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Resonant conduction in ballistic quantum channels
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The conductance of a short, narrow ballistic constriction in a two-dimensional electron gas in a
semiconductor heterostructure is calculated exactly for a simple but plausible model. A novel
phenomenon is predicted: Such quantum channels should exhibit resonant conduction in high-
mobility samples at low temperatures. Their conductance should oscillate strongly as a function
of Fermi level and gate voltage. This behavior can be used to measure directly the aspect ratio of
the channels.

Recently, van Wees et al. ' and Wharam et al.
discovered experimentally that the conductance G of a
narrow constriction in the two-dimensional electron gas
(2D EG) in a GaAs-AI„Gal „As heterostructure is quan-
tized in integer multiples of 2e /h, G v2e /h, if the
length of the constriction is much shorter than the elec-
tron mean-free path, so that conduction is ballistic. It was
argued' on the basis of Sharvin's ideas3 on point con-
tacts and the Landauer theory of one-dimensional (1D)
conduction, that the quantization index v is just the num-
ber of populated 1D electron subbands or transverse quan-
tum states in the channel. These arguments are convinc-
ing. However, existing theories (including the recent
work of Johnston and Schweitzer) do not address the
processes by which electrons are injected into the constric-
tion and emitted from it. For a short ballistic channel
these processes are very important. The purpose of this
Rapid Communication is to present exact calculations of
the conductance for a simple but plausible model of the

constriction. A new and unexpected quantum transport
effect is predicted: At low T the conductance of high-
mobility samples should exhibit regular oscillations as a
function of gate voltage and Fermi energy. These oscilla-
tions are due to resonant longitudinal electron states in the
constriction, and could be used to measure directly the as-
pect ratio of the channel.

The present model is of a heterostructure in the x-y
plane with a 2D EG occupying the left (L) and right (R)
half-spaces, x & —d and x & d, respectively, and a nar-
row ballistic channel (C) of length 2d centered on the x
axis connecting the 2D regions (see lower right inset, Fig.
1). In the 2D regions, the electron Hamiltonian is

H2o = —h '(B'/Bx '+ B'/By ')/2m ',
with m* the effective mass. In between, the Hamiltonian
1S

Hc = —h '(B'/Bx '+ B'/By' )/2m *+U(y),
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FIG. 1. G at T 0 vs (. Er varies; W, Uo, d are fixe. Uo 0, d 0, 1,5, 10 for curves a,b, c,d Curve e: U . 2 5, d 10. .
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where U(y) is the potential confining the electrons to the
channel. Consider an electron with wave vector k (k,K)
and energy ~ incident on the channel opening from the
left. For x & —d its wave function can be written

yg(r) -e' "y» (y)+pa»e ""y»P(y),
K

where p» (y) e' ~, k' (2m @J6 K' )—'~. The sum
is over all transverse momenta EC' so that imaginary values
of k' (evanescent partial waves) are included. The con-
vention ( —1) '~ +i is used throughout. In the channel
the wave function is

y (r) g(a„+e' ""+a„e ' "")p„(y),

where p„(y) is the eigenfunction of the nth transverse
eigenstate of the confining potential U(y) satisfying
Hcgn(y) s P, (y), q„ l2m (~ —s„)/h )'~2, and the
sum is over all levels n including those for which q„ is
imaginary. In the right-hand 2D region the transmitted
wave is of the form

+R(r) g&Reik'»~2P( )
K'

where k' (2m ~A —K' ) '~ . The meaning of the
symbols k, k, K, k', K', n, and q„will be as defined above
throughout this paper.

The continuity of yq at x —d yields

n

where Mg„ f— pg (y) p„(y)dy. Choosing p„(y) to be real, the continuity of 8y+8x at x —d yields

gaL, k&M, haik'd kM e
—ikd

q (ac+e '0 ac —
e 0 )

K'

Eliminating a» from (1) and (2) and repeating the same procedure at x -d yields, respectively,

n

g[(T „q„b „—)e " ac++(T „+q„b „)e " a„] 0,

(2)

(3)

(4)

where T „g» k'M» M —»„. The refiected waves in the left 2D region and the transmitted waves on the right have
been eliminated, leaving a system of linear Eqs. (3) and (4) involving only the coefficients a„+ and ac which describe
the state y~ within the channel. In terms of a„+ and a„,the electric current carried through the channel by y~ is

&ya I j„I yx& the/2m (yq8y28x —yq8yp/8x)dy

(5)

The integral is taken across the channel. g„(g„)runs
over those values of n for which q„ is real (imaginary).
The second sum is the contribution of the evanescent par-
tial waves to the current. The total current J through the
channel at T 0 is given by the sum of the contributions
of all states yq incident on the channel from the left in the
energy interval eV near the Fermi energy EF, where V is
the potential difference between the two 2D EG regions. 6

The conductance is then

wa
6 ) J/V( —2 m e/(h k)(yq( j» ( yq)dK,

where a (2m EF/h ) '~, k (2m EF/h —K ) ', and
V is small.

This solution of the model is exact. However, the
confining potential U(y) of the constriction is not known
accurately. In modeling 1D channels in heterostructures,
U(y) is usually assumed to be either a parabolic or
square-well potential. The self-consistent calculations of
Laux, Frank, and Stern suggest that the parabolic well is
appropriate when only the lowest one or two subbands
contain electrons while the square well should be closer to
reality when several subbands are populated. Here I will
present results for the square-well model potential: U(y)

Uo for —W/2&y &8'/2, U(y) ~ for (y ~
& W/2.

The results for the parabolic case will be published else-
where. s Using the well-known eigenfunctions p„(y) of
the square-well potential, the overlap integrals M~
which enter (3) and (4) were evaluated analytically.
Equations (3) and (4) were solved numerically for ac+
and a„by truncating n and m at a high transverse level
N and the solutions were used to calculate the conduc-
tance. The effect on the conductance of the transverse
levels lying well above the Fermi energy was found to de-
crease rapidly with increasing energy and the calculated
conductance converged very well with increasing cut-off
N. A numerical accuracy of 0.1%-0.01% including all
truncation errors was readily obtainable in most cases.

The T 0 conductance 6 for square-well confinement
depends on three variables: the normalized 2D EG Fermi
energy EF EF/5, the normalized height of the potential
step encountered by the electron on entering the constric-
tion U Uo/h„and the aspect ratio d 2d/8'of the chan-
nel. Here 5 h /8m*W; s„n~h+Uo In Fig. 1, .G
calculated at T 0 is plotted, varying the 20 EG Fermi
energy, and holding the channel parameters d, W, and Uo
fixed. The Fermi energy is parametrized by

(EF —U)' . The horizontal scale is for curve d; the
other curves are oN'set to the right by multiples of 1.1.
Curves a-d are for U 0. Curve a is the limiting case of
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zero aspect ratio, d~0. Interestingly, for this "ideal"
point contact there is no quantization of the conductance;
a channel of nonzero length is necessary for quantization.
Curves b,c,d are for d 1, 5, and 10, respectively. In
these cases the conductance is close to G v2e /h near
the right-hand side of each plateau although the accuracy
of quantization decreases with increasing v. But the rise
to each plateau is oscillatory, the strength of the oscilla-
tions increasing with d and with v, and the peak-to-peak
amplitude can approach 2e /h. The v 1 step of curve d
is shown enlarged at the upper left. The pointers mark the
values of g which satisfy the resonance condition
iAF/2 , 2dy, for i 1,2, . . . , 17, where A,F is the de Broglie
wavelength of the Fermi electrons in the channel, and y
( 1.044 in this case) is an adjustable parameter chosen
to fit the positions of the peaks of the conductance curve.
Clearly the oscillations are due to resonances which occur
when the length of the channel, adjusted for end effects, is
an integral number of half wavelengths of the Fermi elec-
trons in the channel. That is, as well as the level structure
associated with transverse confinement, the open-ended
channel supports longitudinal resonant electron states, the
electronic quantum analog of the acoustic resonant modes
of an open organ pipe. Conductance measurements are a
spectroscopy of these resonant states. For the square-well
potential, the location g of the ith resonance associated
with electrons in the nth subband is given by g„, i /
(dy) +n so that observations of these resonances'could
be used to find the aspect ratio of the channel. Curve e in
Fig. 1 is for d 10, U 2.5. The main effect of a nonzero
U is to increase the amplitude of the oscillations. Notice
the beats in the v 2 region which occur because the oscil-
lations due to the electrons in the n 1 subband have not
yet died out when the n 2 subband beings to fill.

While it is possible to vary the Fermi energy of the 20
EG by illuminating the sample, 2 the quantization of G is
observed by varying the gate voltage which controls the

width of the channel. This is modeled in Fig. 2, where EF
and d are held fixed but W is assumed to vary, controlling
4 and hence EF and d. U is arbitrarily set to be zero. The
aspect ratio d is taken to be five when the Fermi level is at
the bottom of n -11 subband. d increases as the channel
is "squeezed" and the successive subbands are emptied.
The dependence of the channel width on the gate voltage
is not known, so that the conductance is again plotted
against g. (Since the conductance plateaus are equally
spaced in g in the present model, and are approximately
equally spaced in gate voltage in the data of van Wees et
al. ,

' it is tempting to suppose that g is a roughly linear
function of gate voltage. ) The v 1, 5, and 10 conduc-
tance plateaus are shown at T 0 in Fig. 2(a). Figure
2(b) shows the temperature dependence of the v 3 pla-
teau calculated using the well-known result Gz. (p )

fGp(a)8f/8ada, where Gr is the conductance at tem-
perature T, f (el' " i +1) ' is the Fermi function
and p is the chemical potential. Since in the experimental
systems p —10 meV, kT 0.001@ corresponds to T-0.1

K. Note however, that the T dependence of the oscilla-
tions is sensitive to the channel aspect ratio which is not
accurately known. The oscillations are smoothed out
when kT becomes comparable to the spacing of the peaks
of Gp as a function of Fermi energy at axed W, which can
be estimated from the above result g„, i /(dy) +n .
Since the amplitude and period of the oscillations in the
plateau region increase with plateau index v, the oscilla-
tions may be expected to survive to somewhat higher T for
higher v plateaus. If T is high enough to smooth out the
oscillations, the measured conductance in the plateaus for
higher v will be less than v2e /It and the plateau will have
a finite slope. Such a qualitative trend is clearly visible in
the data of van Wees et al. ' A sizable Up, which could
occur at very low W, would tend to depress G for similar
reasons (cf. Fig. 1, curve e).

Electron energy-level broadening due to impurity
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FIG. 2. 6 vs/. Wvaries; EF,dare fixed. Up 0. (a) Plateaus 1,5, 10 at T 0. (b) Tdependence of plateau 3.
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scattering in the 2D EG regions will also tend to smooth
the conductance oscillations. This effect is highly sample
dependent and difficult to treat quantitatively, but given
the current pace of improvements in sample mobilities, its
importance should decrease with time. It will be neces-
sary to experimentally extract the resonances predicted
here from the background of universal conductance fiuc-
tuations (UCF) at low T.4" Since the resonant oscilla-
tions are regular and the UCF are not, it should be possi-
ble to do this in much the same way that the Aharonov-
Bohm oscillations in small metallic rings are extracted
from the UCF background.

In conclusion, a novel quantum transport effect, reso-
nant conduction in narrow ballistic channels, has been
predicted theoretically. The observation of this phenom-
enon will challenge experimentalists.

Note added. After this work was submitted for publi-
cation, B. J. van Wees informed me that he and his colla-
borators may have confirmed the existence of resonant
ballistic conduction experimentally in some of their sam-
ples. The sample dependence of the strength of the reso-
nant oscillations may be due in part to uncontrolled varia-
tions in the channel geometry. The more sharply defined
the channel orifices are, the stronger the resonances in the
conductance should be. In the present model these orifices
are sharply defined.
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