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Quantum-mechanical origin of the asymptotic effective potential at metal surfaces
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In recent work we interpreted the exchange-correlation potential of density-functional theory to
be the work done by an electron against the electric field of its Fermi-Coulomb hole charge distri-
bution. A consequence of this interpretation is that the asymptotic structure of the effective po-
tential of interacting nonuniform electronic systems is due to Pauli correlations. In this paper we
show the asymptotic structure of the work required against the field of the delocalized Fermi hole
at metallic surfaces to be the image potential.

The classical image potential at a metal surface is de-
rived as the work done against the electric field due to the
charge induced at the surface by an external point charge.
From a quantum-mechanical viewpoint, however, the
metal electrons in the classically forbidden region outside
the surface constitute part of the nonuniform electron gas
system at the metal-vacuum interface. What then is the
quantum-mechanical origin and structure of the local
effective potential in which these surface electrons move?
In this paper we show that the asymptotic structure of the
effective potential at metallic surfaces is the image poten-
tial and that it is due to the electron's Fermi hole charge
distribution.

In a recent paper ' we interpreted the exchange-
correlation potential of Hohenberg-Kohn-Sham density-
functional theory as the work done against the electric
field of the Fermi-Coulomb hole charge distribution. This
potential was also shown' to satisfy the virial theorem. A
consequence of this interpretation is that the quantum-
mechanical origin of the asymptotic structure of the
effective potential of interacting inhomogeneous electron
gas systems is the same and due entirely to correlations
which arise as a result of the Pauli exclusion principle.
We confirmed' this for the case of atoms by showing that
the asymptotic structure of the work required against the
field of the localized Fermi hole was —1/r. In the
present paper we show the asymptotic structure of the
effective potential at metallic surfaces as determined from
the delocalized Fermi hole to be the image potential
—1/4x. Thus, when viewed within the context of
density-functional quantum theory, the image potential
asymptotically far from the metal surface is a conse-
quence of Pauli correlations between the electrons. Furth-
ermore, the fact that the same physics leads to the correct
asymptotic structure for both few-electron atomic and
many-electron surface systems also demonstrates the in-
herent consistency of the theory.

According to density-functional theory, the ground-
state energy of a system of interacting electrons in some
external potential may be written as a universal functional
of the electronic density p(r). In addition, the interacting
inhomogeneous system may be replaced by one of nonin-
teracting quasielectrons moving in a local effective poten-

tial v,tt(r). Thus, the Kohn-Sham differential equation to
be solved for each quasielectron of momentum k is

[——,
' V2+ v,S(r)]%'q(r) e1,% q(r),

where p(r) 2gq) yq(r) ( . The effective potential is a
sum of the Hartree electrostatic and exchange-correlation
potentials. 'fhe exchange-correlation potential p„,(r)

[p]/6'p is the functional derivative of the
exchange-correlation energy functional E,[pl.
functional, in which all the many-body effects are incor-
porated, is unknown and, therefore, so is the correspond-
ing potential. Furthermore, although the exchange-
correlation energy functional has a physical interpreta-
tion, 5 the potential is understood only in terms of its
mathematical definition. Thus, the principal approach to
the application of Kohn-Sham theory has been via ap-
proximations to E„,[p] such that its functional derivative
is readily determined. As a consequence, in contrast with
classical electrostatics where the physical origin of the im-

age potential is understood, the effective potential of
density-functional theory at metallic surfaces can only be
determined in an approximate manner.

ith the physical interpretation provided by us' the
exchange-correlation potential may be determined direct-
ly from the Fermi-Coulomb hole charge distribution of an
electron and its asymptotic structure obtained exactly.
fhe Fermi-Coulomb hole about each electron is a conse-
quence of the reduction in probability of electrons ap-
proaching each other due to Coulomb repulsion and the
Pauli exclusion principle. Thus, all the many-body effects
of the interacting electron gas are represented in the
structure of the Fermi-Coulomb hole. In a homogeneous
electronic system this charge distribution is dynamic '

and changes as a function of electron position. The poten-
tial of the electron is, therefore, the work done in bringing
it from infinity to its final position against the electric field
of this charge distribution. Thus, the exchange-correla-
tion potential W„,(r) is

4„,.dl,
where the electric field 4'„,(r) due to the Fermi-Coulomb
hole charge density p„,(r, r') at r' for an electron at r is
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given by Coulomb's law as.p„,(r, r') (r —r')

fr —r'/'

The above interpretation of the potential seen by the elec-
trons is consistent with our understanding of the ex-
change-correlation energy being the energy of interaction
between an electron and its Fermi-Coulomb hole. If the
Fermi-Coulomb charge were static, then the potential
would be V„,(r) j'dr'p„, (r, r')/( r —r'(.

Now since we may write the exchange-correlation ener-

gy E„,[p] as a sum of its exchange E„[p] and correlation
E, [p] energy components, we may similarly consider the
Fermi-Coulomb hole as being comprised of its Fermi and
Coulomb hole distributions. As a consequence of the
fact ' that the total charge of both the Fermi-Coulomb
and Fermi holes is unity, it follows that the total Coulomb
hole charge is zero. Thus, the contribution of the
Coulomb hole charge to the electric field and potential for
electron positions asymptotically far from the system must
vanish. Therefore, the asymptotic structure of the poten-
tial 8'„,(r) as r ~ is that of W„, the work done against
the force field of the Fermi hole charge distribution.
However, the potential W„can be determined exactly
since the Fermi hole is known6 explicitly in terms of the
electronic wave functions as p„(r,r') ) y(r, r')

I /2p(r),
where y(r, r') 2Z, % P (r')~q(r) is the single-particle den-
sity matrix. Thus, the asymptotic structure of the poten-
tial of any nonuniform electronic system is due to Pauli
correlation and it can be determined exactly by solution of
the Kohn-Sham equation in the exchange-only approxi-

mation with p„replaced by the work W„. (Note that
p„bE„[p]/bp also cannot be evaluated since the func-
tional dependence of p„(r,r') on p(r) is unknown. )

We perform our calculations in the jellium model ap-
proximation of a metal surface in which the uniform
charge background of density p+(x) =pe( —x+a) be-
gins at the surface at x=a. Here p =kg/3z is the bulk
density, kr 1/ar, [a ' (9x/4)'/] is the Fermi
momentum and r, the Wigner-Seitz radius. Because of
translational invariance in the plane parallel to the sur-
face, the electronic wave functions are of the form Wq(r)

—v2/Vy/, (x)exp[i(ki xi)] where y/, (x) is the com-
ponent of the wave function in the direction perpendicular
to the surface, k and x the momentum and position vec-
tors in that direction, and k~~ and x~~ the corresponding
components in the plane of the surface. In terms of the
variables y -k&x, y'-krx', y~~ -krxi, yt~ -k&x(~,
R -

[ yi(, q -k/kr, q' k'/kr, and Q (1 —
q )' , the

electric field normal to the surface at the position of the
electron is

@ (y)
(3k''/2x)

where

R(y —y') g(y, y', R)
p (y) " -" ' [(y —y')'+&']'

g(y, y', R) = dq y~ (y)pq(y')QJ&(Q&)/&

J~(z) is the first-order Bessel function and p„(y) is the
electronic density normalized with respect to the bulk
value p. The corresponding work done is then

&(y —y')g(y' y",&)
(3k'/2z) J p (y ) eJ — aJ p [( )2~~2]3/2

Since the wave functions and electronic density decay
exponentially in the vacuum region, so does the electro-
static potential. Therefore, the asymptotic structure of
the eff'ective potential is that of the work W„. Further-
more, for increasing positions of the electron from the
metal surface in the vacuum, the electron's Fermi hole
spreads deeper into the crystal. Thus, the accurate deter-
mination of the potential many Fermi wavelengths outside
the surface requires a knowledge of the Fermi hole struc-
ture for at least equivalent distances inside the crystal.
However, the asymptotic structure of the potential is in-
sensitive to the choice of orbitals: the significant require-
ments of the wave functions at a metal surface are that
they be exponential in the vacuum region and oscillatory
in the metal bulk. Consequently, instead of solving the
Kohn-Sham equations self-consistently, which would be a
numerical tour de force, we determine the asymptotic
structure of the work 8'„ for accurate semianalytical wave
functions. For our wave functions yq(x) we choose solu-
tions of the Kohn-Sham equation generated by the finite
linear effective potential model which are

pq(x) sin[kx+b(k)]e( —x)+ [a,Ai(g)+C, Bi(g)]
x [e(x) —e(x —b)]+D/, exp( —x'x)e(x —b),

where k M2E, x v2(8' —E), g=(x E/F)(2F) '/, E—
is the energy, F is the field strength, 8'the barrier height,
and where Ai(g) and Bi(g) are the Airy functions. The
phase factor 8(k) and the coefficients Bq, Cq, and Dq are
determined by the requirement of continuity of the wave
function and its logarithmic derivative at x =0 and x =b.
The field strength and barrier height parameters of this
model are defined as xr -F/(kF/2) and b =8'/F, respec-
tively. The results presented here are for a metal of densi-
ty r, 2.0, and the parameters ' for the calculations are
yF -krxr -3.33, yq -kgb -4.25, and y, =k~a = 1.33.
Note that a value of y 2m corresponds to a Fermi wave-
length which for r, =2.0 is 3.46 A.

In Figs. 1 and 2 we plot the universal function
8„(y)/(3k'/2x) as a function of electron position y. Note
(Fig. 1) that the electric field is largest at the surface re-
gion, and that it vanishes in an oscillatory fashion for elec-
tron positions inside the metal. For electron positions out-
side the surface the electric field also decays. Its asymp-
totic structure is shown in Fig. 2 for a distance of up to ap-
proximately eight Fermi wavelengths outside the metal.
In this figure we also plot the function 1/2y which
translates in terms of the original variables to (3/4x)/x

0.24/x2. Observe that for an electron at about y 50
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FIG. l. Variation of the universal function C„(y)/(3kp/2a),
where 8„(y) is the electric field due to the Fermi hole, vs the
electron position y.
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We have recently determined ' ' the structure of the
Slater potential at metallic surfaces. Asymptotically far
from the surface, the Slater potential is also image-
potential-like but with a coefficien which is approximate-
ly twice as large as the image potential coe%cient, i.e.,
V„""'(x)——(3/2x)/x —0.48/x. For coinparison we
note that the asymptotic structure of the effective poten-
tial in the local density approximation for exchange and
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FIG. 2. The figure caption is the same as in Fig. 1.

the electric field essentially merges with this curve. Thus,
the line integral of the electric field which is W„ is then
—I/4x, the image potential. To demonstrate this explicit-
ly we plot in Fig. 3 the universal function W (y)/(3kF/
2x) for the same electron positions as in Fig. 2 along with
the function —I/2y(= —0.24/x). It is evident that the
two curves merge, thereby clearly demonstrating that for
asymptotic positions of the electron the potential W„ is the
image potential. Thus, asymptotically the image potential
is due to the Fermi hole charge distribution which in turn
is a consequence of the Pauli exclusion principle.

If the Fermi hole were treated as a static charge distri-
bution, then the corresponding potential is the exact
Slater potential

-0.08—

FIG. 3. Variation of the universal function W„(y)/(3kF/2n'),
where W„(y) is the work done against the electric field 8„(y)
due to the Fermi hole, vs the electron position y.

correlation is exponential. '

Thus, we see that the quantum-mechanical interpreta-
tion of the asymptotic structure of the image potential as
due to Pauli correlation effects is consistent with the clas-
sical picture of the image potential being a consequence of
the Coulomb interaction between a test and its image
charge. Classically, the image potential is due to the in-
duced image charge which is the response of the metal
surface to the external test charge. For positions asymp-
totically far from the surface an electron may be con-
sidered a distinguishable classical particle and the charge
induced by it determined. Thus, treating the electron as
an external point charge, Lang and Kohn' have calculat-
ed the induced charge distribution within linear response
theory and shown the energy of interaction to be
—I/4(x —xo), where xo is the center of mass of the in-
duced charge. The induced charge has also been shown'
to have the same structure as the classical image charge in
the planes parallel to the surface. The image potential at
metallic surfaces has also been derived'3' by considera-
tion of the asymptotic structure of the Kohn-Sham
exchange-correlation potential p„,(r). In these deriva-
tions the distant metal electron in the vacuum is also
treated as a point charge distinct from the electronic gas
of the metal and independent of the inhomogeneity at the
surface. On the other hand, froin a quantum-mechanical
viewpoint this electron is part of the interacting N-
fermion system, and is treated as such in the present for-
malism. The electron is not considered as an external
charge and there is, therefore, no induced charge. The
Fermi hole of an electron is not an induced charge distri-
bution but rather an intrinsic property of the system itself
which contributes to the effective potential. We have
determined the eH'ective potential from the electronic
wave functions themselves, and shown that quantum
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mechanically too its asymptotic structure is the image po-
tential. In quantum theory this structure is a consequence
of the Coulomb interaction between an electron and its
Fermi hole. The fact that both classical and quantum
theories lead to the same asymptotic structure of the po-
tential implies that the interpretations of each formalism
are equally valid.

Finally, we note that in accord with exchange-only
density-functional theory, our potential (in units of
3kF/2x) due to the Fermi hole asymptotically goes' to a
value of ——,

' in the metal bulk. (The corresponding value
for the Slater potential' is —1.) Thus, not only does the
potential 8'„represent the correct asymptotic behavior
outside the metal for the fully interacting electron gas, it

lowers the electron potential due to exchange by the
correct amount inside the metal. With the present
quantum-mechanical interpretation of the effective poten-
tial, Coulomb correlation effects become significant and
contribute to the exchange-correlation potential 8', only
for electron positions near the surface. Therefore, to ob-
tain the position of the image plane, the structure of the
Coulomb hole and of its contribution to the effective po-
tential need to be determined. Work along these lines
within the random-phase approximation is in progress.
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