected
feature. There are, as for the eightfold case, bulk and
shear moduli and three phason elastic constants. In the
twelvefold case, however, the 2D representations corre-
sponding to shears (I ') and to phason strains (I' ") are

(a}

~J
V '/gal:

'i~as ~
0 ~ ~~ ~

Vl ~

FIG. 15. Dodecagonal PLI class tilings with uniform phason strain. The strain magnitude has been chosen such that the pattern is

periodic. The shaded tiles highlight the periodicity. (a) I'" strain. There are no primary mismatches (no violations of the edge arrow
matching rule). The small arrows point to the secondary mismatches (illegal vertex keys) within a single unit cell of the periodic
structure. (b) I "strain. There are no secondary mismatches (no illegal vertex keys).
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not the same and so they cannot be coupled to form a
scalar term. There is therefore no phonon p-hason cou
pling in the harmonic approximation to the free energy of
a twelue fol-d quasicrystal

Further analysis of the quadratic invariants corre-
sponding to the diferent phason elastic constants is re-
vealing. For all three symmetries under consideration,
there is a linear combination of the invariants that has
the form of a total divergence. (See Ref. 30 for a discus-
sion of the decagonal case. ) Following the convention of
Refs. 21 and 30, let 0;w. be denoted by m;. , or

M(w) c M +c M1c+c M "+c M1b le 2x, 1 1 2x, 2 2 (48)

where x =a for the eightfold case and b for the twelvefold

&xx &xy

l8y~ Myy

The invariant linear combinations of w; s corresponding
to the diferent types of phason strain are readily con-
structed from Eqs. (33), (34), (43), and (44). Any phason
strain vM' ' can be written as

FIG. 15. (Continued).
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p2 where the upper sign always refers to the eightfold case
and the lower to the twelvefold case. Note that I is just
equal to v . Inverting Eq. (52) and substituting into Eq.
(51) yields

case. The three invariant quantities corresponding to the
identity representations in the reduction of v M'," 'MkI'
are I, =c,b, I„=c1„and I2 =c2x, +c2x2. For the2 = 2 2 2

eightfold case, we have

I1b Wxx Wxx +Wyy Wyy +2Wxx Wyy

Ilc xy Wxy +Wyx yx xy yx

I2a Wxx Wxx +WyyWyy 2Wxx Wyy

+ Wxy Wxy +Wyx Wyx +2Wxy Wyx

and for the twelvefold case, we have

(49)

I1b Wxx Wxx +Wyy Wyy 2Wxx Wyy

c Wxy xy +Wyx Wyx + xy Wy

I2b =
Wxx Wxx +Wyy Wyy +2Wxx Wyy

+Wxy Wxy + Wyx Wyx 2Wxy Wyx

In terms of these invariants, the expression for F,1
is

(50)

FIG. 16. Signs of D„ for generic uniform phason strains in a
decagonal quasicrystal. A positive (negative) value of D„ indi-
cates an increased (decreased) density of Ammann lines with
normal e„. (a) I strain. The pattern has the symmetry of a di-
pole and allows coupling to shears in the harmonic approxima-
tion to the free energy. (b) I strain. The symmetry of the pat-
tern does not allow coupling to shears in the harmonic approxi-
mation.

F,1=K I +KPIP+K Iy,
K =(K)b+K„+K~„)/2, (53a)

with K&=(K» —K„)/2, (53b)

Ky =K1b+K1, —K2x .

Note that these alternate elastic constants need not be
positive, although there are constraints on them that fol-
low from the positivity of the original ones.

The reason for reexpressing F„ is that in both the
eightfold and twelvefold cases, Iz is a total divergence
and, in the absence of dislocations, can be integrated by
parts and expressed as a boundary term. (In the tenfold
case, there is also a term that can be integrated by
parts. ) For uniform phason strains, the boundary term
has no special significance. The contribution to the free
energy from the boundary integration is an essential por-
tion of the total. The boundary term is not a topological
term, i.e., the quantity whose divergence is I cannot be
expressed as the gradient of a scalar, so integration of it
along a closed loop does not necessarily yield zero in the
absence of dislocations. For strains having wavelengths
smaller than the sample size, however, the contribution
of the boundary term goes like the ratio of the perimeter
of the sample to its area and hence is negligible for large
samples.

Fel K1b 1b +K1C 1C +K2x 2x (5 I)
B. The discrete tiling model

Since each of the I's is a perfect square and therefore pos-
itive, the condition that constant w be a unique minimum
of the free energy simply implies that each elastic con-
stant K is positive definite.

Now the definition of the elastic constants is not
unique; any three independent linear combinations of the
invariants can be used to express F,1. The choices of Eqs.
(49) and (50) are convenient in that they are associated
with irreducible strains, but they tend to obscure an irn-
portant fact. Let us express F,I in terms of the following
three linear combinations of I», I1„and I2x.

I —= (I,b+I„+I2 )/2
2 2 2 2

Wxx +Wyy +Wxy +Wyx

IP =I1b I1,
(52)

I~ = (I,b+Ii, I2 )/2— —

(MxxWyy WxyWyx ) ~

Consider a quasicrystal with a zero-temperature
ground state that is well described by a decoration of a
PLI class tiling with atoms and assume for the rnornent
that it is held at zero temperature. Since no two tiles,
and therefore no two atoms, have identical infinite envi-
ronments, the precise location of the atoms on each tile
will vary slightly with this description must be only an
approximation to the true ground state. We will assume
that it is a good approximation, as seems reasonable in
light of the relatively few local environments of the
different tiles and the constraints of local atomic forces.

Now the energy associated with pure conventional
strains derives from the displacement of atoms within
harmonic wells that define their equilibrium
configuration and therefore the energy is harmonic in the
gradients of u. The energy associated with pure phason
strain, however, stems from two distinct sources: jags in
the Ammann lines (or isolated violations of the matching
rules) and deviations from the ideal sequence of spacings
of the Ammann lines (or changes in the spatial distribu-
tions of tiles of different types and orientations). Even
with no phonon-phason coupling, the question of how to
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assign energies to the two efFects is rather subtle and has
not been resolved fully.

In the most trivial model of a stable quasicrystal at
zero temperature, each violation of an edge-arrow match-
ing rule costs a discrete energy, e, & 0, and each violation
of a vertex key matching rule costs a discrete energy,

c, & 0. The total energy of the system is just
ET=L (piEi+p2s2), where pi and pz are the densities of
jags in the primary and secondary Ammann quasilattices,
respectively, and L is the area of the sample. Using the
results of Sec. IV B and the decomposition of M'"' in Eq.
(48), we find for the eightfold case (at zero temperature)

F„~c,, g le'„"'vM' 'e„l+e2+ lf',"' '& M'"'f, I+0(& )

=s,(lci, +c2, , I+ Ic„—c~, , I+ Ici, +c2, 2 I+ Ici, —c2, i I)

1 1+Fg+2 cib+ —(c2~ i+cg~ 2) + cib —(c2~ i+c2~ i)

1 1+ Cib+ —(C2a i CP~ 2) + Cib —(C2~ i C2~ i ) (54)

The analogous result for the twelvefold case is

F.i —ail: lci, +czb, 2I+ lci, —
c2b, 2I+ lci, +-,'( 3cpb, i+cpb, 2)I+ Ici, ——,'( 3cpb, i+c2b, i) I

+ Iclc+ 2( 3c2b, l c2b, 2)l+ Iclc p( 3czb, l c2b, l )I 1

+E2[lcib+c2b21+ lcl cpb21+lclb+ g( 3c2bi+cp,b2)l+ lclb 2( 3cpb i+c2b i)I

+lclb+ p( 3c2b 1 c2b 2)l I ib z( 3c2b 1 c2b 1)l 3 (55)

Note that the energy of a given strain is proportional to
the strain magnitude, v, rather than to v, so that the re-
sults of the preceding section clearly do not apply. It is
still true, of course, that strains related by a symmetry
group operation have equal energies, but it is no longer
true that the energy of a linear combination of two
strains is equal to the same linear combination of their in-
dividual energies. For example, it is not true that all I"
strains have the same energy.

An additional contribution to I,&
arises if there is a

difference between the binding energies of the atomic
clusters that decorate tiles of different types; i.e., if it is
energetically favorable to increase the density of one type
of tile at the expense of another. In Sec. IVB, it was
shown that the leading term for this effect is proportional
to v, suggesting a contribution to F,&

of the canonical
form.

The simple model discussed so far corresponds to a
limit in which the atomic decoration of a tile is indepen-
dent of the neighborhood of the tile, regardless of wheth-
er it is adjacent to a mismatch. Even within this limit, a
more realistic model might include different energies for
mismatches occurring between different types of tiles or
at different types of vertices. The general form of the
phason elastic contributions to I,I would not be altered;
however, the energy would still be linear in the strain
magnitude.

We must now consider two types of deviation from the
limit. First, the effects of the relaxation of the atomic po-
sitions in the vicinity of a mismatch must be taken into
account. If there is significant relaxation of atoms within
a distance d from the mismatch, then mismatches

separated by less than d will interact. If d is larger than
the dimensions of the sample, a crossover to the canoni-
cal form of the elastic energy could conceivably result.
At present, there is no conclusive understanding of the
factors that influence d. Geometric arguments indicate
that the motion of atoms corresponding to uniform shifts
in w must be discontinuous, ' and this may imply that
the interactions between mismatches must faH off ex-
ponentially with their separation, but rigorous con-
clusions have yet to be drawn concerning configurations
in which w is spatially varying.

Second, the effects of nonzero temperature on the free
energy must be evaluated. Recall that each mismatch lies
on a worm segment. Now in the absence of interactions
between mismatches, the energy of the mismatch is in-
dependent of its precise position along the segment. Thus
for nonzero temperature there is a nonzero entropic con-
tribution to the free energy of a phason strain. It has
been noted that the contribution to the entropy from a
single mismatch goes like lnL, where L„ is the length of
the worm segment on which the mismatch resides, and
that there always exist worm segments long enough so
that lnL dominates the energy cost of the mismatch. '

This suggests that a system containing noninteracting,
discrete mismatches is unstable to fluctuations in the
phason Geld at very large wavelengths. Note, however,
that in a solid composed of periodically stacked quasi-
crystalline layers, the energy of a mismatch goes like the
thickness of the sample in the periodic direction, since
the Ammann lines are now planes perpendicular to the
quasicrystal layers. For thick samples, one would there-
fore expect the entropic contribution to the free energy to
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be dominated by the energy of the mismatch.
Clarification of these issues is critical to the under-

standing of the dynamics of the phason field. Standard
hydrodynamic treatments based on the canonical form of
I",

&
suggest that relaxation of long-wavelength variations

in w is extremely slow, perhaps unobservable on experi-
mental time scales. If this is correct, production of a
well-ordered quasicrystal would require a growth mecha-
nism that avoids the introduction of phason strains dur-
ing solidification.

VI. CONCLUSIONS

It is worth emphasizing again that the PLI class tilings
discussed in this paper, though they play a special role in
the analysis of the symmetries of interest here, are not
necessarily priveleged candidates for modeling physical
structures. It is possible that a different LI class would
be required for the description of a given physical materi-
al. Nevertheless, the simplicity of the PLI class struc-
tures makes them easy to work with and allows the fun-
damental problems to come to the surface, unobscured by
inessential complexities. Furthermore, it should be noted
that many apparently unrelated structures can be viewed
as decorations of the PLI class tilings, including many
that are derived from projection of a hypercubic lattice
using acceptance domains different from the unit hyper-
cube. Figure 17 illustrates an example: the tiling under-
lying the structure proposed in Ref. 33 as a model for the
dodecagonal phase of Ni-Cr is shown to be realizable as a
simple decoration of the twelvefold PLI class tiling.
Once such a decoration is obtained, the results detailed in
this paper can be brought to bear on the analysis of the
structure. For example, the configurations corresponding
to phason strains can be identified and distinguished from
other rearrangements of tiles. Also, one can ask whether
the atomic decorations of the tiles break the mirror sym-
metries in a manner that would allow them to act as
matching rules. (The specific model of Ref. 33 does not
embody the complete set of matching rules, but minor
refinements may be sufficient to incorporate them. )

The application of analytical techniques developed for
the Penrose tilings to the cases of octagonal and dodecag-
onal symmetry has yielded rather remarkable results.
The same basic techniques for construction and descrip-
tion of PLI class tilings have proven to be relevant in all
three cases, and even the details of the analysis are quite
similar. In light of the high degree of similarity, howev-
er, the slight differences take on added importance.
Table IV lists the points of difference among the various
symmetries of interest. The results for the icosahedral
case are taken from the literature. ' [Note, however, that
the relation between the duals to the Ammann quasilat-
tices (which consist of grids of planes normal to the ver-
tex vectors of the icosahedron) and the tilings obtained by
projection is not straightforward in this case and has yet
to be fully characterized. ]

The relationships among the di(ferent rows of Table IV
are intriguing. Two issues that may be relevant to the
analysis of icosahedral quasicrystals are the following.
First, one of the mysteries central to the development of

FIG. 17. The decoration of the PLI class tiling that produces
the tiling proposed by Gahler as the basis of an atomic model of
the dodecagonal phase of Ni-Cr.

reliable theories of quasicrystal formation and structure
is the connection between the parameters that arise in the
analysis of discrete tiling models 'and those of canonical
elasticity theory. Is it merely a coincidence that, for the
2D symmetries, the number of Ammann quasilattices re-
quired to enforce matching rules is the same as the num-
ber of elastic constants associated with phason Quctua-
tions of finite wave vector? %hat should be expected for
the icosahedral case? Second, as mentioned above, the
possibility of producing a large, well-ordered quasicrystal
may ultimately depend on the existence of a physically
plausible growth algorithm that avoids the introduction
of phason strain. Such an algorithm has been discovered
for the Penrose tilings, but it remains to be seen whether
similar algorithms exist for other symmetries. Is there a
connection between the existence of a local growth algo-
rithm and the degree of complexity required for matching
rules, or the number of irreducible phason strains?

The proper understanding of the entries in Table IV
and the relevance of the PLI class tilings to physical sys-
tems would represent a significant advance toward a
unified theory of solids with any orientational symmetry.
It is hoped that the explicit displaying of the PLI class
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TABLE IV. Comparison of decagonal, octagonal, dodecagonal, and icosahedral symmetries. The entries in the first three columns
are discussed in the text. The entries for the case of icosahedral symmetry are obtained from the literature.

Scale factor for deflation

Dimension of E
(projection hyperspace')

Dimensions of E,E,E
No. of Phason elastic constants

for uniform strains

No. of Phason elastic constants
for finite wavelength

fluctuations

Phonon-phason coupling

No. of Ammann quasilattices
required to
rule out periodicity

No. of Ammann quasilattices
required to
ensure quasiperiodicity

Local growth algorithm

Decagonal
«lO. )

(1+&5)/2

3,2, 1

yes

yes

Octagonal
(C„)

2,2,0

yes

Dodecagonal
(Cl2, )

4,2,2

no

Icosahedral
(Yp, )

(1+&5)n

3,3,0

yes

'The dimension listed is the minimal one for which the perp-space structure of the rhombic tilings consists of uniformly filled regions
of the same density.
The difference between the number of elastic constants for uniform strains and the number for fluctuations for the 2D cases is due to

the fact that a particular linear combination of the phason strain invariants acts as a boundary term. (See Sec. V A.) For icosahedral
symmetry, no such combination exists.

tilings and the treatment of their properties given in this
paper will facilitate progress toward that goal.
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APPENDIX A: LOCALLY CONGRUENT
AMMANN QUASILATTICES

We wish to derive the conditions under which two Am-
mann quasilattices, Ia„,P„J and I5„,y„ I, are locally
congruent. We begin by defining three types of
equivalence transformations of a„and p„, which yield
quasilattices that are identical up to overall translation.

For pure translations, we have

For umklapps, we have

1 1a„~a„+p„+,q„, p„~a„—q„+—p„. (A3)

1x„~.e„~S %+a„+p„+,q„0

+, —+p„—q„+—p„
1 X 1

0 0 0

An unklapp transformation re-indexes the lines in each
individual grid, without affecting the actual positions of
the lines at all. We have

o.„~a„+ue„. (Al)
N+p„~S (N+p„)+a„+, +P„

0 0

To see that this corresponds to a uniform translation of
the Ammann quasilattice, we write

~x„(N+p„).e„.
For P translations, we have
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P„—+P„+z e„, for z= '

1 1+2 mi+ m2, m3+ mg

1 1
2 m, +—m2, m3+ —m4

(eightfold)

( twelvefold ),

(A5a)

(A5b)

where m, is an integer. Though most vectors are not of
the form of z, the set of possible values of z is dense in
the plane. It can be seen by direct computation that for z
of this form, we have z.e„of the form pn+1/oqn.
Furthermore, after applying an umklapp to restore P„ to
its original value, we find that the change in e„has the
form of a pure translation, with

APPENDIX B: DERIVATION OF THE PLI
CLASS VALUES OF a„AND P„

The essential property of the PLI class is that rescaled
defiation of an Ammann quasilattice (by application of
the rule of Fig. 8) produces an Ammann quasilattice that
is locally congruent to the original. We wish, therefore,
to derive the values of [a„,p„J having the property

1 1&2 m2 ——m„m4 ——m3 (eightfold) (A6a)
1

~&n —=C'n ~n =u'en+pn+ i qn ~0'

u=
1 1

2 mz+ —m„m4+ —m3 (twelvefold) . (A6b)

We can now show that [a„,p„J and [5„,y„J are locally
congruent if and only if there exist integers p„,qn and ar-
bitrary vectors u, w such that

Ap„—=p„—p„*=v e„—q„+cr'p„,
(81)

where [a„*,p„* J is the rescaled defiation of [a„,/3„J, given
by Eqs. (16) and (12).

Consider first the eightfold case. Substituting the ex-
pressions for a„* and P„* from Eqs. (16) and (12) into Eq.
(81), we find the condition

14a„=—a„—6, =u-e„+p„+,q„0
(A7a)

Ip.*l q.a„(1—co) —[P„J+—1+—+ =u e„+p„+
2 co Q) N

(82a)
1

Qp„=p„—y„=w e„—q„+—p„. (A7b)
1

P„ 1+— pn=v en —q„+ (82b)

Let [5'„,y'„J be the result of successively applying a p
translation with z=w —5w, an umklapp, and a pure
translation to [5„,y„J. Note that [5'„,y'„J is equivalent
to [5„,y„j and that z can be chosen arbitrarily close to
w, since the set of possible z is dense in the plane. An
umklapp and pure translation can always be chosen such
that

or

1 n 1a„=u'.e +—Pn+ +
2 co 2co

1 PnP„=v' e„+——Q„+

(83a)

(83b)

o. —5' =0
n n

p„—y '„=5w. e„. (A8)

We choose z such that ~5w e„~ is less than both ~p„~ and
~y„' for all n Since a. „=5'„,the N=O lines of [a„,p„]
and [5„',y'„J coincide exactly. Now the difference be-
tween p„and y'„affects only those lines in the quasilat-
tice that correspond to an N for which 1/crN+p„and
1/o.N+y'„have different integer parts. For any given
integer M, z can be chosen such that 5w. e„ is small
enough that 1/crN+p„and 1/crN+y'„have the same
integer part for all ~N~ (M. This implies that for any
given region of finite size in either quasilattice, an
equivalence transformation of the other can be found
such that the two coincide exactly in that region. The
two quasilattices are therefore locally congruent. It is
straightforward to confirm that translations, umklapps,
and P translations are the only equivalence transforma-
tions on [a„,P„J.

where we have defined P„—= —p„—[P„J—q„, Q„—:—p„—[P„J+q„, u'—:u/(1 —co), and v'—:v/(co —1) and we
have used the fact that [P„*J= —1 for any value of P„.
Note that Q„ is even if and only if P„ is even. Now if
they are both even for all n, then Eqs. (83) simply de-
scribes a class of solutions locally congruent to

1
n (84a)

P„=O . (84b)

Furthermore, it is easy to verify that we get the same re-
sult even if one or more of the P„'s is odd. Suppose that
Po is odd and all the other P„'s are even. Defining
u" =u' —( —')( 1+1/co, O) and v"=v' —( —')( —1+1/co, 0)
and substituting into Eqs. (83), we get an equation of the
identical form with u" replacing u', v" replacing v', and
all the new values of P„and Q„even. Octagonal symme-
try guarantees that similar manipulations can be per-
formed for other values of n than 0 and it is clear that the
different P„'s can be handled independently, since con-
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(85a)

1 PP„=v' e„+—Q„+ n

fl 7l 2 n (85b)

where P„=—p„—[P„J—I+q„, Q„=p„—[P„J—I+3q„.
Once again P„and Q„are either both even or both odd.

verting one of them from even to odd does not aA'ect the
values of the others, modulo 2. We have thus demon-
strated, for the eightfold case, that there is only one LI
class of solutions to Eq. (Bl) which must be the PLI class
of Ammann quasilattices.

In the twelvefold case, an equation analogous to Eqs.
(83) is straightforward to obtain. We find

a„=u' e„+—P„+Pl Pl 2 JI

Unlike in the eightfold case, however, if P„ is odd for cer-
tain values of n, it is not possible to absorb all of the
half-integral terms in Eqs. (85) into u and v, as was done
in the eightfold case. We state without proof that there
are four distinct LI classes that solve the equation: the
LI class corresponding to P„even for all n, the one corre-
sponding to P„odd for all n, the one corresponding to P„
even for n =0,2, 4 only, and the one corresponding to P„
even for n = 1,3, 5 only. (All other possibilities are locally
congruent to one of these. ) Of these, only the first two
have dodecagonal symmetry; the others have only hexag-
onal symmetry, as can be seen most easily by inspection
of the tilings dual to the Ammann quasilattices. Inspec-
tion of an Ammann quasilattice in each of the first two LI
classes immediately reveals that the PLI class corre-
sponds to P„even for all n, as asserted in Eq. (5).

P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals
(World Scientific, Singapore, 1987).

C. L. Henley, Comments Cond. Matter Phys. 13, 59 (1987).
3L. S. Levitov Zh. Eksp. Teor. Fiz. 93, 1832 (1987) [Sov.

Phys. —JETP 66, 1046 (1987)].
4R. Penrose, Bull. Inst. Math. Appl. 10, 266 (1974).
5J. E. S. Socolar and P. J. Steinhardt, Phys. Rev. B 34, 617

(1986).
D. Levine and P. J. Steinhardt, Phys. Rev. B 34, 596 (1986).

7M. Gardner, Sci. Am. 236, 110 (1977).
A. Garg and D. Levine, Phys. Rev. Lett. 59, 1683 (1987).
G. Y. Onoda, P. J. Steinhardt, D. P. DiVincenzo, and J. E. S.

Socolar, Phys. Rev. Lett. 60, 2653 (1988).
N. de Bruijn, Proc. K. Ned. Akad. Wet. , Ser. A 84, 39 (1981).
B. Grunbaum and G. C. Shephard, Tilings and Patterns (Free-
man, San Francicso, 1986).
R. Ammann (private communication).
D. M. Frenkel, C. L. Henley, and E. D. Siggia, Phys. Rev. B
34, 3649 (1986)~

P. StampAi, Helv. Phys. Acta 59, 1260 (1986).
~~N. Niizeki and H. Mitani, J. Phys. A 20, L405 (1987).
~ J. E. S. Socolar, Ph.D. thesis, University of Pennsylvania,

1987.
M. Duneau and A. Katz, Phys. Rev. Lett. 54, 2688 (1985).
J. E. S. Socolar, T. C. Lubensky, and P. J. Steinhardt, Phys.

Rev. B 34, 3345 (1986).
D. Levine and P. J. Steinhardt, Phys. Rev, Lett. 53, 2477
(1984).

oV. Elser, Acta Crystallogr. Sect. A 42, 36 (1986).
'D. Levine, T. C. Lubensky, S. Ostlund, S. Ramaswamy, P. J.

Steinhardt, and J. Toner, Phys. Rev. Lett. 54, 1520 (1985).
J. E. S. Socolar, D. Levine, and P. J. Steinhardt, Phys. Rev. B
32, 5547 (1985).
F. Gahler and J. Rhyner, J. Phys. A 19, 267 (1986).

4N. de Bruijn, Proc. K. Ned. Akad. Wet. , Ser. A 84, 27 (1981).
The tedium of this task was greatly reduced with the aid of a
computer program written by S. Langer for adding forced
tiles to an arbitrary cluster.

26P. Bak, Phys. Rev. B 32, 5764 (1985).
M. Tinkham, Group Theory and Quantum Mechanics
(McGraw-Hill, New York, 1964).

~8P. A. Kalugin, A. Kitaev, and L. S. Levitov, J. Phys. (Paris)
Lett. 46, L601 (1985).
C. L. Henley, J. Phys. A 21, 1649 (1988).
P. De and R. A. Pelcovits, Phys. Rev. B 35, 5774 (1987).
M. Jaric, private communication.
T. C. Lubensky, S. Ramaswamy, and J. Toner, Phys. Rev. B
32, 7444 (1985).
F. Gahler, in Quasicrysalline Materials, edited by C. Janot and
J. M. Dubois (World Scientific, Singapore, in press).


