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Evaluation of the exchange-correlation potential at a metal surface
from many-body perturbation theory
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We report a first-principles evaluation of the exchange-correlation potential (Vxc) at a metal
surface. An integral equation relating Vxc and the nonlocal electron self-energy (Zxc) is solved
numerically for a free-electron metal surface, with use of a static approximation for Xx&. The
strongly inhomogeneous nature of the electron density profile at the surface is treated exactly, i.e.,
without invoking the usual local-density approximation. Our result for Vxq has the correct im-
agelike asymptotic behavior; it derives implicitly from a nonlocal exchange-correlation energy
functional. We study the effect of nonlocality on the position of the effective image plane (zo)
from an analysis of the image tail of Vxc and also from linear-response theory. The difference in
the values of zo obtained by both methods for low metallic densities is attributed to electron-
overlap effects.

Density functional theory' has established itself as an
extremely successful scheme for the study of the electron-
ic structure of metal surfaces. The mathematical frame-
work for this scheme is given by the Kohn-Sham (KS)
equation, which is a one-electron-like Schrodinger equa-
tion in which all many-body effects are introduced
through the exchange and correlation (XC) potential
Vxc(x), defined by the equation'

bExc[n]Vxc(x)- (I)bnx'
where Exc[n] is the XC energy functional and n(x) is the
electron number density.

In the great majority of the applications the local-
density approximation (LDA) is made, in which

Vxc(x)-—

Excln] -„d'x n(x) exc(n(x) ), (2)

where exc(n(x) ) is the XC energy per electron in a local-
ly uniform electron gas of density n(x). From Eqs. (1)
and (2) it follows that, in LDA, Vxc(x) is a function of
the local value of the density. By definition, the form of
this function is a property of the in6nite, homogeneous
electron gas.

Starting with the classic work of Lang and Kohn, the
LDA has proved to be quite successful for many applica-
tions, such as calculations of total energies and work func-
tions. However, recent variational calculations, which do
not resort to the limit of slow density variations, yield sur-
face energies that are substantially larger than the LDA
values. In addition, new experimental developments
bring to focus another limitation of the LDA: It gives rise
to an XC potential that decays exponentially outside the
surface, whereas the correct asymptotic behavior of
Vxc(x) is that it should be imagelike:

2

(3)
4(z —zo)

'

for z) A,F (where XF 2tr/kF, kF being the Fermi wave
vector), and z denotes the coordinate normal to the sur-
face. The coordinate zn defines the position of the
effective image plane, a quantity we will discuss later on.

The determination of the potential barrier experienced
by an electron in the surface region is a central question in
surface physics. Renewed interest in this question origi-
nates, for example, in the experimental observation of a
new class of surface states in metals, 5 owing their ex
istence to the imagelike tail of the surface potential. The
most elaborate calculations of these surface states avail-
able today resort to an ad Itoc introduction of the image
behavior into Vxc. In addition, the limit given by Eq. (3)
is important for the evaluation of the tunnel current across
the surface barrier. '

In this Rapid Communication we present the results of
a first-principles calculation of Vxc(x) at a metal surface.
In it the strongly inhomogeneous nature of the electron
density at the surface is incorporated at the outset. We
establish a relation between Vxc and the electron density
that enables us to carry out nonlocal density functional
calculations with the same ease as LDA-based calcula-
tions. We illustrate the method with a calculation of the
position of the effective image plane.

Our procedure is an adaptation to the metal surface
problem of work carried out recently in the study of the
fundamental band gap of semiconductors. "' It involves
an interplay between many-body perturbation theory and
density functional theory.

The exact electron Green's function g for a many-
electron system is defined by the equation'

[E—h (x)]g(x,x'
I E) — d'x" Zxc(x, x"

~
E)g(x",x'

) E)
-b(x —x'),

where h is the Hartree single-electron Hamiltonian, and
Zxc is the nonlocal and energy-dependent electron self-
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energy. One can also define a Green's function go for the KS Hamiltonian, i.e.,

[E—h (x) —Vxc(x)]go(x, x'
I E) b(x —x'),

where Vxc(x) is defined by Eq. (1). Making use of the Dyson equation relating g and go, and of the requirement that
both Green's functions give the correct electron number density, one obtains"' ' the following exact integral equation
for Vxc(x):

„d'x'Vxc(x')) «go(x, x'IE)g(x', x IE) -„d'xl „d'x2) «go(x, xl IE»xc(», x2 IE)g(x2, x IE) .

This equation, first introduced by Sham and Schliiter, "'2 poses a self-consistency problem, since the Green's function
go is calculated from the knowledge of Vxc(x). Thus Eq. (4) is solved by iteration.

We emphasize that what is being indirectly addressed here is the nonlocality of the functional Exc[n]. The potential
Vxc(x) is, by definition, a local potentiaL For the homogeneous electron gas, the solution of Eq. (4) is'

Vxc Zxc(k kF'E EF) (5)

which is the correct local (LDA) limit.
A reasonable first approximation for Zxc, which includes the important physical effect of its nonlocality, is the static

Coulomb-hole plus screened-exchange (COHSEX) approximation, given by the equation'

zxc(xl x2 I E)—= —p(xlyx2)w(xl~x210)+ 2 [w(xl~x210) —v(» —x2)]b(xl x2) I

where p is the single-particle density matrix, W is the stat-
ic limit of the dynamical, nonlocal, screened electron-
electron interaction, and v is the bare Coulomb interac-
tion. W is obtained from the knowledge of the density
response function g for interacting electrons. ' In this
work g is computed using the method developed in Ref.
15.

We have solved Eq. (4) for a free-electron metal sur-
face (jellium model). At the present time the approxima-
tion g=-go has been made throughout; Eq. (4) then turns
into a one-dimensional integral equation of the form

1 dz'g (q!! 01zz )V (z') F(z), (7)

where g(o)(q!! 01zz') is the two-dimensional Fourier
transform of the random-phase-approximation (RPA) po-
larizability for zero wave vector. Equation (7) is a
Fredholm integral equation of the first kind. From the
numerical standpoint it defines an "ill-posed" problem
Small changes in F(z) can lead to large variations in the
solution Vxc(z). In the surface problem this situation is
further complicated by the fact that the kernel g( ) is
singular.

The starting point in the iterative solution of Eq. (7) is
Vxc in LDA. For consistency this potential is constructed
in the COHSEX approximation, i.e., by using Eq. (5) in
the KS equation, the bulk self-energy being evaluated in
the COHSEX approximation for the local value of the
density. We call this potential VxtI. The wave functions
and energy eigenvalues obtained self-consistently with
Vx(c are used in the computation of go, g, and Zxc, and

EtI. (7) is solved for the first time. We call its solution
Vx'tI. The same is placed in the KS equation, and a new
set of eigenfunctions and eigenvalues is obtained, and used
to compute updated values of go, g(, and Zpc. Equation
(7) is solved again. We call its solution VxtI. This pro-
cedure is repeated until convergence is achieved to a
desired accuracy. We emphasize that no approximations
ofa surface nature are made in this procedure.

In Fig. 1 we give results for the case of Al (r, 2.07).
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FIG. I. Converged solution of Eq. (7), Vxc(z) -V/I~(z), for
r, 2.07, corresponding to the bulk density of Al. The figure
also shows the XC potential in LDA COHSEX, and the "classi-
cal" image potential defined by Eq. (3) for all z, for zII 0.63 4
(see Table I). The coordinate z is measured from the jelium
edge (in units of 2.r).
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We show both the converged solution (Vxc VII) and
its LDA-COHSEX counterpart [VII Vxc(LDA) ].
The crucial difference between the "local" (i.e., LDA)
and "nonlocal" results for Vxc(z) is that the latter poten-
tial is imagelike outside the surface. This represents an
important improvement for problems such as the evalua-
tion of the binding energies of image-potential bound
states, tunnel barriers for scanning-tunneling micros-
copy, etc.

There has been recent controversy' about the eA'ect of
the inclusion of nonlocality in Exc[n] on the calculated
value of the position of the effective image plane zo [see
Eq. (3)]. A density functional calculation by Ossicini,
Bertoni, and Gies' predicts substantially smaller values
of zo than the LDA results of Lang and Kohn. On the
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Vxc(z) -—
4[z —zp(z)l '

which we solve for the function zo(z). If Vxc(z) is indeed
imagelike outside the surface, zo(z) must become in-
dependent of z for large z, the asymptotic value of zo(z)
defining the position of the effective image plane. ' This
is illustrated in Fig. 2 for r, 5.63 (Cs), which clearly
demonstrates the importance of self-consistency for ex-
tracting reliable values of zo.

Next we determine a value of zo from linear response.
In Fig. 3 we show our self-consistent result for Vxc plot-
ted versus the electron density n for values of n ranging
from zero (for the vacuum outside) to the first Friedel
peak inside the jellium. We also show a similar result ob-
tained for LDA-CQHSEX. Our nonlocal result for Vxc
(it derives implicitly from a nonlocal functional Exc[n])
was parametrized via a set of spline coefficients. This
prescription for relating Vxc to n for every point in the
surface region enables us to carry out nonlocal density

O
O

O
I

basis of a heuristic treatment of the XC hole, Serena,
Soler, and Garcia' obtained only a slight reduction in the
value of zo relative to the LDA result. Now, in addition to
lacking full self-consistency, these papers leave the follow-
ing question open. The LDA results for zo obtained by
Lang and Kohn3 in their seminal paper on the subject,
refer to the image potential experienced by an external,
distinguishable charge; they are obtained in the context of
linear response to that charge. The question is whether
the value of zii obtained in linear response is the same as
the one that controls the image tail of Vxc(z); in other
words, are there electron-overlap effects built into the
value of zo defined by Eq. (3)? Our self-consistent solu-
tion to Eq. (7) allows us to address this question for the
first time.

First we determine a value of zo from the image tail of
Vxc(z). For all values of z outside the jellium edge we
write the equation
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FIG. 3. "Nonlocal" relation Vxg vs n' for the converged
solution of Eq. (7) for r, 3.93 (curve labeled "nonlocal"). The
electron number density n is normalized to its value at the first
Friedel peak inside the jellium; n 0 corresponds to the vacuum
outside the surface. The "local" relation that obtains in LDA
COHSEX is also shown (curve labeled "LDA").

functional calctdarions. (For values of z beyond the first
Friedel peak we use LDA. ) The KS equation was then
solved self-consistently in the presence of a weak dc elec-
tric field directed along the surface normal using our non-
local relationship between Vxc and n. The centroid of the
induced density equals the linear-response value of zo. In
order to assess the effects of nonlocality in a consistent
manner, we repeated the calculation using the Vxc vs n

relation given by LDA-COHSEX (see Fig. 3).
Our results for zo are given in Table I. For r, 2.07

(high-density metal) the value of zo extracted from the
image tail of Vxc(z) basically agrees with the value ob-
tained from linear response. On the other hand, both
values of zo dier substantially for intermediate and low
metallic densities (r, 3.93 and 5.63, respectively). This
interesting result can be understood from the fact that the
work function decreases as r, increases (i.e., as the bulk
density decreases). A smaller value of the work function
leads to a more pronounced tailing out (tunneling) of the
electrons into the vacuum. One then expects that any
electron-overlap effects built into the image tail of Vxc(z)
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TABLE I. Position of the eA'ective image plane zo, measured
from the jellium edge (in a.u. ), for three values of r, . First row:
result obtained from Eq. (8). Second row: result obtained from
nonIoial linear-response theory. Third row: result obtained
from linear-response theory in LDA-COHSEX.
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FIG. 2. Solution of Eq. (8) for zo(z) for five consecutive itera-
tions of the solution of Eq. (7) for r, 5.63. The dashed line is
obtained from ViIiP, the dotted ones from Vigil, VPP, and VjtiI,
respectively, and the solid one from the converged solution, Vigil.

From Vxc(z)
From nonlocal linear response
From local linear response
(LDA COHSEX)

1.19
1.16
1.25

0.45
0.84
0.95

—0.11
0.68
0.79

r, 2.07 r, 3.93 r, 5.63
(Al) (Na) (Cs)
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(i.e., into zo) would become more significant as r, in-
creases, in agreement with our numerical results. That
overlap effects exist at all is a consequence of the fact that
the asymptotic limit given by Eq. (3) is reached rather
quickly (i.e., for z ~ A,F), as seen in Figs. 1 and 2.

From Table I we also have that density functional non-
locality leads to a (relatively small) reduction of the
linear-response value of zo. This result is not immediately
obvious, since, as expected, the nonlocal image tail of
Vxc(z) has the effect of lowering the work function. '9 Its
explanation resides in the fact that the density induced by
a weak electric field (whose centroid defines zp) is ex-
tremely small for the values of z(z-A, F) for which the
enhanced tunneling associated with a lower work function
would produce an effect opposite to the one found.

The choice of the model employed in the treatment of
XC effects is an important quantitative consideration.
For example, the linear-response values of zo obtained in
LDA using KS exchange and Wigner's interpolation for
correlation are (in a.u. ) 1.55, 1.25, and 1.17, respectively,
for the same densities for which the LDA-COHSEX re-
sults are given in the third row of Table I. The results of

the present paper, based on the use of the COHSEX ap-
proximation for Zxc, establish a qualitative benchmark
for Vxc(z). Work is in progress in which the energy
dependence of Zxc is treated in the GW approximation, '

which has proved capable of giving accurate results for,
e.g. , band gaps in semiconductors. "'4 ' ' [Equation (6)
is a static approximation to the full GW self-energy. ]

In conclusion, we have presented the first explicit evalu-
ation of Vxc(z) at a metal surface in which the strongly
inhomogeneous, self-consistent electron density profile at
the surface is treated from first principles. We have eval-
uated the position of the effective image plane zo via a
self-consistent, nonlocal density functional calculation of
the electron density induced by a dc electric field. We
have also evaluated zo from the image tail of Vxc(z). We
attribute the difference in both values of zo to electron-
overlap effects present in Vxc(z).
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