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Temperature dependence of resonance signatures in atom-surface scattering
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We present experimental data for the elastic resonant scattering of a thermal-energy He beam by
a vicinal Cu surface over a large range of surface temperatures. We develop the theory for inelastic
eff'ects under resonant conditions and obtain excellent agreement for the increase in resonance
linewidth with temperature. We conclude that the dominant perturber of the line shape at low tern-

peratures is surface disorder.

I. INTRODUCTION

After Stern and co-workers demonstrated diffraction of
thermal energy helium beams by solid surfaces, ' one of
the first discoveries was a series of resonances which were
called selective adsorption. These resonances, which ap-
peared as narrow minima in the diffracted intensities,
were correctly interpreted as being due to elastic
diffraction into the bound states of the surface adsorption
potential well. It was assumed that they always ap-
peared as minima because, while passing through the
diffraction channel in the well, the particle has a large
probability amplitude near the surface and would be
strongly scattered by inelastic processes involving pho-
nons.

More recent experiments using monoenergetic beams
and well-characterized surfaces have demonstrated a rich
variety of resonant features (in the diffracted-beam inten-
sities) whose signatures include dips, peaks, and mixed
structures. ' For the case of He scattering from LiF sur-
faces, good agreement between experiment and theory
has been obtained using purely elastic potentials ' with
no need for additional inelastic scattering. In fact, very
straightforward schemes have been developed for deter-
mining the signature of a particular resonance. ' For
many other systems, however, a purely elastic calculation
is insufhcient to give the correct signatures or linewidths.
Particularly in the case of vicinal metal surfaces, where
strong resonant scattering is observed, ' the relatively
weak corrugations produce calculated elastic resonance
widths which are far too narrow and signatures which are
often completely wrong. " In many instances good agree-
ment has again been obtained by mimicking inelastic
losses through the use of imaginary terms in the poten-
tial' ' or by introducing effective Debye-Wailer factors
at intermediate points in the scattering process, "' al-
though these approaches have not always been complete-
ly successful. '

Relatively few experimental studies exist on the
surface-temperature dependence of resonances. ' ' This
is probably because most studies of resonances have been

done either on lithium fluoride and other alkali-metal
halides or on graphite, and the range of temperatures ex-
perimentally available was less than the relatively large
Debye temperatures. On the other hand, metal surfaces
provide a class of materials for which experiments can be
readily performed over a range of temperatures extending
both below and above the Debye temperature. In this pa-
per we report measurements of the linewidths of reso-
nances for the system of He scattering from a Cu(115) vi-
cinal surface as a function of temperature. We also sys-
tematically develop a theory for treating inelastic effects
in the presence of resonances. When the theory and ex-
periment are compared for the He/Cu(115) system, we
find that the temperature-dependent enlargement of the
resonance widths is correctly predicted, but the actual
widths are not. Based on this, and evidence from other
experiments on vicinal metal surfaces, we conclude that
the width and signature of such resonances at low tern-
perature are strongly affected by disorder on the surface
and much less so by inelastic effects. In particular,
multiphonon-scattering events do not contribute strongly
under resonance conditions at lower temperatures.

II. THEORY

We develop the theory within the framework of the
distorted-wave or two-potential formalism. The total in-
teraction potential V between particle and surface is di-
vided into two parts V=U+v, where U is a static,
surface-averaged contribution and v contains all
diffraction and inelastic effects. (An alternative approach
is to let U be the thermal average of V, i.e., U = ( V), in
which case it will already describe elastic diffraction. "'

)

Then the transition operator obeys the equation

T =v +vGT .

We examine the elastic resonances by projecting them
out. "' We write the total projection operator P for
the distorted Hamiltonian as P =P, +Pb, where Pb is the
projection operator for a small subset of bound states in
the neighborhood of resonance conditions. A straightfor-
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ward manipulation converts Eq. (1) into two coupled
equations,

T =w+~PbGPb T,
~=v +uPI GPI& . (3)

Assuming r to be known, the T operator (2) involves only
the small subset of bound states. We rewrite it as

T =w+&PbG~Pbw ~

where G obeys the Dyson-type equation

G =G +GPb &Pb G

(4)

Equation (5) is the starting point of our treatment, but
first we need to discuss the evaluation of ~ which is itself
the transition operator for a system with the small subset
of bound states projected out. Equation (3) for the opera-
tor ~ is of the form of a transition-operator equation, but
the projection of the bound states makes ~ correspond to
the transition operator for a nonlocal potential. " We
divide the potential u into an elastic part u = ( u ) and an
inelastic part v',

u =u'+u' . (6)

l =v +v PIGPIl

h =u'+v P, GP, h .

Then another standard manipulation of Eq. (3) for ~ leads
to the coupled set

~= I +h +hP I GP I'T,

with

An important observation from Eq. (7) is that r can be di-
vided into a purely elastic part l and a remainder
E. =h +hPI GPI ~ which involves the inelastic part of the
potential u'.

To evaluate scattering intensities, one needs, in general,
the thermal average of the squared T matrix, (T ).
However, for obtaining elastic diff'raction peak intensi-
ties ' this is equivalent to ( T) . Thus we can obtain the
resonance linewidths by directly averaging Eq. (4). For
example, we can, to lowest order, neglect all inelastic in-
teractions by setting v'=0, which leaves r=l, and speci-
alizing to the case where Pb projects out only a single iso-
lated resonant state labeled by the set of quantum num-
bers b, we have, for the transition amplitude to the final
difFraction state f,

(10)

This is the well-known amplitude for an isolated elastic
resonance. " The resonance linewidth is given by
I =2 Imlbb and the energy shift by Relbb.

Averaging Eq. (4) for T directly is an intractable prob-
lem, but we can develop it using Eq. (5) as an iterated
series in orders of ~ as follows:

++Pb GPb 7+ SPb GPb +Pb GPb ++

We can then, in principle, average each term individual-
ly. If we carry out this averaging process for a sufficient
number of terms to get the lowest corrections to the life-
time I, the result can be resummed, giving the following
form, to first order;

( ) ( )
(Tfg )(re

E, Ei, lii, —(Rii, )———(RPi, GiPi, R ) —(R )Pi, GiPi, (R )
(12)

where Gi '=G ' —l. Equation (12) reduces to (10) if
there is no inelastic scattering. This is clear since from
the discussion after Eq. (9) we have w=l +R and, in the
absence of inelastic scattering, R =0. Thus the first in-
elastic correction to the resonance width is
b, l =Im(Ri, i, ), and the other R-dependent terms in the
denominator of the resonant term of (12) are higher-order
inelastic corrections.

Equation (12) also shows that there is a substantial
diff'erence in the thermal attenuation (or Debye-Weller
effect) of a diffraction peak, depending on whether it is or
is not under resonance conditions. Off' resonance, the
second term on the left-hand side of (12) is negligible; the
diff'raction intensity is then proportional to

~ (r&,. ) ~
and

this is the starting point that has been used for the devel-
opment of a successful theory of thermal attenuat1on.
Under resonant conditions, the second term on the left-
hand side of Eq. (12) dominates and the thermal attenua-

&R»&= X &ubiGuib &

l~b
(13)

The thermal average can be carried out upon using the
integral representation for the Careen function,

tion of the resonance height is governed by
~ ( r&i, ) ( ri,; ) ~, the square of the product of two thermally
arranged matrices. This behavior is evident in the experi-
mental data of Fig. I, where the height of the resonance
peak is attentuated with temperatures much more strong-
ly than the off'-resonant intensity in the wings to either
side. We can proceed to evaluate Im(Ri, i, ) using an ap-
proach which has been very successful in explaining the
thermal attenuation of diffraction peaks from smooth Cu
surfaces. It is a good approximation to take the inelas-
tic potential v' to be linear in the phonon variables; then
the first nonvanishing contribution is (R ) = ( hP, GP, h )
and, upon approximating h by u', we have
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the number of defects gathered in domains increases due
to the onset of thermal roughening. Below this temper-
ature substantial disorder of this type remains because
the relaxation times of defects are so long that the defects
are effectively frozen in. This domain structure gives
rise to phase-antiphase oscillations which can be observed
in the intensity of diffraction peaks. ' For the present
experiment, phase and antiphase conditions are widely
separated in angles, occurring at 0;=45' and 69.3, re-
spectively. Hence the temperature dependence of the res-
onance shape will be essentially unaffected by the slight
variation of phase occurring in the small region of
0;=+2' around the resonance maximum. It has been
shown that the peak shape under antiphase conditions
does not broaden appreciably in the temperature range
70—400 K; this indicates that the number of surface de-
fects does not vary substantially. One does not expect the
number of defects to change appreciably over this tem-
perature range since they are governed by an activation-
type process. This small broadening of the diffraction
peak with temperature will have a negligible effect on the
measurement of the resonance width, since the latter is
obtained by varying 0; over several degrees. No shift of
the resonance maximum with temperature is detected.
The measured resonance width is then governed primari-
ly by the exchange of real and virtual phonons, which
corresponds to the theoretical calculations discussed
above. The slope of the linear part of the experimental
curves shown in Fig. 2, as determined by a least-squares
fit of the points through T =420 K, is d8/dT= 0.0017—
deg/K for the (00) beam and —=0.0009 deg/K for the (10)
beam. Rather striking agreement is obtained when the
above experimental results are compared with calcula-
tions from Eq. (16). First we find that bI' is linear in T
for temperatures above 70 K, which arises directly from
the kT/Ace behavior of n(co) at large T. For small I,

I I I I
T(K)

0 100 200 300 400 500

FIG. 2. The full width at half maximum 50; of the n =0 res-
onance as a function of surface temperature as seen in the (00)
specular and (10) diffracted intensities, for the same conditions
as in Fig. 1. The solid lines are least-squares fits to the data
points for T ~ 420 K, and for reference the dashed line gives the
theoretically calculated slope.

60,. is proportional to AI and we obtain
d8;/dT =0.0012 deg/K for the n =0 resonance, which
is surprisingly close to the experimental values in view of
the first-order nature of the theory. Additionally, we find
that d 8; /dT =0.0013 for the n = 1 resonance, and
0.0008 for n =2. The higher-order corrections to AI ap-
pearing in the denominator of Eq. (12) were evaluated
with a slightly cruder model and their contribution was
found to be negligible, as they are more than an order of
magnitude smaller than Eq. (16). The real part of EI has
been estimated from Eq. (15) and, although it is also
linear in temperature for T )70, it is negligible in corn-
parison with the incident energy, indicating no detectable
shift of the resonance angle, in agreement with experi-
ment.

The success of a first nonvanishing-order theory in ex-
plaining all of the above experimental features is a strong
indication that there is no unusually large inelastic in-
teraction with the He atoms under conditions of reso-
nance. The linear behavior in T indicates that single-
phonon processes are dominant, as multiphonon events
contribute as higher powers of T. The thermal attenua-
tion (or Debye-Wailer damping) is substantially stronger
at resonance than off resonance as is clearly seen in Fig.
1. However, this is predicted by our theory, since as dis-
cussed above the resonant term in Eq. (12) contains two
thermally averaged transition matrices in the numerator,
while off resonance only the single term (r&, ) contrib-
utes.

We now come to the question of the FWHM at low
temperatures, which is given by I =2Im/bb in Eqs. (10)
or (12), since the temperature-dependent corrections are
negligible there. Calculations of Ibb using potentials that
are known to provide excellent fits to the nonresonant
diffraction intensities give a I which is too small to pre-
dict the observed 50;. For example, Figs. 1 and 2 show
that at low temperatures 50;=1.4', while the corre-
sponding calculations predict b8; =1.04. A more ex-
treme case occurs for He/Cu(113), where the calculations
produce resonance widths of about 0.1' and even predict
the wrong signature, while the experiment gives approxi-
mately 0.6'." Thus there must be some other mechanism
in play and the most likely candidate is scattering from
frozen-in disorder on the surface as explained above.
Such an interpretation is consistent with previous calcu-
lations using optical-type potentials' ' to obtain agree-
ment with the experimental resonance widths. For such
crude models, the loss of unitarity or decrease in intensity
caused by an imaginary term in the potential cannot dis-
tinguish as to whether this loss is due to static disorder or
inelastic effects. Assuming that the additional linewidth
of approximately 0.4' at low temperatures is due to disor-
der, the optical theorem for the transition matrix lbb al-
lows us to estimate the density n of scattering defects.
We obtain no. =0.024, where o. is the total cross section
for scattering out of the bound state by an assumed iso-
lated defect. This is, in fact, not exactly the case, as the
defects are associated with boundary zones between
domains. Nevertheless, if we ascribe to o. the value
20—30 A as indicated by recent calculations, i.e., some-
what smaller than that for a typical adsorbate, the cor-
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responding density of isolated defects would be
n =1.68 X 10 per unit cell.

The substantial agreement between experiment and
theory demonstrated in this work shows that inelastic ex-
change with phonons is not the dominant factor in
describing the very-low-temperature signature of an elas-
tic resonance, although it does have very measurable
consequences. This statement should hold even more for
materials with higher Debye temperatures than the met-
als considered here. In the case of vicinal metal surfaces

it appears to be surface disorder which causes a substan-
tial increase of the FWHM, and, in fact, it is likely that
without this disorder the resonance would not be so easy
to detect experimentally. This appears to be particularly
true for the (113) surface discussed above.
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