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Spin-dependent correlations and thermodynamic functions for electron liquids
at arbitrary degeneracy and spin polarization
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We solve a set of coupled integral equations obtained in the modified-convolution approximation
scheme, to calculate the spin-dependent correlation functions and interaction energies for electron
liquids at arbitrary degrees of Fermi degeneracy and spin polarization. Analytic expressions for the
free energies are obtained through parametrization of the numerical results over a wide range of
density, temperature, and spin polarization in the fluid state; Fermi-liquid properties are thereby in-

vestigated. Phase boundary curves, arising from divergence of the isothermal compressibility and of
the spin susceptibility, are drawn on the density-temperature plane for the metallic electrons. In
particular, it is pointed out that the signs and magnitudes of the spin-dependent or phonon-induced
electron interactions exhibit remarkable changes across the phase boundaries; strong attractive in-
teraction between electrons with parallel spins appears near the spin-susceptibility anomaly, where
the spin-density fluctuations are enormously enhanced.

I. INTRODUCTION

The thermodynamic properties of electron liquids such
as the conduction electrons in metallic substances may be
determined on specifications of the average number den-
sity n or

's—
1/3

3 me
4~n

the reduced temperature

2m0=k~ T
fi (3' n)

and the spin polarization

j=(n, n2) jn—. (3)

Here m and e are, respectively, the mass and electric
charge of an electron, kz is the Boltzmann constant, and
n, (n2) denotes the number density of spin-up (spin-
down) electrons, so that n =n&+n~. In the classical re-
gime (8))I), one may use the Coulomb coupling con-
stant for such a classical system, '

4~n
3

' 1/3
4=2

9~

' 2/3

(4)

in place of r, .
Substantial progress has been achieved recently in the

study of the correlational and thermodynamic properties
for such an electron liquid. The dielectric and thermo-
dynamic functions have been calculated in the random-
phase approximation (RPA) or in the approaches '

involving the local-field correction (LFC), ' which de-
scribes the strong-coupling efFects beyond the RPA. Ac-
curacy of those calculations has been examined critical-
ly' through comparison with the Monte Carlo (MC)

simulation results in the classical as well as in the degen-
erate' '" limits. It has been well recognized that the
study of the strongly coupled charged liquids would yield
crucial information for the understanding of such diverse
physical systems as solid and fluid metals, ' '' the molten
alkali halides, ' the inertial-confinement fusion experi-
ments, ' and interiors of various astrophysical objects. '

In this paper we aim at extending the line of theoretical
studies mentioned above, and calculate the thermo-
dynamic functions of the electron liquid in a self-
consistent way over a wide range of the parametric com-
binations: r„O, and g. The computed results will be
parametrized in the form of analytic formulas; the
Fermi-liquid parameters are derived therefrom. We shall
then investigate the density- and spin-response functions
of the electron liquid and find that those functions change
dramatically across the phase boundary curves on the n-T
plane, associated with divergence to infinity of the iso-
thermal compressibility and of the spin susceptibility. It
will therefore be shown that the spin-dependent and
phonon-induced electron interactions exhibit remarkable
changes across the phase boundaries. ' These findings
may have significant consequences in electronic transport
in metallic substances including superconductivity.

The problems described above are approached in this
paper by a method of integral equations. In so doing we
set a number of theoretical requirements: (i) Accuracy
and self-consistency in predicting the thermodynamic
functions over a wide range of the parameters: r„O, and
g, (ii) simplicity in the structure of integral equations, and
(iii) ability to describe the spin-dependent electron in-
teractions. Requirement (ii), somewhat contradictory to
(i), is needed because the integral equations are to be
solved for numerous combinations of the three parame-
ters in the derivation of the equation of state and in the
construction of the phase diagram.

A theoretical scheme fulfilling those requirements may
be provided by the spin-dependent density-response for-

39 1036 1989 The American Physical Society



39 SPIN-DEPENDENT CORRELATIONS AND THERMODYNAMIC. . . 1037

malism, coupled with evaluation of the LFC's in what
will be called the modified-convolution approximation
(MCA). For the classical one-component plasma (OCP)
or the electron liquid in the classical limit, it has been
shown' ' that the MCA scheme oft'ers a good comprom-
ise between simplicity in the structure of integral equa-
tions and accuracy in predicting the thermodynamic
quantities self-consistently. It will be shown in this paper
that the same statement applies also for the electron
liquid in the degenerate limit. We thus expect that the
MCA may likewise be applicable at intermediate degen-
eracies (0= 1) as an interpolation between those two lim-
its, and hence over a wide range of parametric combina-
tions.

In Sec. II we introduce the spin-dependent density-
response formalism; the self-consistency conditions for
the LFC's are taken up in Sec. III. The MCA scheme,
that is, the approximation scheme used in this paper for
the calculation of the spin-dependent LFC's, is described
in Sec. IV. The set of integral equations in the MCA are
solved for numerous combinations of r„O, and g; the re-
sults for the correlation functions are presented and ex-
amined in Sec. V. The thermodynamic functions are de-
rived and discussed in Secs. VI and VII; the Fermi-liquid
parameters are calculated therefrom in Sec. VIII. The
thermodynamic instabilities associated with the compres-
sibility and spin-susceptibility anomalies are discussed in
Sec. IX, where the associated phase boundary curves are
drawn on the n- T plane. The features of the spin-
dependent and phonon-induced electron interactions are
investigated in Sec. X. Concluding remarks are given in
Sec. XI.

II. DENSITY-RESPONSE FORMALISM

These relations define the density-density response func-
tions y, (k, co) between the spin components o. and r.

In the polarization-potential approach or the static
LFC approximation, ' the induced density Auctuations
may be written as '

5n (k, cu) = y' (k, co)

X V'"'(k, co)

+ g v (k)[1—G,(k)]5n, (k, co)
7

(6)

Here v(k)=4me /k is the bare Coulomb potential and
g' ~(k, co) are the free-particle polarizabilities; G,(k) are
the spin-dependent LFC's. '

Comparison between Eqs. (5) and (6) yields explicit ex-
pressions for y, (k, co) in terms of y' '(k, co) and G, (k).

To probe the correlational properties between the elec-
trons, ' ' we begin by applying to the system a weak,
frequency co and wave vector k dependent, external po-
tential field V'"'(k, co) which couples only to the density
field on the spin component o. (=1,2). The induced den-
sity fluctuations 5n (k, co) are then expressed as

5n (k, cv)= gy, (k, co)V;"'(k, co) .

The resulting forms are the same as those obtained earlier
for multicomponent plasmas [see, e.g. , Eqs. (17) and (18)
in Ref. 23]. The static structure factors S,(k) and the
pair distribution functions g, (r) are then calculated with
the aid of the Auctuation-dissipation theorem, as formu-
lated in detail in Ref. 2.

The density- and spin-response functions, y(k, co) and
(k, co ), are calculated as

y(k, co) = g g y, (k, m),
CT T

(k, cv) = g g (25,—1)y,(k, co) .

The density (charge) and spin parts of other correlation
and response functions are defined analogously. ' '

In the paramagnetic limit ((=0), the correlation and
response functions depend only on the relative orienta-
tion of the spins. The correlation and response functions
between electrons with parallel and antiparallel spins are
then denoted by the suffixes p and a, respectively.

III. SELF-CONSISTENCY CONDITIONS

Once explicit expressions for G, (k) are obtained, the
formalism described in the preceding section leads to a
set of self-consistent integral equations for the correla-
tions, which may be solved numerically by iteration. The
expressions for G,(k) themselves have to satisfy a num-
ber of exact boundary conditions derived from short-
range asymptotic behaviors and thermodynamic self-
consistency requirements. In this section we summarize
those conditions for the spin-polarized electron liquids.

We first note a self-consistency condition for the
short-range correlations,

lim G,(k)=1—g, (0) .
kazoo

a2
lim [—v(k)G, (k)]=
k~0 Bn Bn,

F„,
(10)

set the thermodynamic self-consistency conditions. Here
F„,/Vis the exchange-correlation free-energy density. In
the paramagnetic limit, the usual compressibility and
spin-susceptibility sum rules ' ' are recovered. For a
numerical examination, we introduce dimensionless
quantities,

2
kFy"" = lim G(k) (1 I a)

kF
'V0

4m.e2 cjn2 /=0

k
(1 lb)

4~e n w„

This condition may be derived with the aid of the short-
range asymptotic expansions of S,(k), a general proper-
ty of the Fourier transform between S,(k) and g, (r),
and the cusp condition ' for g, (r).

The generalized compressibility sum rules,
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y"" = lim
k~O

2
kF

G (k) (12a)

EOS kF g2 F„,
4vrn'e' Bg' I' g=o

k a„,
(12b)

4~e n

IV. SPIN-DEPENDENT
LOCAL-FIELD CORRECTIONS

Let us proceed to derive an approximation scheme for
the calculation of the spin-dependent LFC's, G,(k). For
this purpose, we start working with the density-
fluctuation operators

p (k}= g exp( —ik r ),
j=1

(13)

where r represents the spatial coordinate of the jth par-
ticle with spin o. and N is the number of electrons with

Here ~„, and a„, are the exchange-correlation contribu-
tions to the isothermal compressibility and the spin
stiffness" in the paramagnetic state; G(k) and G (k) are
the charge and spin LFC's' '' ' ' kF=(3' n)'~ is the
Fermi wave number. The comparison between yo" and

yo measures the extent to which the isothermal
compressibility sum rule is satisfied; the comparison be-
tween y"" and y likewise yields information about
the spin-susceptibility sum rule.

spin tJ. The equation of motion for p (k) reads

N 2a (k)=- r P -+ Rk

m 2m

, p (k —q)p, (q),
mV (- o)

exp( —ik. r )

(14)

so that

N g G,(k)p, (k) = —g g p (k —q)p, (q),
7 q

9'
(15)

where the prime means omission of the terms with q=0
and q=k in the q summation. We multiply Eq. (15) by
p, (

—k) and carry out the statistical average denoted by
). We thus obtain

where p- denotes the momentum of the jth particle with
spin cr.

The last term of Eq. (14) stems from the Coulomb in-
teraction between electrons; we remark here that the
self-interaction terms, i.e., the products between the con-
tributions from the same electron in p, and p„should be
omitted. In the light of Eq. (6), we may replace the
Coulomb-interaction term by'

2

, p (k —q)p, (q)
m V

( o) g

4vrN e
g [I—G, (k)]p,(k},

mV

1/2

G,(k)S„(k)=-
N

N N N„,

XX 1(k, q) X X X exp[ —i(k —q) r, „]exp( —iq r, ,)exp(ik r, „))
q i =1 j=l 1=1

(16)

with

I(k, q)=k q/q (17)

We express the right-hand side of Eq. (16) in terms of the pair and ternary correlation functions, ' h, (r) and
h „(r,, rz, r3). We then introduce the convolution approximation, ' so that the ternary correlation functions are ex-
pressed as

h „(r,, rz, r3)=h, (r,~)h,„,(r23)+h„(rz3)h„(r»)+h„, (r3, )h, (r,z)+ g n„ f dr4h „(r&4)h,„(r~4)h,„(r34) (18)

The approximation (18) satisfies the sequential relations " between the pair and ternary correlation functions; it has
been recognized ' essential to maintain the sequential relations especially for the long-ranged Coulomb system. Sub-
stitution of Eq. (18) in Eq. (16) yields

1/2

G,(k)S„(k)=— gg I(k, q)
O V r q p

N NN 1/2

S „(k—q)S,„(q)S,„(k)

—o,(N, N, )'i S,„(k)

Generally the solution of Eq. (19) does not satisfy the symmetry relations G,(k)=G, (k) because the symmetry
with respect to interchange of the indices has been broken by the introduction of the convolution approximation, Eq.
(18). Symmetrization is thus carried out between o and r, and so we find
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G]](k)= — f K(k, q)R]](q)+1 dq
(2m. ) n1

1/2

I(k, q)R, (q) [S„(k—q) —1]

n2+
n1

1/2

J(k, q)R ]](q)S]p(k—q) (20a)

G,2(k) =-— 1 dq
2( n]np)' (2 )

n2

n1

1/2
n1+

1/2

K(k, q)R»(q)+I (k, q)[R» (q)+R»(q)] S»(k —q)

+ J(k, q)R, 2(q)[S»(k —q) —1]+J(k, q)R, 2(q)[S22(k —q) —1] (20b)

with

J (k, q) =k.(k —q)/lk —ql',
K(k, q)=I(k, q)+J(k, q) .

(21)

(22)

Gzz(k) may be obtained by interchanges of 1~2 in Eq.
(20a). In Eqs. (20), R,(k) are given by

R,(k) =
—,
' [5,+S,(k)] (23)

R,(k) =
—,
] [5,+S,(k)], (24)

where the structure factors S,(k) are parametrized as

and play the part of the screening functions. ' '
We remark at this stage that the approximation

scheme proposed by Singwi, Tosi, Land, and Sjolander
(STLS) may be obtained in the present formalism by set-
ting S,(k)=5, in Eq. (23) or R,(k)=5, in Eqs. (20).
Departure of Eq. (23) from 5, is substantial in the long-
wavelength regime; the STLS scheme thus has an intrin-
sic difficulty in satisfying the generalized compressibility
sum rules, Eqs. (10). For an OCP, the extent of this
difficulty has been numerically investigated both in the
classical' ' and degenerate limits.

In the present theory we modify the convolution-
approximation results and thereby simplify the calcula-
tions of G,(k) through a replacement of Eq. (23) by

tegral equations. We thus obtain a closed set of integral
equations for S,(k) and G,(k). As we will soon
demonstrate, the screening effects introduced through
Eqs. (24) —(26) play a vital role in accounting for the
correlation properties of the strongly coupled electron
liquids in the long-wavelength regime. We shall call the
resulting evaluations of G,(k) the MCA scheme.

For a paramagnetic electron liquid, Eqs. (20) lead to

G(k) = ' f——" K(k, q)R (q)[S(k —q) —1],(2~)'

G (k)= ——f, [I(k,q}R(q)[S (k —q) —1]
(2~)'

(27a)

R (k) = [1+S (k)+S,(k)]/2= [1+S(k)]/2,
R (k)=[1+S (k) —S,(k)]/2=[1+S (k)]/2 .

In the ferromagnetic limit, we analogously find

(28a)

(28b)

G»(k)= — f,K(k, q)R»(q)[S„(k—q) —1] .
rr

+J(k, q)R (q)[S(k—q) —I]] .

(27b)

Here S(k) and S (k) are the charge and spin structure
factors and we define

S(k)=k /(k +ko),
S„(k)=(k +k, )/(k +ko]),

(25a)

(25b)

(29)

nS(k) —n, S»(k) —nzS22(k)
S]~(k)=

2(n]n2)'
(25c)

and Sz2(k) is again given by interchanges of 1~2 in Eq.
(25b). The characteristic wave numbers, ko, k], ko], k2,
and ko2, are determined from the self-consistency condi-
tions:

f U (k)[S,(k}—6,](2'�)

S,(0)=S,(0),

= f U (k)[S,(k) —6,],
(2m)

(26a)

(26b)

where S(k) and S,(k) refer to the solutions to the in-

V. CORRELATION FUNCTIONS

We solve the MCA integral equations numerically for
S,(k) and G,(k) at various parametric combinations:
0=0, 0.05, 0.1, 0.2, 0.5, 1, 2, and 5; 0 & r, ~ 175; /=0,
0.2, 0.5, 0.8, and 1. For comparison, we also solve the
STLS integral equations ' newly for r, ~100 in the
paramagnetic (/=0) and ferromagnetic (g=1) states at
0=0. The computational procedure is analogous to that
in Ref. 7.

In the calculations of the LFC's, Eqs. (20) and (24), the
angular integration between k and k —q can be carried
out analytically, so that the LFC's are expressed in terms
of the integrations over a single variable. The computa-
tional time needed to solve the integral equations in the
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FIG. 1. The dift'erence of the compressibility coefficient yo

between the estimations through the local-field correction
(LFC) and the equation of state (EOS) in the paramagnetic
(j=0) state at 0=0. MCA and STLS refer to the calculations
of yo" on the basis of the modified-convolution approximation
and of the Singwi-Tosi-Land-Sjolander approximation (Ref. 34).
The values of yo are calculated from the fitting formula by
Vosko, Wilk, and Nusair (Ref. 11).

MCA scheme is therefore of the same order as that in the
STLS scheme. Such simplicity is valuable particularly
when iterative solutions to the integral equations are to
be obtained over numerous combinations of the plasma
parameters.

On the basis of those numerical results, let us investi-
gate the self-consistency conditions mentioned in Sec. III:
To begin, we remark that the expressions for G, (k) as
given by Eqs. (20) satisfy the short-range conditions (9)
exactly.

As for the compressibility sum rule, we show in Fig. 1

the computed results of (yo" —
yo )/yo in the

paramagnetic (/=0) ground state (0=0) as functions of
r„both in the MCA scheme and in the STLS scheme.
The equation of state used here for the calculation of
yo is that obtained in the Green's-function Monte Car-
lo (GFMC) calculations. ' '" The equation of state ob-
tained either in the MCA scheme or in the STLS scheme,

F

FIG. 3. Charge structure factor for r, =1, 5, 20, and 100 at
8=0 and /=0. kF =(jan}'~. is the Fermi wave number in the
paramagnetic state.

however, leads to a prediction of yo almost identical to
the CsFMC value. Apparently in Fig. 1 the MCA values
of yo" improve significantly over the STLS values.

We have similarly examined the compressibility sum
rule in the ferromagnetic (g=l) state at 0=0 and ob-
served an analogous improvement in the MCA result
over the STLS result.

We compare in Fig. 2 the result for the spin-
susceptibility sum rule between the MCA and STLS cal-
culations at 0=0 and g =0. Again we observe a
significant improvement in the MCA values as compared
with the STLS values.

The numerical results in the MCA scheme for S(k),
g(r), G(k), and G (k) are plotted in Figs. 3 —6 for vari-
ous values of r, at the paramagnetic (/=0) ground state
(8=0). As examined above, the MCA scheme accurate-
ly describes the long-range correlations in the degenerate
electron liquid as well as in the classical OCP. ' On the
other hand, the MCA scheme has a defect in that g (r)
becomes negative in the vicinity of the origin for r, 5, as
observed in Fig. 4; this is the cost that one has to pay in

1.0— 1.0

MCA

0.5

0

i I i I l t I l l I I J f i

0
0.1 1 10

S 0
I

2
I

3
i

4
FIG. 2. The dift'erence of the spin-susceptibility coefficient

y between the estimations through the local-field correction
and the equation of state in the paramagnetic (/=0) state at
0=0. Otherwise the same as in Fig. 1.

FIG. 4. Pair distribution function for various values of rs at
0=0 and /=0.



39 SPIN-DEPENDENT CORRELATIONS AND THERMODYNAMIC. . . 1041

0.6—
= 0
=5

= 0.8

0
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FIG. 5. Charge local-field correction G (k) at 0=0 and (=0.
0 1 2 3

FIG. 8. Spin-dependent structure factors at 0=0, r, =5, and
=0.8.

0.5

p 4

p

&s=1

0.2

0.1

0
&s=20

0.5
5
0

0.1
I I I I I

10

FIG. 6. Spin local-field correction G (k) at 0=0 and /=0. -0.5
0 1 2

I

kg
F

FIG. 9. Spin-dependent structure factors at 0=0.5, r, =5,
and /=0.

=0
=5
= 0.5

0 1 2 3
F

FIG. 7. Spin-dependent structure factors at 0=0, r, =5, and
/=0. 5. kF =(6ir n, )'~ is the Fermi wave number of the spin-

up electrons.

0 1 2

FIG. 10. Spin-dependent structure factors at O=2, I =10,
and /=0.
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the adopting of a simplified set of integral equations, aim-
ing at an accuracy in the thermodynamic descriptions.
In the case of a classical OCP, it has been shown' that
due to such negativeness of g (r) that causes an oscillation
to g (r) in the short-range region the overall shape of g (r)
becomes analogous to the MC result.

To see how the structure factors depends on the spin
polarization and Fermi degeneracy, we exhibit in Figs.
7 —10 the computed values of S,(k) in the MCA scheme
for some combinations of 0, r, (or I ), and g. We observe
in Figs. 9 and 10 that the spin-Auctuation structure factor
S (k) quickly approaches unity as the system enters the
classical regime (8 ) 1).

VI. THERMODYNAMIC FUNCTIONS

E,„,(c,8,()= E;„,(c,8,0) + —,'s (c,O)g

+t(c,8)P+u (c,8)g (35)

We then set

t (c,8)= »', s (c,8) (36)

c,;„,(c,8,$)= (1 —
g )c,;„,(c,8,0)+g E;„,(c,8, 1)

(37)

whence

adopting the relation found in the Hartree-Fock approxi-
mation at 8=0. We have checked that the relation (36)
is satisfied with a good accuracy also in the RPA calcula-
tion" at 0=0. The coefficient u is then determined so
that Eq. (35) reproduces the computed values in the fer-
romagnetic limit (g~ 1 ). We thus find

The Helmholtz free energy F of the system may be di-
vided into two parts, i.e., the ideal part Fo and the
exchange-correlation part F„as

f„,(c,8, g) = ( 1 —g )f„,(c,0,0) + g f„,(c,0, 1 )

(38)

F=FO+F (30)
with

The ideal part can be calculated in the usual way.
The exchange-correlation (or excess) free energy F„,

asymptotically approaches the lowest-order exchange
(Hartree-Fock) free energy F„ in the weak-coupling limit
(r, ~0 or I ~0). The exchange part F„ is given by

F =gF (31)

and

F„ /N kF e = —(4!9~)'i a(O ) . (32)

cf„,(c,O ()=—f dx s;„,(x, 8,$),
C 0

(33)

Here kF =(6' n )'i and a (0 ) is an exchange in-
tegral with the reduced temperature 0 . An accurate
fitting formula for a (0 ) has been derived by Perrot and
Dharma-wardana [see Eq. (42) and Table V].

We have calculated the interaction energy F.;„, in the
MCA scheme for 683 combinations of the plasma param-
eters in the range of 0=0, 0.05, 0.1, 0.2, 0.5, 1, 2, and 5,
0& r, & 175, and /=0, 0.2, 0.5, 0.8, and 1. The excess
free energy is then calculated through

~xc 1= —f dx s(x, 8) .
/Q

(39)

TABLE I. Ground-state energy in the paramagnetic state.
MCA refers to the present calculation; STLS, the calculation
based on the integral equations of Singwi et aI. (Ref. 34); VMC,
the variational Monte Carlo result (Ref. 38); GFMC, the
Green's-function Monte Carlo result (Ref. 10). The energy is
measured in units of mRy.

MCA STLS VMC GFMC

The coefficient s may be evaluated by using the values
of e;„, at (=0.2 at fixed values of r, and O. The comput-
ed values of E;„,(g) —e;„,(0) at /=0. 5 and 0.8 can then be
reproduced by Eq. (37) with the digressions of less than
3%%uo for all the cases computed. The interpolation formu-
la (37) thus reproduces the computed values at the inter-
mediate spin polarizations with an accuracy much superi-
or to the von Barth —Hedin type interpolation and with
an accuracy comparable to the Vosko-Wilk-Nusair type
interpolation. " We have fitted s(c,8) as a function of
the coupling constant c for each 0 and carried out the in-

F, =F„—F (34)

We have performed explicit calculation of f„, in the
following way: For j=0 and 1, the coupling-constant in-
tegration of Eq. (33) is carried out numerically with the
aid of the cubic-spline-polynomial interpolation. Such a
procedure is not applicable to the cases of 0& g & 1 since
the computed values exist sparsely. Here we instead as-
sume a g dependence of E;„, as

where f„,=F„,/N(e /a), E;„,=E;„,/N(e /a),
a =(4an/3) 'i, and e =r, or I (i.e., the dimensionless
coupling constant). Finally the correlation free energy F,
is given by

1

2
3
4
5

6
10
15
20
30
50
75
100

1167
—0.3

—138.2
—158.2
—154.4
—144.8
—108.36
—80.69
—64.18
—45.62
—29.06
—20.071
—15.365

1171
3.5

—134.6
—155.0
—151.2
—141.8
—105.86
—78.57
—62.33
—44. 14
—27.97
—19.249
—14.699

1172
6.9

—132.1

—153.3
—149.9

—105.70
—78.86
—62.80
—44.77
—28.58
—19.783
—15.185

1174
4. 1

—151.2

—106.75

—63.29

—28.84

—15.321
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MCA STLS VMC GFMC

TABLE II. Ground-state energy in the ferromagnetic state.
Otherwise the same as Table I.

TABLE III. Values of f„—, = F„—, /1V(e /a) calculated in
the MCA scheme for the paramagnetic (P) and ferromagnetic
(F) states at 0=0.2 and 0.5.

1

2
3
4
5

6
10
15
20
30
50
75
100

2281
244.3

—41.6
—109.9
—126.7
—127.7
—104.6
—79.99
—64.21
—45.93
—29.31
—20.237
—15.480

2285
248.3

—37.9
—106.4
—123.4
—124.6
—102.0
—77.81
—62.33
—44.42
—28.21
—19.411
—14.812

—101.3

—44.7
—28.73

—15.261

251.7

—121.4

—101.3

—62.51

—28.78

—15.340

1

2
3
4
5
6
10
20
30
50
75
100

P

0.512 23
0.548 60
0.574 15
0.592 66
0.607 39
0.619 61
0.654 12
0.699 12
0.723 16
0.750 17
0.768 78
0.780 46

0=0.2

0.603 94
0.626 68
0.643 08
0.655 32
0.665 23
0.673 57
0.697 58
0.729 96
0.747 77
0.768 26
0.782 71
0.791 93

0.471 15
0.522 07
0.556 15

0.596 86

0.651 42
0.700 10
0.725 11
0.752 48
0.770 98
0.782 46

O" —0 5

0.561 20
0.596 53
0.62056

0.650 06

0.690 49
0.727 50
0.746 88
0.76845
0.783 27
0.792 60

~E.
(mRy)

25 — ~

I I I I I I I I I

MCA
D

tegration of Eq. (39) analytically to obtain the spin
stiffness a„,.

We list in Tables I and II the values of the ground-state
energy computed in the MCA and STLS schemes and
compare them with the variational Monte Carlo (VMC)
result and the GFMC result' in the paramagnetic and
ferromagnetic states.

The spin-polarization dependence of the correlation
energy E, at the ground state is typically illustrated in
Fig. 11, where the increment bE, =E,(g) E, (0) is p—lot-
ted as a function of g at r, =5. We observe in the figure
that the RPA results" for AE, resemble the MCA results
closely although the values of E, themselves are quite
different from each other. The values of AE, computed
by Dunaevskii, who used the LFC in the paramagnetic
state parametrized by Singwi, Sjolander, Tosi, and Land
without regard to the spin polarization, show systematic
deviations from the MCA and RPA results as g increases.

The values of the excess free energy f„, in the
paramagnetic and ferromagnetic states at finite tempera-
tures are listed in Tables III and IV for typical values of
8 and r, (or I ). We recall that the MCA scheme has
reproduced the MC values of E;„, within relative errors
of 2' in the Auid phase of the classical OCP, as was
shown in Ref. 19. We also remark that the MCA scheme
reproduces the GFMC values' '" of E;„, for r, ~ 100 with
digressions of less than 2% in the paramagnetic state and
3% in the ferromagnetic state at 0=0 (see Tables I and
II). We thus expect that the values of f„, listed in Tables
III and IV may represent accurate (say, within relative
errors of 5%) estimates of the exact excess free energies
at finite temperatures as an interpolation between the
classical and degenerate limits.

VII. PARAMETRIZED EXPRESSIONS
FOR EQUATIONS OF STATE

We have parametrized the values of the interaction en-

ergy E;„, computed in the MCA scheme in accord with

20—

15—
TABLE IV. Values of f„, at 8= 1 and 2—.

P
10—

0 0.5 1.0

FIG. 11. Variations of bE, =E,(g) —E,(0) at 8=0 and

r, =5. MCA refers to the present calculation; GFMC, the cal-
culation based on the Green's-function Monte Carlo method
(Ref. 10); RPA, the random-phase approximation (Ref. 11); D,
Dunaevskii (Ref. 39).

0.5
1

2
3
5
8
10
15
20
30
40
60

0.392 43
0.456 54
0.524 74
0.568 71
0.618 59
0.660 56
0.678 89
0.709 22
0.728 34
0.751 90
0.766 37
0.776 40

0.474 17
0.524 76
0.579 36
0.614 76
0.655 38
0.689 81
0.704 92
0.730 01
0.745 90
0.756 59
0.777 74
0.786 21

0.369 38
0.447 39
0.527 48
0.577 93
0.632 84
0.677 43
0.696 46
0.727 33
0.746 36
0.769 31

0.422 00
0.490 75
0.561 55
0.606 21
0.654 99
0.694 71
0.711 69
0.739 30
0.756 36
0.776 98
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Eq. (37). The result is expressed as

a (8)+b;(8)r,'~ +c;(O)r,
e;„,(r„8,i) =—

1+d, (O)r, ' + e, (O)r,

(i =0, 1),
a, (8)+b, (8)r,

s (r„O)=-
1+c, (O)r, +d, (O)r,

(40)

(41)

1+x20 +x30 +x40f (8)=F(8)
1+y20 +y30 +x 0 (42)

The values of x, and y (j=2,3,4) and the functional
forms of F(8) and tabulated in Table V. Assuming the
functional forms of E;„, and s in Eqs. (40) and (41), we first
determine the values of a —e at fixed 0 and then fix the
coeScients in the functions a —e. Those fitting formulas
reproduce the computed values of E;„, for all the 683

The coefficients a —e in Eqs. (40) and (41) are
parametrized as functions of 0 in a universal form as

cases with relative errors less than 1.5%.
Formulas (40) —(42) have been constructed so as to

reproduce accurately the known results in the classical
limit. ' ' ' In the weak-coupling limit, they reduce to the
Debye-Hiickel form, ' ' and agree with the numerical
values ' obtained through solution to the hypernetted
chain equation' within 0.1% for I" ~ 1. In the strong-
coupling regime, formulas (40) —(42) reproduce the MC
values for 1 ~ I ~ 200 with digressions of less than 0.5%%uo,

and likewise reproduce the GFMC values' '" for r, ~ 100
within relative errors of 3% in the degenerate limit. As-
suming that the MCA scheme gives an appropriate inter-
polation of E,„, as a function of 0, r„and g, and taking
account of the errors (1.5%) in constructing the fitting
formulas, we may tentatively say that formulas (40) —(42)
can give the "true" values of E;„, within relative errors of
approximately 5% over the whole region of the quid
phase.

The expression for the excess free energy F„, is then
obtained by performing the coupling-constant integration
as prescribed by Eq. (33). The result is given by Eq. (38)
with

&xc

X(e'/a) 2d
ln~ 1+c,r, +d, r, ~

2a, d, —b, c, 2d, r, +c, —(c, —4d, )'

2d, (c —4d, )' 2d r +c +(c —4d )'
c, —(c, —4d, )'i—ln
c, +(c, —4d, )'i (43)

f„,.(r„8,0)=— Cpdp Cp
a

ee

d2

Cp 2
b 0

ep
rq

—1/2

ep ep epr,

Cp
a — + 2—0 0

0

0
b

0

dp

(4e d2 )1/2
—tan

2

e0(4eo —d 0 )
'

2epr, +d pX tan '
21/2(4eo —

do )

dp
b 0

ep

cpdp

ep

Cpdp

ep
in~ear, +dor, ' +1~

(44)

TABLE V. Values of x, and y, (j =2,3,4) and functional forms of F(0) in Eq. (42) for the coefficients a —e appearing in Eqs. (40)
and (41). The symbol "-"means that the corresponding terms have not been adopted in the approximants.

a (Q~)

bp(O)
~o(e)

(O~)

(O~)

a, (0)
(0~)
(Qi)

d, (0)
e, (O)
a, (0)
b, (0)

(0~)

d, (e)

F (Q")

0.458 165 tanh(1/0)
0.536 660do(O)
0.866 914ep(0)

0.511 152 tanh(1/Q' )

0.373 518 tanh( 1/0)
1.259 92ap(0. 629 9610)

0.603 045d l (O)
0.865 647e, (0)

0.508 784 tanh( 1/0' )

0.311 335 tanh(1/0)
0.203 629
0.215 506
1.722 62

0.282 782

xz

4.058 17
13.0190
0.983 008

11.1117
0.798 047

5.088 61
0.749 519
4.797 54
1.446 45
3.531 90

41.2764
36.0644
41.2038

x3

—0.123 027
2.843 94
0.431 746

126.789
0.193 051

1.850 33
0.499 229

133.956
—1.666 39

2.0

2.271 33

1.756 92
1.773 36

1.765 09
2.127 55

yz

8.31051
8.10097
1.044 74
1.0
1.0

3.233 86
0.818 992
1.0
1.0
0.674 757
4.402 26
5.463 83
2.133 88

y3

2.147 76
0.416 920

75.0184
1.030 64

1.570 23
0.481 380

76.7183
0.119757
2.201 26

y4

5.1105

1.0
1.0

1.0
1.0
1.0

12.7681
5.564 74
9.375 39
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v ja29& 42

F m*kF

gT2
(45)

O.O

-O.2 Cg
Ol

-0 4

--0.6
—-0.8

in the limit of T~O, where kF is the Fermi wave num-
ber for the electrons with o. We thus calculate m * in the
paramagnetic state (where m *=m *, = m 2 ) and in the
ferromagnetic state (where m*=m

t ) through the low-
temperature behaviors of F„.

The temperature differentiations in Eq. (45) may be
evaluated with the aid of

15 20 25 30

Iog g(cm )
10

$2f
=25f„,( r„O,g) /8

BO
(46)

FIG. 12. Reduced excess free energy f„,=F„,/N(e la) in
the paramagnetic state for 10" cm ' n 10' cm ' and
1K ~ T 10' K. Three types of contours are depicted:
n =const (dot-dashed curves); T= const (dashed curves);

f„,=const (solid curves).

and an analogous expression for f„,(c,O, 1).
The numerical values derived from those analytic ex-

pressions behave smoothly over the whole region in the
fluid phase of the electron OCP. We plot in Figs. 12 and
13 the behaviors of f„,(r„8,0) and f„,(r„0,1) calculat-
ed from the fitting formulas as functions of the number
density n and the temperature T for 10' n 10 cm
and 1 ~ T 10 K.

VIII. FERMI-LIQUID PARAMETERS

In this section we calculate the Fermi-liquid parame-
ters of the electron fluids such as the effective mass, the
spin susceptibility, and the isothermal compressibility, on
the basis of the values of E;„, and F„, calculated in the
preceding sections.

The effective mass m * is related to the specific heat C~

where the increment,

5f„,(r„O,()=f„,(r„8,$) f„,(r„—0,$), (47)

may be calculated through the coupling-constant integra-
tion of e;„,(8)—c.;„,(0) as in Eq. (33). We remark in this
connection that 5f„, is known to behave proportionally
to 0 lnO for 0~0 in the Hartree-Fock approxima-
tion. ' We have confirmed numerically, however, that
the computed values of 5f„, are in fact proportional to
8~ for Q ~0.2 in the MCA calculation; Eq. (46) thus ap-
proaches a constant value in the limit of 0~0, leading to
a correct Fermi-liquid behavior with a finite m*. This
departure of the MCA prediction from the Hartree-Fock
one is a consequence of the Coulombic screening effect,
and thus appears in the RPA calculation as well. ' An
analytic account of the low-temperature limiting behav-
ior of F„, in the RPA is given in the Appendix.

We evaluated m * in the paramagnetic and ferromag-
netic states by. using the values of 5f„, calculated at
0=0.1. The results are depicted in Fig. 14, where some
of the existing theoretical evaluations ' ' in the
paramagnetic state are also plotted.

The spin stiffness a„, was calculated already through
Eq. (39) in Sec. VI. The results for 8=0, 0.1, and 0.5 are
listed in Table VI. The exchange contribution a„ to the

— O.O

tg--0.2 N
—-0.4 ~
—-0.6

U.
—-0.8

-1.0

1.4—
m*/m

~ 3

1.2—

1.0

0.9—
0.1

0
0

NP
R

NS

00 Q

I

10
15 20 25 30

IOg„n {cm'}
FICr. 13. Reduced excess free energy f„, in the ferromagnetic

state. Otherwise the same as in Fig. 12.

FIG. 14. The ratio of the effective mass m * to the bare mass
m. P refers to the MCA result in the ferromagnetic state; NP,
the calculation by Pines and Nozieres (Ref. 29); R, Rice (Ref.
45), NS, Ng and Singwi (Ref. 46).
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TABLE VI. The correlation contribution to the spin stiffness
in units of mRy for various values of r, at 0=0, 0.1, and 0.5.
The exchange contribution is given by —407.3/r„—418.7/r„
and —576.7/r, at 0=0, 0.1, and 0.5, respectively.

'X-Hr)
'X (0)

1.0

I t I I
I

I I t I

0=0 0" —0 5

1

2
3
4
5

6
8

10

78.5
58.7
48.0
41.0
36.1

32.3
26.9
23.2

89.3
64.7
52. 1

44. 1

38.5
34.4
28.5
24.4

241.1

148.4
109.8
88.1

74.0
64. 1

50.8
42.3

0.5

0 0.5 1.0

spin stifT'ness is expressed as

a = ——a ( Q' ) +—Q" g '
( (~) ) ——0~ g "(0~ )

e /a
(48)

FIG. 16. Spin-response function y (g) plotted as a function
of the spin polarization g for r, =2, 5, 10, and 15 at the ground
state (0=0). y (g) is normalized by its paramagnetic value

(0).

from Eqs. (12b) and (32), where a (8) is the exchange in-
tegral. We thus find

2/3a 1 3

e /a 3 2m
(49)

in the limit of complete degeneracy (0~0) and
1/3a

e /a
2

3772

1

0 (50)

1 0 F
n2 A(2

The plasma-parameter dependence of g can therefore

in the classical limit (0~ac ). The exchange contribu-
tion a /(e /a) has a minimum at a finite value of 0.

The low-frequency and long-wavelength limit of the
spin-response function, Eq. (8), which we shall denote as

, is given by

be investigated on the basis of the free energies obtained
in Sec. VI.

The r, dependence of the spin-response function y in
the paramagnetic state is shown in Fig. 15 for 0=0, 0.1,
and 0.5. Divergence of y to infinity is found at a value
of r, ; this divergence signals the onset of a transition
from the paramagnetic state to the ferromagnetic state
(see Sec. IX). We also plot in Fig. 16 the spin-
polarization dependence of g for various values of r, at
0=0. It appears that y has a maximum at a finite
value of g for r, ~ 5, analogous to the case observed in the
liquid

The isothermal compressibility ~ is given by

2 8 F=n
n V

(52)

With the aid of the parametrized expressions of F„, con-
structed in Sec. VII, we calculate the values of ~ in the
paramagnetic and ferromagnetic states at various com-
binations of 0 and r, (or I ).

The Fermi-liquid parameters F&"' are related to the
thermodynamic quantities in a usual way. To summa-
rize the results in this section, we list in Table VII the
values of Fo Fo and F; for the degenerate paramagnetic
electron liquid.

10
TABLE VII. Fermi-liquid parameters for the degenerate

electron liquid in the paramagnetic state.

i

10
I

100
S

FICi. 15. Spin-response function g in units of —3n/2EI; at
0=0, 0.1, and 0.5. HF refers to the result in the Hartree-Fock
approximation at 0=0 in which the correlation contribution to
the free energy is neglected in Eq. (51).

1

2
3
4
5
6

10
20

Fo
—0.214
—0.381
—0.554
—0.747
—0.956
—1.179
—2.201
—5.444

Fo
—0.176
—0.265
—0.329
—0.389
—0.444
—0.495
—0.676
—1.039

F
—0.147
—0.114
—0.030

0.036
0.102
0.168
0.399
0.843
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FICr. 17. Phase diagram of the electron liquid on the number
density vs temperature plane. The dashed curve corresponds to
the condition at which the isothermal compressibility ~ on the
paramagnetic fluid diverges to infinity; the solid curve describes
the boundary between the paramagnetic and ferromagnetic fluid

phases; the dot-dashed curve represents an interpolation be-
tween the crystallization conditions, I = 178 (Ref. 9) in the clas-
sical limit and r, =100 (Ref. 10) in the degenerate limit.

~E
N(&a)
0.005—

0.004

0.003

0.002

0.001

0

—0.001—

—0.002—

—0.003—

0
I I I I I I I I I

0.5 Q 1

FIG. 19. The difference between the ground-state energies in
an arbitrarily spin-polarized state and in the paramagnetic state,
calculated in the MCA scheme.

IX. PHASE DIAGRAM

z E
Ne'ja

0.04—
1

0.03—

0.02—

0.01-
HF ~'(

1

—0 01—

I I i I I i

GFMC
VMC

L

2
D

RPA
STLS

~ ~~.*

I I

100

FICx. 18. The difference AE =E(/=1) E((=0) of the-
ground-state energy between the ferromagnetic and paramag-
netic phases in units of Ne /a. MCA refers to the present cal-
culation; STLS, the calculation based on the integral equations
by Singwi et al. (Ref. 34); HF, the Hartree-Fock approximation,
Eq. (32); RPA, the random-phase approximation (Ref. 11); D,
Dunaevskii (Ref. 39); Z, Zabolitzky (Ref. 49); L, Lantto (Ref.
48); VMC, the variational Monte Carlo (Ref. 38); CxFMC, the
Green's-function Monte Carlo (Ref. 10).

As the numerical values in Table VII illustrate, the
Fermi-liquid parameters Fo and Fo in the paramagnetic
phase take on values below —1 at r, = 5 and at r, =20, re-
spectively; these may imply thermodynamic instabili-
ties. We study in this section those phase boundaries
associated with the compressibility and spin-
susceptibility anomalies in the finite-temperature electron
system.

In the ground state, the isothermal compressibility ~ of
the paramagnetic electron liquid diverges to infinity at

r, =5.2 in the MCA calculation; the compressibility be-
comes negative for r, ) 5.2. We find analogous diver-
gence of ic in the classical OCP (Ref. 9) at 1 =3.1. We
depict in Fig. 17 the curve representing K= ~ on the
density-temperature plane. derived from the equations of
state as obtained in Secs. VI and VII ~ Such a negative-
ness of the compressibility does not immediately imply a
thermodynamic instability of the system, however, be-
cause of the assumed, rigid background of neutralizing
charges in the electron liquid. ' We shall consider in
Sec. X some of the physical consequences arising from
finiteness of the compressibility in the ionic background.

The divergence of the spin susceptibility, on the other
hand, does imply a phase transition into ferromagnetic
state. As Eq. (51) shows, y ~~ implies an enormous
enhancement of spin-density fluctuations. The transition
point may be determined through comparison of the
Helmholtz free energies between the paramagnetic ( /=0)
and ferromagnetic (g= 1 ) states. The differences between
those free energies in the MCA, STLS, and Hartree-Fock
calculations are plotted in Fig. 18 as functions of r, at
0=0. For comparison we have also plotted in the same
figure the results obtained earlier by a number of investi-
gators. ' ' " ' ' ' We observe in Fig. 18 that the r,
values of the transition hitherto predicted scatter widely
between r, =5.45 (Hartree-Fock) and 75 (GMFC); the
MCA prediction at r, = 19.6 and the STLS prediction at
r, =20. 1 fall somewhere between them.

To see detailed features of the transition, we depict in
Fig. 19 the spin-polarization dependence of the ground-
state energies calculated in the MCA scheme above and
below the ferromagnetic transition point. The metasta-
bility of the transition predicted in the Hartree-Fock cal-
culations does not appear here. We also note in Fig. 19
that a state with intermediate value of spin polarization
(0&/&1) can be thermodynamically stable at r, =20.
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Such an intermediate polarization does not appear in the
RPA calculation. "

The foregoing arguments on the ferromagnetic transi-
tion can be extended to the systems with finite tempera-
tures. Comparing the free energies between the paramag-
netic and ferromagnetic states, we have derived the phase
boundary curve depicted in Fig. 17.

At still lower densities and temperatures, the electrons
may undergo a transition into a crystalline state (i.e., the
Wigner crystallization). In Fig. 17, we have drawn such a
boundary curve as an interpolarization between I = 178
for 0)) 1 (Ref. 9) and r, = 100 for 0« 1 (Ref. 10).

There exist possibilities of other anomalies associated
with the onset of a charge-density-wave ' (CDW) instabil-
ity and of a spin-density-wave (SDW) instability, sig-
naled by the conditions

at nonzero values of k. In the present MCA analyses,
such instabilities leading to inhomogeneous states are not
predicted at relevant plasma parameters in a three-
dimensional electron liquid; possibilities in a two-
dimensional electron liquid are under investigation.

X. ELECTRON-ELECTRON INTERACTION

According to Kukkonen and Over hauser, ' the
spin-dependent interactions between two conduction elec-
trons in metallic substances may be expressed as

V,(k) = L (k)+N(k)+(25, —1)M (k)
kF co cog

1 —v (k)[1—G(k)]y~(k, O) =0 (CDW),

1+v (k)G&(k)ya(k, O) =0 (SDW)

(53)

(54) in the paramagnetic state, where

(55)

k /kL(k)= [1+u (k)G (k)yv(k, 0) ] [ 1 —v (k)[1—G (k)]go(k, O)] j
(56)

N(k)= k~ 1 —v (k)G (k)[1—G (k)]go(k, O)

k 1 —v (k)[1—G(k)]yv(k, O)
(57)

M(k)= k~ v (k)G (k) y()(k, O)

k 1+v (k)G (k)yo(k, O)
(58)

The cu dependence in Eq. (55) is assumed to stem only
from the phonon coordinates, so that the electrons make
a static response with yo(k, O) and G,(k). The frequency
co& denotes the characteristic frequency of the phonon;
Q)p =spk with sp representing the sound velocity of the
ion background in the absence of Coulomb forces.

The electron-electron interaction in the ferromagnetic
(spin-aligned) state may be analogously obtained as

G(k) =
Eos

Tp —1 e p
k +1 G(k),
k

C

(61)

in the paramagnetic state.
We have calculated L (k), N(k), and M(k) for various

combinations of 0 and r, in the MCA scheme. G, (k)
have been modified slightly through

4~e' ~~ ~p2 2

V, (k) = L (k)+N(k) (59)
G (k)=

EOS
y —1LFC

k
exp — + 1 G (k), (62)

P(k) =N(k)+M(k) (60)

In Eqs. (56), (57), and (59), kz and go(k, co) should be eval-
uated appropriately for the electrons in the spin-aligned
state.

Physically, the terms of Eqs. (55) and (59) involving
L (k) describe those parts of the electron interactions in-
duced by the lattice vibrations or phonons. If we replace
the ions with a rigid, uniform background of positive
charges, those terms identically vanish. The terms in-
volving N(k) represent the spin-symmetric parts of the
electron interactions independent of the lattice vibra-
tions. The term in Eq. (55) involving M(k) describes the
spin-antisymmetric part of the electron interactions. We
may define a net interaction between electrons with paral-
lel spins as

so that the compressibility and spin-susceptibility sum
rules are satisfied exactly; the characteristic wave number
k, has been chosen as k, =2kF.

We plot in Fig. 20 the values of L (k) computed in the
present scheme for r, =4, 6, and 18 at 0=0. 1 in the
paramagnetic state. Since the long-wavelength limit of
I+u(k)G(k)gz(k, O) takes on a value inversely propor-
tional to ~ owing to the compressibility sum rule, the
magnitude of the phonon-induced interaction is enhanced
drastically in the long-wavelength regime as the compres-
sibility anomaly (~~ ~ ) at r, =5 is approached; across
the anomaly, L (0) changes its sign from positive to nega-
tive through infinity. When v &0, L (k) starts with a neg-
ative value at k =0, increases its magnitude with k, and
diverges to negative infinity at a finite value of k, where
L (k) turns over to positive infinity and then decreases
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L(k)
3—

0

0

FIG. 20. Phonon-induced electron-interaction function L (k)
for r, =4, 6, and 18 at 0™=0. 1 in the paramagnetic state.

monotonically as k further increases. Correspondingly
the phonon-induced electron interactions exhibit remark-
able k dependence in its sign and magnitude.

The function N(k) takes on positive definite values, so
that this part of the interactions remains repulsive. On
the other hand, the function M(k) is negative definite in
the paramagnetic state, so that it makes an attractive in-
teraction between electrons with parallel spins, due physi-
cally to negativeness of the interaction energy associated
with the exchange hole. We plot in Fig. 21 the values of
P(k) at r, =6 and 18 in the paramagnetic state and the
values of X(k) at r, =25 in the ferromagnetic state
at 0=0. 1. Since the long-wavelength limit of
1+U(k)G (k)go(k, o) takes on a value inversely propor-
tional to the spin susceptibility owing to the spin-
susceptibility sum rule, the magnitude of the spin-
antisymmetric part of the electron interactions is
enhanced enormously in the long-wavelength regime as
the spin-susceptibility anomaly (g ~ ~ ) at r, =22 is ap-
proached. We thus find in Fig. 21 that a strong attractive
interaction between electrons with parallel spins appears

in the long-wavelength regime at r, =18. Such an attrac-
tive interaction does not exist at r, =25, however, where
the system is in the spin-aligned state.

The features of the electron interactions elucidated
thus far along 0=0. 1 remain virtually the same for
O&0. 1, as the phase boundary curves in Fig. 17 form
vertical line (n: constant) there. We may thus expect
that those remarkable changes in the spin-dependent and
phonon-induced electron-electron interactions across the
phase boundaries have significant consequences in the
electronic transport in metallic substances over a wide
range of density and temperature parameters.

XI. CONCLUSION

We have analyzed the spin-dependent static correla-
tions in electron liquids on the basis of the MCA scheme
as applied to the multicomponent charged system. The
scheme has been shown to provide as self-consistent
description of the thermodynamic properties over a wide
range of density, temperature, and spin polarization; the
accuracy of the scheme has been examined through com-
parison with the MC data. The parametrized expressions
for the free energies are derived as functions of plasma
parameters 8, r„and g; Fermi-liquid parameters are
thereby calculated. Phase boundary curves are drawn on
the n-T plane, representing the conditions for divergence
of the isothermal compressibility and the spin susceptibil-
ity in the electron liquid. It is shown quantitatively that
the signs and magnitude of the spin-dependent and
phonon-induced electron interactions exhibit remarkable
changes across the phase boundary in the metallic elec-
trons.
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P(k)
&s=25 APPENDIX: LOW-TEMPERATURE BEHAVIOR

OF EXCESS FREE ENERGY

0 2

FIG. 21. Intrinsic electron-interaction function P ( k) be-
tween parallel spins for I, =6, 18, and 25 at 0=0.1. Note that
I'(k) =X(k) in the ferromagnetic state (i.e., at r, =25).

In the Hartree-Fock approximation, the excess free en-
ergy F„, and hence the specific heat C, have a logarith-
mic singularity in the limit of low temperature. ' It
has been demonstrated through numerical calcula-
tions, ' however, that such a singularity disappears when
the Coulomb correlation or the screening effect is ap-
propriately taken into account. In this appendix we show
explicitly that the logarithmic singularity indeed disap-
pears in the RPA.

We begin with the RPA expression for the excess free
energy F„, in the paramagnetic state. The increment of
F„,due to an increase of the temperature from T =0 may
be expressed as
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Vkz T dlt v(k)5yo(k, zt )

where 6go denotes the increment in the free-particle po-
larizability, z& =2~ilk~ T/A, and l denotes integers.

We adopt a static-screening approximation, so that
yo(k, zt ) in the denominator of Eq. (Al) is replaced by its
static value go(k, 0). We next note an identity,

k~T 2 dq
yo(k, zt ) = 1 ——f 3 f(q)f (q+ k),

n t n (27r)3

(A2)

where f (k) is the Fermi distribution function. We thus
find

4 2

5F„,= —2V f "",f "q, ;, f(k)5f (q),
(2~) (27r) II~ ql +kTF

(A3)

where 5f denotes the increment of f due to the increase
of temperature and kTF=(6trne /EF)' is the Thomas-
Fermi screening wave number.

Assuming 0 « 1, we may approximate f (k) and

5f (q) by their limiting expressions. We can thus carry
out the k integration in Eq. (A3).

If we set kTF=0 in the resulting equation, we recover
the Hartree-Fock expression for 6F„,. Expanding the

integrand around q =kF and carrying out the q integra-
tion, we then find

e m (ksT) EF
5F„,= V ln +O(T, e ),

6~% k~T
(A4)

(A5)

The logarithmic singularity has thus been transformed
from lnT to lnr„so that the specific heat is a well-

behaved quantity in the low-temperature limit. The
effective mass calculated with Eq. (A5) is

m* 4I 9n

1/3
r,

ln
277

1/3

+O(r, ) .

(A6)

the leading term in the Hartree-Fock approximation.
Such a logarithmic singularity in the low-temperature

regime has stemmed from overlapping of the Coulomb
singularity in the long-wavelength limit and the Fermi-
distribution singularity at the Fermi surface; it may re-
moved if the screening wave number is kept finite (i.e. ,

kTF&0). In fact, expanding the integrand around q =kF
and carrying out the q integration, we obtain

em (k~T) 4 r,
6F„,= —V ln +O(T, e ).
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