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Magnetotransport and nonadditivity of point-contact resistances in series
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A theoretical study is given of the resistance of two ballistic point contacts in series. Nonaddi-
tivity of resistances is demonstrated as a result of classical ballistic transport. A rich magne-
toresistance behavior is predicted to follow from the interplay of the cyclotron radius, the point-
contact width, and the point-contact separation.

The fascination of ballistic transport in submicron
structures in a two-dimensional electron gas (2D EG)
derives in part from the fact that by tailoring the device
geometry a wealth of new magnetotransport phenomena
can be realized. ' These effects originate from the inter-
play of the various dimensions of the system with the cy-
clotron orbit radius. The basic building block for such de-
vices is the ballistic point contact. Single point contacts
have already shown a number of interesting rnagneto-
transport effects, following the discovery of the conduc-
tance quantization in zero magnetic field. In a weak
magnetic field the quantization can be used to determine
directly the rate of depopulation of magnetoelectric sub-
bands. ' A negative four-terminal magnetoresistance
was found, and interpreted in terms of reduced back-
scattering by the point contact of magnetic edge states on
the 2D EG boundary. An even richer magnetoresistance
behavior is expected in a device which combines two point
contacts. A striking example is the experiment on co-
herent electron focusing, in a geometry with two adjacent
point contacts. In this paper we present a theoretical
study of magnetotransport in a geometry with two oppo-
site point contacts connected in series. This geometry is of
particular interest because of the remarkable nonadditivi-
ty of point-contact resistances discovered experimentally
by Wharam et al.

We consider the geometry shown in Fig. 1 of two identi-
cal point contacts facing each other at opposite boundaries
of the 2D EG (extension of our results to unequal point
contacts is cumbersome, but straightforward). Our ap-
proach applies the Landauer-Buttiker formalism for cal-
culating resistances by means of transmission probabilities
(cf. also Biittiker's analysis of tunneling through a
double-barrier structure ). The point contacts are con-
nected by 2D EG leads to source and drain reservoirs at
chemical potentials p, and pd. A current I Aows from
source to drain. We make the assumption that inelastic
scattering has equilibrated the 2D EG far to the left and
right of the point contacts, at chemical potentials pt and
p, . We will return to this assumption of equilibration,
which is crucial for what follows. Electrons incident on
the source point contact can reach the drain reservoir ei-
ther directly (with transmission probability Tz), or subse-
quent to equilibration at the left and right end of the 2D

G (2e /h)(N, —R, )=(2e /h)N. (2)

The integer N is the number of quantum channels in the
narrow point contact itself. The Buttiker formula,

(h/2e)I. -(N, —R,)p, —J Ttt, p. tj, (3)
P&a

relates the current I, in lead a (with N, quantum chan-
nels) to the chemical potentials pp of each of the reser-
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FIG. 1. Series point-contact geometry. Four reservoirs in lo-
cal equilibrium at chemical potentials p, and connected by
impurity-free 20 EG regions are indicated schematically. As
discussed in the text, local equilibrium at p& and p, may not be
realized in a strong magnetic field. The shaded area in the point
contacts indicates a possible reduced electron-gas density lead-
ing to a potential barrier.

EG (Ref. 10) (which are reached with transmission prob-
abilities Tt and T„, respectively). The normalization of
these transmission probabilities is such that

Td+TI+T, ~N, —R, ,

where N, is the number of spin degenerate quantum chan-
nels (or transverse wave-guide modes) in the lead to a
point contact, and R, is the probability for electrons to be
scattered back into the source reservoir. The right-hand
side of Eq. (1) is proportional to the two-terminal" con-
ductance 6 of an individual point contact, which is ap-
proximately quantized2 in units of 2e 2/h,
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voirs, via transmission and reAection probabilities T~
(from reservoir P to a) and R, (from reservoir a back to
the same reservoir). In our case a, P s,d, r, l. Since the
full current I must flow through the two point contacts, we
require that I„ II 0, and I, —Iq I. Thus, one ob-
tains a set of equations which (after some lengthy algebra
and exploiting the symmetry of the geometry) yield the
required expression for the series conductance G„„.„
=el/(p, —pd ),

1 2e (Tr
2 I ' 2(iV„—R„) T, ——T,

(4)

We first consider the case of zero magnetic field. Then
T, TI, and we simply have

G„„;„(8 0) 2 [G+(2e /h)Tdj. (5)
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This formula is equivalent to that obtained by Buttiker for
tunneling in series barriers. Ohmic addition of conduc-
tances is found if Td 0 (then all transmission is with in-
tervening equilibration). At the opposite extreme, if all
transmission is direct, then Td 1V, —R, (It/2e )G by
Eqs. (1) and (2), so that the series conductance is identi-
cal to that of the single point contact. The direct trans-
mission probability (and thereby the non-Ohmic behav-
ior) can be enhanced by collimation of the beam of inject-
ed electrons. One way of achieving this effect is by means
of a potential barrier in the point contacts. The injected
electrons then have velocity directions restricted to a cone
of allowed angles p with the x axis defined by EFcos p)Eo (with EF the Fermi energy and Eo the barrier
height). A second way is flaring the point contacts to
form a horn. We assume that the horn widens gradually
from a width W;„ to W,„, and treat the motion within
the horn as adiabatic. ' The absolute value of the product
of horn width and y component of the velocity is an adia-
batic invariant, so that the injected electrons now have ve-
locity directions restricted to the cone W,„EF'i

~ sing~
& W;„(EF—Eo) 'i . (Within this cone the angular dis-

tribution is cx:cosp, the same as without collimation. )
Diffraction of the electron beam inhibits its colliination
for point contacts narrower than a wave length. For much
wider contacts diffraction is unimportant, and in this case
the transmission probabilities can be obtained from the
classical trajectories. Note that Td/N is the fraction of
the injected current in the segment of the beam which
does not miss the opening of the opposite point contact.
For fW,„((Lwe have found the simple formula

G„„„(8 0)- —G (1+fR',J2L), (6)

plotted in Fig. 2 (dashed lines). Here L denotes the exit-
to-entrance separation of the two point contacts (see Fig.
1), and f fqfp, is the product of a barrier collimation
factor fb—= (1 —Eo/EF) ' and a horn collimation factor
fi, —=W,„/8';„. For wider contacts, G„„„canbe written
as a spatial integral over the contact opening. This ex-
pression is lengthy and we only show the results (solid
curves in Fig. 2), which are quite close to the asymptotic
formula (6) for W,„~Land moderate collimation.

We pause to discuss the experiment by Wharam et al. ,

FIG. 2. Calculated classical series conductance at zero mag-
netic field as a function of the collimation factor defined in the
text (W,JL 0.1, 0.25, 0.5, 0.75, and 1 for the curves num-
bered 1, 2, 3, 4, and 5, respectively). The dashed lines are from
the asymptotic formula (6).

which motivated the above analysis. Two opposite point
contacts of variable width are defined electrostatically in a
2D EG, by means of two parallel split gates on top of a
GaAs-Al„Ga~ „As heterostructure. The resistances of
the point contacts are measured separately (by turning off
the voltage on the gate for the other point contact), as well
as in series. Our results in Fig. 2 and Eq. (6) are specific
for classical point contacts, and do not, therefore, describe
the plateaus in the series resistance as a function of gate
voltage observed experimentally. The nonadditivity, how-
ever, is essentially a classical ballistic effect, and should,
therefore, be reasonably well described by classical
transmission probabilities. We consider the situation
where both point contacts have the same conductance of
5X(2e /h) (at a voltage of —1 V on both gates). The
(minimal) width of the point contacts is then estimated
at 8';„=0.125 pm, and from the scale diagram (Fig. 2
in Ref. 7) we estimate an exit-to-entrance separation of
L =0.7 pm. The width W,„at the exit and entrance of
the point contacts is not known, but is not likely to be far
from the width of the opening in the split gate, which is
given as 0.3 pm. The barrier height Eo is presumably
small for this gate voltage at which the 2D EG directly
under the gate has just been depleted, and we ignore it. ,In
Fig. 3 of Ref. 7 it is shown that the series resistance of the
two point contacts is higher than that of the single point
contact by about a factor of 1.4, which is considerably less
than the factor of 2 expected from Ohmic addition. Sub-
stituting the estimated experimental parameters in Eq.
(6) (or using Fig. 2) we find G/G„„„=1.3, close to what
is found experimentally.

We now turn to the effects of a magnetic 6eld on the
series conductance. The Lorentz force deAects the elec-
trons, thus increasing T, at the expense of Td as well as TI
(Fig. 1). These two effects compete, according to Eq. (4):
Reduction of the probability for direct transmission Td
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loive rs 'G„,;„,whereas reduction of TI relative to T, raises
G„„„byincreasing the probability for indirect transmis-
sion (with intervening equilibration). Figure 3 (inset) il-
lustrates how these effects compete in the case of classical
transmission probabilities [the calculation is not given
here, but is similar to that leading to Eq. (6) with the
Lorentz force defiection of the injected beam taken into
account]. In the absence of collimation (dashed curve)
the effect of 8 on the indirect transmission donates, while
with collimation (solid curve) the effect on the direct
transmission takes over, causing a rapid drop of G„„„
when the collimated beam sweeps past the drain point
contact on increasing the magnetic field.

In a strong magnetic field, Td and TI become negligibly
small compared to T„, so that only indirect transmission
remains. Note that Td TI 0 implies via Eqs. (1) and
(2) that T„(h/2e )G. The criterion for this field regime
is 21, & L, with l, =hkF/e8 the cyclotron radius in the re-
gion between the point contacts (kF is the Fermi wave
vector in that region). From Eq. (4) we then find

G series (2G GH (7a)

The physical origin of the simple addition rule (7) is that
a strong magnetic field decouples the chemical potential
differences p, —p, and ii„—pd (which are identical for
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FIG. 3. Series conductance (normalized by the zero-field
conductance of the individual point contacts) as a function of re-
duced magnetic field (W;„W,„O.IL, and Eo/EF 0, 0.25,
0.5, and 0.75 for the curves numbered 1, 2, 3, and 4, respective-
ly). The classical weak-field behavior is shown enlarged in the
inset (Eo/EF-0 and 0.75 for the dashed and solid curves, re-
spectively).

with GH=(2e /h)(N„—R„). In the strong-field regime
backscattering is negligible'3 in the region between the
point contacts (R„O), and moreover N„NL equals the
number of occupied Landau levels in that region. The
conductance GH is, therefore, simply the quantum Hall
conductance. If G is quantized according to Eq. (2), then
we can write

28
Gseries-

8 0). For n different point contacts in series Eq. (7)
generalizes to G,„I„—GH ' QP-iR4, (i), where R4, (i)=G; ' —GH ' is the four-terminal longitudinal resis-
tance '3 of a point contact with two-terminal conduc-
tance 6;.

Equation (7) predicts a curious camel-back shape for
G„,;„. This can most easily be seen by disregarding the
discreteness of N and NL. We then have NL 2 kFlc a
formula for the magnetic field dependence of N is given in
Refs. 4 and 5. In Fig. 3 we show the resulting 8 depen-
dence of G„„.„.The nonmonotonic behavior is due to the
delayed depopulation of subbands in the point contacts,
compared to the broad 2D EG. While the number of oc-
cupied Landau levels NL in the region between the point
contacts decreases steadily with 8 for 2l, & L, the number
N of occupied subbands in the point contacts remains ap-
proximately constant until 2/, ;„=W;„[with
=—l, (1 —Eo/EF) ' being the cyclotron radius in the point
contact region]. In this field interval G „„increases with
8, according to Eq. (7). For stronger fields, depopulation
in the point contacts begins to dominate G„„;„,leading
finally to a decreasing conductance (as is the rule for sin-
gle point contacts ). The peak in G„„„,thus, occurs at
2i, m;„= W;„. On increasing the barrier height in the
point contacts the peak shifts to lower fields, becoming
less pronounced (cf. Fig. 3).

We return to the equilibration condition on which our
analysis is based. In a quantizing magnetic field, local
equilibrium is reached by interLandau-level scattering. If
the potential landscape (both in the point contacts them-
selves and in the 2D EG region in between) varies by less
than the Landau level separation hni, (m, —=e8/m) on the
length scale of the magnetic length (i'i/e8) '/z, then inter-
Landau-level scattering is suppressed in the absence of
other scattering mechanisms. This means that the trans-
port from one point contact to the other is adiabatic. The
series conductance is then simply G„„„(2e/h)N for
two identical point contacts [N=min(Ni, Nz) for two
different point contacts in series]. This expression differs
from Eq. (7) if a barrier is present in the point contacts,
since that causes the number N of occupied Landau levels
in the point contact to be less than the number NL of oc-
cupied levels in the bulk 2D EG. [In a strong magnetic
field N=(EF Eo)/pro„—while NL=EF/hro, .] Adia-
batic transport between two adjacent point contacts has
been demonstrated experimentally in Ref. 14. We em-
phasize that in the geometry of Fig. 1 a strong magnetic
field is necessary for adiabatic transport. 's In zero field
the quantum number increases greatly when the electron
leaves the narrow point contact to enter the broad region
(this mode conversion is treated theoretically in Ref. 16).

In summary, a theory has been presented for ballistic
transport through two point contacts in series. Large de-
viations from Ohmic addition of resistances are found, in
qualitative agreement with available experimental data.
A rich magnetoresistance behavior is predicted. It would
be of interest to look for these effects experimentally. By
a suitable combination of measurements on the individual
point contacts and on the composite structure it should be
possible to determine the relevant parameters, so that a
quantitative analysis becomes feasible.
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