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Exact solution of approximate density functionals for the kinetic energy
of the electron gas
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We study the metal-surface jellium model with difFerent approximations for the kinetic-energy

density-functional model including the gradient expansions and other fully nonlocal functional

models. Instead of the approximated variational method used in the previous analysis of the prob-

lem, we get the exact (numerical) solution with a modified conjugated-gradient technique, which

leads to important di6'erences in the surface energy, work function, and electronic profiles.

The density-functional formalism (DFF) of Hohenberg,
Kohn, and Sham' allows one to study electronic systems
in terms of the total electronic density distribution, n (r),
without reference to the X-body wave function. The total
energy of a many-electron system is written as a function-
al of n (r), with three different contributions:

E [n (r)]= T [n (r)]+Eh [n (r)]+E„,[n (r)],

T [n (r)]= TT„[n (r)]+ —,', I dr[Vn (r)]
n r

(2)

where EI, represents the Hartree energy which includes
the Coulomb interactions between the electrons and with
the ions, E, is the exchange and correlation energy for
which we may use several approximated forms, like the
simplest local-density approximations (LDA) or other
nonlocal functional models. Finally, T is defined as the
kinetic-energy functional for a system of noninteracting
electrons. Unfortunately, there is not an exact explicit
form for T [n], although it is given in an implicit way by
the solutions of the one-electron Schrodinger equation.
However, this is a step backwards from the original aim
of the OFF of having a description of the system in terms
of n (r). There have been several attempts to find a good
explicit form to approximate T[n]. The Thomas-Fermi
approximation may be considered as the precursor of
these attempts, having come long before the basis of the
DFF was laid. In that approach, the kinetic energy is
evaluated as if the system were made of pieces of homo-
geneous density, so that the kinetic energy per electron at
each point is evaluated with the function t(n) which
wou1d give the kinetic energy per electron in a homo-
geneous system of density n. The Thomas-Fermi density
functional TT„[n (r)] will only give an accurate descrip-
tion of T [n] if n (r) changes very smoothly in the scale of
the inverse of the Fermi wave vector kF, which is not
true for the usual systems of interest: atoms, molecules,
and solids.

The next step from the Thomas-Fermi approximation
will be a gradient expansion in which T [n] is developed
in series of Vn (r), the first contribution goes with the
square of Vn (r) as

in atomic units. We call this approximation "GE2" here-
after. It is interesting to recall that the exact form of
T [n] for a one-electron system has the same form as that
of the second term in (2), without any local contribution,
but with an extra factor of 9. This is called the Weizsack-
er term and should be exact in the regions with very low
electron density. The gradient expansion may be taken
up to four order, (we call it "GE4" hereafter), but it can-
not be pushed further because higher-order terms will

produce divergences in the regions of vanishing density.
There have been several attempts to derive a density
functional for T [n] avoiding the problems of the gradient
expansion. ' We will refer here to the work of Chacon
et al. using a fully nonlocal description of T [n], in par-
ticular we refer hereafter to the Chacon-Alvarellos-
Tarazona (CAT) approximation to the functional model
called "T2" in Ref. 9, which seems to be the most promis-
ing. A basic problem to which a11 these approximations
have been applied is the metal surface in the jellium mod-
el, so that the density distributions of electrons, n (z), de-
pends only on the distance to the surface z. The problem
was studied by Lang and Kohn' (LK) with the LDA for
the exchange and correlation energy and the exact treat-
ment of the kinetic energy, i.e., by solving the one-
electron Schrodinger equation, so that it became a good
test for any approximate model of T[n], which would, of
course, require a much little computational eFort. How-
ever, a11 the previous studies with approximate function-
als for T[n], beyond Thomas-Fermi, '" ' were done
with variational approximations, so that the minimiza-
tion of E [n] was restricted. to a family of density profiles
with a few parameters, the simplest and most frequent
one being the exponential profile with a single parameter
to vary the width of the interface. "' Broader paramet-
ric families have also been used, ' but it was always un-
certain what were the true characteristics of the function-
al approximation and what was coming from the restrict-
ed variational solution.

What we present here is the exact (numerical) solution
of the problem for the diferent approximate models of
T [n]. We have used the conjugate-gradient method, ' in
which starting from a given initial guess for the density
profile n(z), we move in the functional space with the
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TABLE I. Surface energies and work functions in the range of metallic densities. In parentheses one
the values obtained with the variationa1 Inethod using the exponential parametrization for the density
profile. In this case N has been calculated using the Koopmans theorem.

rs

Surface energy (ergs/cm )
GE2' GE4b CAT' LK GE2'

Work function (eV)
GE4 CAT' LK

—1188
(—1144)

101.8
(118)
102.2

(110)
61.6

(68)
36.2

(42)

'References 4 and 11.
References 6 and 12.

'Reference 9.
dReference 10.

—1090
(—982)

153
(202)
132

(162)
81

(102)
50

(65)

—1077

166

143

53

—1008

199

158

98

60

3.07
(3.67)
2.85

(3.19)
2.60

(2.93)
2.37

(2.75)
2.18

(2.58)

3.54
(4.40)
3.24

(4.00)
2.89

(3.64)
2.60

(3.32)
2.35

(3.03)

3.45

3.38

2.98

2.63

2.38

3.89

3.50

3.06

2.73

2.41
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FIG. 1. Surface free energy cr for values of r, in the range of
metallic densities, as given by different treatments of T[n (r)].
Open circles, exact (LK) results; solid circles, CAT; open trian-
gles, GE4; solid triangles, GE2.

direction of the functional gradient 5E/5n(z) orthogo-
nalized to the directions previously tried. This is
equivalent to numerically solving the Euler equation for
the exact functional minimum of E [n), so that we do not
depend on any parametrized family of variational func-
tions. We do not give a description of the method, which
may be found in Ref. 14, but it is worthwhile to point out
that the main difFiculty in its application to our problem
is the requirement of charge neutrality, which any physi-
cal solution should have. This is imposed by means of a
Lagrange multiplier, but this makes the whole method
less efticient. In particular, it becomes very cumbersome
for the GE4 functional, because of the high-order powers
of n (z) in the denominator of the fourth-order gradient
coefticient, which makes it extremely nonlinear in the re-
gion of vanishing n (z), outside the metal, so that many

where hP is the surface-dipole barrier and p is the total
chemical potential of the uniform electron gas,
p=d [ns(n)]/dn, in terms of the total energy per elec-
tron, s(n) The .second way to get @ is the "displaced-
profile charge in self-consistent field" (Dpb, SCF)
method ' which relates @ to the difference in electro-
static potential from the bulk, P(ac ), to the edge of the
neutralizing background, P(0):

4 =P( ~ )
—P(0) —s(n) . (4)

conjugate-gradient iterations are required.
We first comment on the results for the surface energy

o.. The results attained by Smith" with the GE2 using
the simple exponential parametrization were too low
compared with the exact LK results and they become
worse as the variational trial function is improved. The
final surface energies which our exact minimization gives
for this functional are much lower than the exact (LK)
results (see Table I and Fig. 1). For the next-order gra-
dient expansion, GE4, the surface energy obtained with
the exponential density profile' was above the LK results
(by a few percent), so that one may hope that, by improv-
ing the variational calculation, the true minimum value
of o would be closer to the exact (LK) values. However,
the exact minimization makes o. decrease too much, to
final values again below the exact values, but closer to
them than with the GE2. The results of o. with the CAT
functional model do not present strong changes with
respect to the five-parameter variational calculation
presented in the original work. The final surface ener-
gies are also below the exact values (see Table I and Fig.
1) but the discrepancy is about a half of that for GE4.

Another quantity of interest in this system is the work
function 4, i.e., the work required to extract an electron
from the metal through the surface. There are two
different ways to calculate @, the first one being the
direct evaluation in terms of the surface dipole and the
chemical potential using the Koopmans theorem:

(3)
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FIG. 2. Work function N for values of r, in the range of me-
tallic densities. The symbols are as in Fig. 2.

In a full minimization, as we present here, both results
should agree (we have used this as an additional test for
the convergence of our process), but in a partial varia-
tional minimization there may be a large difference be-
tween the two values of @. It has been argued' that in
that case, (4) should provided a better guess to the true
work function, and this is confirmed by our results. In
Fig. 2 and in Table I we present the results for 4 with the
different approximate functionals together with the exact
LK values. It is worthwhile to remark that the good
agreement for the Koopmans values of 4 for r, =4 and 5
with GE2 and the exponential parametrization' was for-
tuitous; the final density distribution for that functional
gives too low self-consistent values of the work function.
The final results with GE4 are better, but the nonlocal
CAT functional is again the best.

Finally, we present in Fig. 3 the electronic density dis-
tribution for a bulk Wigner-Seitz radius r, =6. The exact
(LK) profile shows a maximum of about 1.15 times the
bulk density, followed by the Friedel oscillations, with
period 1/2k~, which reflects the logarithmic divergence
of the Lindhard response function. That singularity is el-
iminated by any truncated Taylor series around k =0, so
that the oscillating tail in n (z) is missing in the GE2 and
GE4 approximations. In both cases there is a single
maximum of n (z) lower than in the exact result: for GE2
it is 1.12 times the bulk density and for GE4 it is even
lower. Our fully minimized result with GE4 is very simi-
lar to that with the five-parameter variational parameters
given in Ref. 9 and to the recent work of Orosz' using
harmonic-oscillator functions (this latter does not give
any value of cr or @). However, for the CAT functional
we get iniportant changes in the density profile with
respect to the results with the five-parameter variational
calculation. The height and position of the first max-
imum of n (z) are in excellent agreement with the exact
LK result, and we also get the oscillating tail which is
missing in the gradient expansion approximations. This
could be expected because the CAT density functional is
precisely constructed to reproduce the full response func-
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FIG. 3. Electronic density profile n(z) at the jelliurn surface
for r, =6. Solid line, exact (LK) result; dashed line, GE2; dash-
dotted line, CiE4; dotted line CAT; this latter is very close to the
solid line for points outside the metal.

tion of the bulk system, including the logarithmic diver-
gence at k =2kF. However, the use of the parametrized
weight function proposed in the original work as a
simplification for the numerical calculations affects this
feature, so that the agreement becomes worse beyond the
second maximum. Probably this would be further im-
proved if the CAT functional were used with the exact
weight function. For lower values of r„ the density
profiles are smoother arid the differences between the ap-
proximate and the exact LK results are smaller, but in
keeping with the general trends of the r, =6 case.

Another point of interest with respect to the density
profile is the decay outside the interface, far from the
metal. The exact solution of the Schrodinger equation
gives an exponential decay, n (z) cc exp( —Az), with a de-
cay constant A, which is exactly the same given by the
Weizsacker term in T[n] However. , GE2 contains only

9 of this contribution, so that the exponentia 1 decay is
too fast. The inclusion of the fourth-order term makes it
even worse because, as may be easily verified, it is incom-
patible with an exponential decay. Unfortunately, the ex-
tremely nonlinear behavior of the density gradients with
this approximati. on makes it very difticult to numerically
analyze the true asymptotic decay of n (z); for intermedi-
ate distances the electronic density for this approxima-
tion lies in between the GE2 and the exact LK results.
The CAT functional contains as a basic ingredient the
Weizsacker term with the correct factor, so we may ex-
pect it to give the exact exponential decay of n (z). How-
ever, there is a small difference due to the scaling of the
weight function in terms of the local density, which origi-
nates that a point outside the metal samples its environ-
ment far enough to get a contribution from the bulk.
Nevertheless, this effect is not very important and in
practice the decay of n (z) with this functional is indistin-
guishable from the exact one (Fig. 3).

Summarizing, the CAT model for the kinetic energy of
electron systems seems to be the best existing form for an
explicit density functional for T[n], and the conjugated-
gradient method provides a useful way to handle it. The
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gradient-expansion approximations GE2 and GE4 give
poorer results when fully minimized, and GE4 is particu-
larly cumbersome to use with our method.
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