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Self-consistent tight-binding theory of elasticity in ionic solids
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Intra-atomic and interatomic Coulomb contributions to the total energy are added to the tight-
binding theory of bonding in simple ionic solids. They are found to remove the principal discrepan-
cies with experiment found earlier for the bulk modulus and Gruneisen constant for the alkali
halides and alkaline-earth chalcogenides. The analysis is extended also to predict the full elastic
tensor for these systems and the pressure dependence of that tensor, in good accord with experiment
where it exists.

I. INTRODUCTION

The virial theorem suggested a repulsive overlap interac-
tion between ions of the form

Vp=gplEtoI [A'/(I ,Eod')]', (2)

where cK; is the p state term value for the inert gas in the
row of the Periodic Table from which the constituent
atoms come; if they come from different rows, the
geometric mean of the two values is used. The motiva-
tion for the exact form is given in Ref. 1; the principal
feature is the dependence upon 1/d . Exactly this form
was used, and is used here, both for the interaction be-
tween nearest-neighbor metallic and nonmetallic ions
(separated by d) and between nearest-neighbor nonmetal-
lic ions (separated by d&2). The coupling between states
on nearest-neighbor metallic ions did not enter the total
energy since the corresponding states are not occupied.
The coefficient go was fit for each anion row to give the
correct spacing for the potassium halide. Then, using
Hartree-Fock free-atom term values, all parameters were
known which were needed to predict the equilibrium
spacing, cohesion, bulk modulus, and Griineisen constant
for all alkali-metal halides and alkaline-earth chal-
cogenides. The first two properties were well given, but
the bulk modulus and Griineisen constant were in error
by factors of order 2. We subsequently added d states in
order to extend this analysis to the transition-metal com-
pounds in the rocksalt structure with similar successes
and discrepancies.

In these analyses no account was taken of Coulomb
corrections to the term values in the solid, not because
the effective charges Z* of constituent ions were small,
but because the intra-atomic shift Z*U of the levels due

An earlier publication gave' an elementary tight-
binding theory of cohesion and the bulk modulus in ionic
solids in the rocksalt structure. It was based upon s
states from the metallic atoms (e.g. , Na) and p states from
the nonmetallic atoms (e.g., Cl) with nearest-neighbor
coupling given in terms of the internuclear distance d by
the general form

y = 1 42/ /ypzd

to excess charge on the ion is very nearly equal and oppo-
site to the Madelung shift aZ'e /d. Thus, for example,
the observed band gaps in alkali-metal halides are very
nearly equal to the difference in the free-atom p-state en-

ergy of the halogen and the free-atom s-state energy of
the cation. Note, however, that only the Madelung term
depends upon internuclear distance so that significant in-
teratomic forces could arise from the Coulomb term even
if the two energies cancel at the observed spacing.
Indeed, a more intricate tight-binding analysis of sp-
bonded systems by Majewski and Vogl did include
Coulomb effects and gave a good account of the bulk
modulus as well as structural stabilities. It was not clear
from that paper whether the improvement came princi-
pally from the additional parameters in the theory or
from the Coulomb effects. We shall see here that, in fact,
our omission of Coulomb effects was responsible for the
principal discrepancies which we found for the bulk
modulus and Gruneisen constant.

Coulomb interactions were added in Ref. 4 for these
systems and values given for the intra-atomic Coulomb
repulsion U, but this was not formulated for, nor applied
to, the volume dependence of the energy. That is one
subject of the present study. The other is the analysis of
the elastic shear constants.

II. THE TOTAL ENERGY

A. Without Coulomb e8'ects

We first restate the tight-binding theory of the total en-

ergy, under the assumption that the atoms remain neutral
in the solid. Then there are no Coulomb corrections and
the relative energy of different atomic arrangements (in-
cluding the .difference between the solid and dispersed
free atoms) can be obtained as the difference between the
sum of the one-electron energy eigenvalues for the occu-
pied states, as in Refs. 1 and 2. This can be simplified for
the solid using the Baldereschi point method ' in which
the average over a band is replaced by a value at a spe-
cially selected wave number k . For sp bands in the
rocksalt structure' two p bands are independent of wave
number at the p state energy c and the coupling between
the s-like Bloch sum and the remaining p-like Bloch sum
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at the Baldereschi point is given by V2 =&6V, . For
analysis of the total energy it is convenient to write the
band energies in terms of the coefficients u, and u of the
two Bloch sums making up the state:

~,.=u,'~, +2u, u, V, +u,'~, .

In fact, it will be more convenient to write the band en-
ergies in terms of a parameter S* which will be equal to
the effective charge Z* for the alkali-metal halides. %'e
write u, =(1—S*)/2; then by normalization we know
u =(1+S*)/2. Since Vz is positive, the lowest-energy
state will have u, = —u . Note that the two electrons per
atom pair occupying this band place 1 —S* electrons on
an alkali-metal atom, which yields a net positive ion
charge of Z*e equal to S*e. We, however, are using S'
here as a variational parameter. Substituting for u, and
uz in Eq. (3), and multiplying by 2, we obtain the energy
per ion pair, relative to the energy with one electron in
each atomic state, as

E, b,„q= —S (E, —s~) —2V2(1 —S* )'~

In the absence of Coulomb effects we could simply mini-
mize this with respect to S* to obtain S'
= V3/(V2+ V3 )'~ with the polar energy V& defined by
V3=(c,, —s )/2. We could then substitute this S* back
in Eq. (4) to obtain the bonding energy and add an over-
lap repulsion to obtain the total energy as a function of
spacing d.

B. Adding Coulomb effects

We return to an isolated atom aIid write the total ener-
gy of the atom in terms of the difference Z between the
number of electrons on the atom and the number for the
neutral atom as a Taylor expansion:

E(Z) =E(0)+E'Z+ ,'E "Z +—
For the free atom Z will be an integer, but it will become
continuous in the solid. We next wish to identify the pa-
rameters E' and E" in terms of free-atom parameters,
dropping terms in Eq. (5) of higher order than Z . We
identify the free-atom term value as the energy
s=E(0)—E( —1)=E' E"/2 (the negati—ve of the energy
required to take an electron from the neutral atom and
carry it to zero energy at infinite distance). The Coulomb
energy U is defined (and obtained in Ref. 3) as the
difference between the ionization energy —c and the elec-
tron affinity. Thus the negative of the electron affinity is
c, + U=E(1) E(0)=E'+E"/2. Su—bstituting back for
E' and E"yields

E(Z)—E(0)=(E+U/2)Z+ UZ /2 .

Having dropped higher-order terms, we would obtain the
second ionization energy as E( —2) —E(1)= —c, + U,
larger than the first ionization energy by U. This is in
reasonable accord with experiment as may be seen, for
example, from the CRC handbook. For c we use the
Hartree-Fock term value, which is a good approximation
to the first ionization potential. We use U' from Ref. 3 as
the intra-atomic Coulomb repulsion for the metal and U&

ae'S*'—/d+E. „«„p .

For the alkaline-earth chalcogenides it becomes

E~ b,„q=—(S +1)(e,—s~) —2V2(1 —S' )'~

+ —,'(S + 1)( Ui' —U')+ —,'( U~+ U')(S*+ 1)

—ae (S"+1) /d+E, „«„~ .

(7)

The evaluation of the energy for any translationally
symmetric (so all ions of the same type are in equivalent
environments) arrangement of ions is now straightfor-
ward. We are to nunimize Eq. (7) or (8) with respect to
S* and all parameters have been specified. We shall do
this for the potassium halides and fit qo for the corre-
sponding row to obtain the observed d. Then we evaluate
the energy from Eq. (7) or (8) for each other compound to
predict the spacing d from the minimum, the cohesion
from the energy at the minimum, the bulk modulus from
the curvature at the minimum, and the Gruneisen con-
stant from the third derivative. We shall also shear the
lattice and recompute the energy in order to predict the
shear elastic constants.

C. The relation to density-functional theory

We first relate the atomic energy, Eq. (6), to density-
functional theory. In that theory the direct Coulomb en-
ergy of the charge distribution corresponding to the
Z+ 1 electrons on an alkali-metal atom is (Z+ 1) U'/2,
greater than the free-atom value (Z=O) of U'/2 by
ZU'+Z U'/2. There is also an exchange interaction,
the largest effect of which is to cancel the direct interac-
tion of each electron with itself, a correction of —U'/2
for each electron times the number Z+1 of electrons.
We subtract from this correction the value —U'/2 from
E(0) in Eq. (6) giving a net correction of —ZU'/2. This
reduces the excess Coulomb interaction to the
ZU'/2+Z2U'/2 given by Eq. (6) so the approaches are
consistent. The same analysis applies to the nonmetallic
p state. The density-functional eigenvalue is the deriva-
tive of Eq. (6) with respect to occupation, c, + U/2+ ZU.

as the intra-atomic Coulomb repulsion for the nonmetal.
As we return to the compound, we use this same ex-

pression for the energy per atom, with Z given by the
number of electrons on the atom (1—S* for the metallic
atom) minus the number on the neutral atom (1 for the
alkali metal). The energy for the metallic atom,
E(S*)—E(0)= —S*s,—S' U'/2+S* U'/2 for alkali-
metal halides, is added to that, S's +S' U~/2
+S* U~/2, for the nonmetallic atom. We note also that
the effective charge on the ions is S*e for the alkali-metal
halides so that we should add a Madelung energy—aS* e /d with a=1.75. There are also six nearest-
neighbor and six second-neighbor-halide interatomic
repulsions per ion pair, ' which we write collectively as
E„„j,. The energy per ion pair for the alkali-metal
halides becomes

E,~ b,„~=—S'(e, —E ) —2V2(1 —S* )'~

+ —,'S'( U~ —U')+ —,'( U~+ U')S"
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We may also see the relation between the energy of the
solid and a density-functional band calculation. In par-
ticular, the maximum of the valence band and the
minimum of the conduction band come at k=O where
the coupling between s-like and p-like Bloch sums is zero.
Thus the eigenvalue for each is simply the free-atom ei-
genvalue (a+U/2+ZU) shifted also by the Madelung
potential. For the alkali metal in an alkali-metal halide
Z= —Z' and this is s, + U'/2 —Z'U'+aZ*e /d. For
the halogen it is s~+ Up/2+Z* U~ —aZ*e /d. The gap
becomes

Eg=a, —E~+(U' —U~)/2 —Z'(U'+U~ 2ae —ld) .

(9)

The same expression obtains for divalent compounds, but
then of course Z*=1+5*rather than simply S*.

The final term in Eq. (9) is very small because the aver-
age U is nearly equal to the Madelung energy, ae /d.
However, the term ( U' —U~)/2 reduces the gap consider-
ably below the observed values, which are near c, —c .
In fact, the density-functional gap is expected to be small-
er than the observed gap by the correlation energy,
( U'+ U~)/2 divided by the static dielectric constant. ' '

It was nated in Ref. 4 that this correction was in good ac-
cord with the observed enhancement of the gap in com-
parison with other density-functional-theory values. '

However, correcting tight-binding gaps (then taken as
) gave gaps too large. That discrepancy is now re-

moved.

garded as an empirical correction.
The direct application of Eq. (8) to the divalent com-

pounds, with no additional adjustments, yields the values
given in Table III. We see that the agreement with ex-
periment is comparable to that obtained for the alkali-
metal halides. Indeed, the larger discrepancies for the
oxides would appear to be improved by the same change
in averlap repulsion which was suggested above for the
fiuorides.

IV. THE ELASTIC CONSTANTS

The theory embodied in Eqs. (7) and (8) is also applic-
able to shearing of the lattice. In that case the Madelung
constant a depends upon shear and E,„„~, , consisting of
first- and second-neighbor radial repulsions, and needs to
be evaluated for the sheared geometry (using, however,
exactly the same repulsions). Also, the V2 =&6V,z
came' from a sum over neighbors [g;V, (d; ) ]' . In
the sheared lattice that sum can be directly evaluated but
no longer leads to [6V, (d) ]'~ .

A. Madelung contributions

The Madelung calculation uses the Ewald-Fuchs
method as given by Wallace" to evaluate the stress-strain
coeKcients' 8," for a system of point charges. The lat-
tice sum formulas for 844 and 8» —8&2 may be factored
into a form

constXZ* e /2d

III. RESULTS FOR THE VOLUME-DEPENDENT
ENERGY

The evaluation of the energy as a function of volume
from Eq. (7) is straightforward, leading to the properties
given in Table I for the alkali-metal halides. We see that
the accord with experiment is generally very good for the
bulk modulus, as well as for the equilibrium spacing.
This removal of discrepancies of the order of a factor of 2
has come from the inclusion of Coulomb interaction
without the addition of any adjustable parameters.

There remain significant discrepancies for the Auorides.
Such difficulties with systems fram the carbon row of the
Periodic Table are usual both for tight-binding and for
pseudopotential theories. We note here that the
discrepancies are qualitatively those that would arise if
the overlap repulsion varied as a lower power of d, such
as 1/d, for the fluorides rather than as 1/d . For exam-
ple, replacing the Vo of Eq. (2) by
go(e,G([fi /(m (E,o)d )] (and go readjusted for KF) leads
to the fluoride properties listed in Table II. This makes
considerable improvement in the predicted properties, ex-
cept for the equilibrium spacings. We might note, how-
ever, that although the elastic constants (to be discussed
in the next section) appear to be in good accord, the pure
shear constant —,'(c&& —c,2) comes out too small by a fac-
tor of about 2; the contributian af the second neighbors
turns out accidentally to be zero for a, l/d repulsion.
We have no basic reason to make this change in the
repulsion for the Auorides so such a change should be re-

with the constant dependent only on the structure and in-
dependent of volume. The results for the pressure and
elastic moduli in the rocksalt structure are

P„=—(a/3)Z* e l2d, a=1.747565

8„=—(4a/9)Z* e /2d

(8&&
—B,z)„=PZ' e /2d4, P= —2.66901

844„=(Z e /2d, /=1. 27802

(10)

These Madelung contributions to the shear moduli are
of the same order, but of opposite sign, as the corre-
spanding contributions from Eppzz]zp.

B. Comparison of elastic constants with experiment

The resulting elastic constants appear in the last three
columns of Tables I and III. The agreement with experi-
ment is comparable to that for the bulk modulus for the
alkali-metal halides; the discrepancy discussed before for
the Auorides shows up also in the other elastic constants.
Agreement for the oxides is comparable to that for the
Auorides. For the divalent sulphides, selenides, and tellu-
rides we found no data with which to compare and these
predictions may be useful because of that. The accuracy
should be comparable to the agreement found for the
monovalent compounds.

An interesting aspect of the results is that we predict in
all cases a c44 somewhat less than c&2, whereas the experi-
mental values are comparable and in some cases c44 is



10 328 GALEN K. STRAUB AND WALTER A. HARRISON 39

TABLE I. The lattice spacing d, effective charge Z*, cohesive energy E„h, bulk modulus 8, and
second-order elastic constants for the alkali-metal halides. Experimental values are given in
parentheses. Experimental values for d and E„h are taken from the tabulations in Ref. 1. Experimen-
tal elastic moduli are from G. Simmons and H. Wang, Single-Crystal Elastic Constants and Calculated
Aggregate Properties, 2nd ed. (MIT Press, Cambridge, 1971).

NaF

NaCl

NaI

KF

KCl

KBr

KI

d
(A}

2.459
(2.32}

2.872
(2.s2)

3.027
(2.99)

3.228
{3.24)

2.648
(fit)

3.121
(fit)

3.296
{fit)

3.519
(fit)

z
0.719

0.762

0.729

0.729

0.766

0.814

0.793

(ev)

—10.81
( —7.9)

—7.94
(—6-8)

—6.73
(—6.1)

—5.82
( —5.2)

—10.52
( —7.6)

—7.82
( —6.9)

—6.62
( —6.2)

—5.77
( —5.4)

8
(eV/A')

0.410
(0.290)

0.200
(0.150)

0.157
(0.124)

0.117
(0.094)

0.290
(0.190)

0.137
(0.109)

0.107
{0.092)

0.080
(0.079)

(eV/A }

0.821
(0.605}

0.366
(0.303)

0.280
(0.248)

0.198
(0.189)

0.598
(0.410)

0.267
(0.253)

0.207
(0.216)

0.150
(0.172)

Cia,
(eV/A')

0.204
(0.152)

0.117
(0.078)

0.096
(0.066)

0.076
(0.056)

0.136
(0.091)

0.072
(0.041)

0.058
(0.035)

0.045
(0.028)

C44,
(eV/A')

0.115
(0.175)

0.079
(0.079)

0.064
(o.o62)

0.053
(o.o46)

0.079
(0.078)

0.049
(0.051)

0.039
(o.o32)

0.032
(0.023)

RbCl

RbI

2.707
(2.so)

3.200
(3.29)

3.384
{3.42)

3.616
(3.64)

0.781

0.831

0.809

0.815

—10.42
( —7.4)

—7.76
( —6.7)

—6.56
{—6.1)

—5.72
( —5.4)

0.262
(0.164)

0.123
(o.o97)

0.096
(0.081)

0.071
(0.066)

0.542
(0.345)

0.242
{0.222)

0.187
{0.196}

0.136
(0.160)

0.122
(Q.os 7)

0.063
(0.037}

0.050
(0.030)

0.039
(0.022)

0.072
(a.oss)

0.044
(0.029)

0.035
(o.o24)

0.028
(0.017)

higher than c&2. This is of interest because the Cauchy
relations, which follow if the system is in equilibrium un-
der two-body radial forces only, are that c,z=c44. We
have found deviations because multibody forces can arise
from the V&=[+, V,~ (d;) ]'; one can expand the
square root and see that there are cross terms between
different d;. There may also be cross terms from
Coulomb interactions for different d;. The effects of these
multibody radial forces are apparently small since we
predict small deviations from the Cauchy relations.

Angular forces can also arise in tight-binding theory.
The lowest-order (in V, ) ones arise in fourth-order per-
turbation theory and are called the "chemical grip. "
These contribute to c~ but not to c,2. The change in en-
ergy arising from each metal-nonmetal-metal angle at a
given nonmetal is 2[Vd /(E, —e ) ]g; sin 8; . This
gives a contribution to c44 of

5c4~=16Vd /(e, —s ) d

Note that this correction varies as 1/d" so it becomes
much more important in the first-row systems. It was

TABLE II. Fluoride compounds with the empirical adjust-
ment of E „„,&,p. For each compound, the top entry is for
E ] p 1 /d the second entry is for Epverlap 1 /d, and the
last entry in parentheses is the experimental value.

NaF

KF

RbF

d
(A)

2.459
2.475

(2-32)

2.648
2.651
(fit)

2.707
2.705

(2.80)

8
{eV/A')

0.410
0.271
(0.290)

0.290
0.198
(0.190)

0.262
0.180
(0.164)

C11
(ev/A )

0.821
0.392
(0.605}

0.598
0.301
(0.410)

0.542
0.277
(0.345)

Clz,
(ev/A )

0.204
0.211

(0.152}

0.136
0.146

(0.091)

0.122
0.131
(0.087)

C44,
{ev/A )

0.115
0.124

(0.175)

0.079
0.089

(0.078)

0.072
0.082
(o.o23)

evaluated using E, + U'/2 —
E~

—U~/2 in the denomina-
tor, as is appropriate for density-functional theory. This
gives an increase in c44 of 0.011 eV/A for NaF and 0.050
eV/A for CaO. The corrections are considerably smaller
for the heavier compounds, 0.006 eV/A for NaCl. Thus
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we see that it accounts for some of the discrepancy in the
predicted c,2

—c44 di6'erence.

C. Pressure derivatives of the elastic constants

For the compounds NaC1, KC1, KBr, and Kl, the pres-
sure derivatives of the stress-strain coef5cients, ' denoted

by 8;, have been determined experimentally and are
compared with the present results in Table IV. The
theoretical derivatives were calculated as numerical
derivatives of the 8; 's. Measurements were made of the
velocities of acoustic pulses propagating in the [110]
direction of single-crystal samples. The overall agree-
ment with experiment is good both in terms of magnitude

TABLE III. The lattice spacing d, effective charge Z*, cohesive energy E„h, bulk modulus 8, and
second-order elastic constants for the divalent compounds in the rocksalt structure. Experimental
values are given in parentheses. Dioalent compound references are as follows: MgO, O. L. Anderson and
P. Andreatch, J. Am. Ceram. Soc. 49, 404 (1966). CaO, SrO, P. R. Son and R. A. Bartels, J. Phys.
Chem. Solids 33, 819 (1972). CaTe, SrTe, H. Zimmer, H. Wingen, and K. Syassen, Phys. Rev. B 32,
4066 (1985). CaS, E. Perez-Albuerne and H. G. Drickhamer, J. Chem. Phys. 43, 1381 (1965). BaTe, T.
Bryzbowski and A. Ruoff, Phys. Rev. Lett. 53, 489 (1984). BaO, V. Vetter and R. Bartels, J. Phys.
Chem. Solids 34, 1448 (1973). CaSe,SrSe,BaSe, O. Anderson and J. Nafe, J. Geophys. Res. 70, 3951
(1965). BaS, S. Yamaoka, O. Shimomura, H. Nakazawa, and O. Fukuma, Solid State Commun. 33, 87
(1980).

MgO

MgS

MgSe

Mg Te

d
(A)

2.188
(2.10)

2.526
(2.60)

2.663
(2.73)

2.832

Zg

1.599

1.742

1.694

1.703

(eV)

—14.63
( —10.4)

—11.57
( —8.0)

—9.21

—7.82

8
(eV/A )

1.551
(1.03)

0.918
(0.71)

0.697

0.534

(eV/A )

2.843
(1.91)

1.436

1.075

0.776

C)g
(eV/A )

0.905
(0.59)

0.659

0.507

0.412

(ev/A )

0.824
(0.98)

0.621

0.496

0.412

CaO

Cas

CaSe

CaTe

2.327
(2.41)

2.704
(2.85)

2.855
(2.96)

3.037
(3.18)

1.663

1.802

1.770

1.786

—15.13
( —11.0)

—12.52
( —9.7)

—10.17
{—7.3)

—8.93

1.243
(0.71)

0.722
(0.28)

0.555
(0.32)

0.431
(0.26)

2.393
(1.39)

1.263

0.969

0.730

0.667
(0.37)

0.452

0.348

0.282

0.606
(0.51)

0.421

0.334

0.274

SrO

SrS

SrSe

SrTe

2.367
(2.58)

2.761
(3.10)

2.916
(3.12)

3.104
(3.33)

1.704

1.834

1.811

1.828

—15.58
( —10.4)

—13.14
( —9.3)

—10,77

—9.57

1.191
(0.55)

0.677

0.527
(0.29)

0.409
(0.25)

2.303
(1.08)

1.206

0.937

0.709

0.636
(0.28)

0.413

0.322

0.259

0.574
(0.35)

0.383

0.305

0.248

BaO

BaS

BaSe

BaTe

2.415
(2.76)

2.828
(3.19)

2.990
(3.30)

3.187
(3.49)

1.713

1.841

1.819

1.836

—15.80
( —10.3)

—13.41
(—9.4)

—11.04
{—10.3)

—9.87

1.100
(0.38)

0.615
(0.56)

0.477
(0.25)

0.369
(0.18)

2.148
(0.70)

1.118

0.868

0.658

0.576
(0.22)

0.363

0.281

0.224

0.520
(0.21)

0.337

0.266

0.214
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TABLE IV. Pressure derivatives of B;~ and mode Griineisen parameters. Experimental values of
dB;, /dP and y(8;i) are from Simmons and Wang [G. Simmons and H. Wang, Single Cr-ystal Elastic
Constants and Calculated Aggregate Properties, 2nd ed. (MIT Press, Cambridge, 1971)],and from Bar-
tles and Schule [R. A. Bartels, and D. R. Schule, J. Phys. Chem. Solids 26, 537 (1965)] for T= 195,K
and are written here in parentheses.

NaC1

KCl

KBr

KI

dBT/dP

4.55
(5.13)

4.43
(5.34)

4.48
(5.39)

4.51
(6.28)

dB] i /dP

10.5
(11.5)

10.7
(12.8)

10.7
(13.0)

10.6
(14.0)

dB»/dP

1.59
(1.95)

1.31
(1.61)

1.37
(1 ~ 59)

1.47
(2.42)

dB~ /dP

—0.07
(+0.32)

—0.29
(—0.42)

—0.24
( —0.33)

—0.14
( —0.24)

y(B[])

2.86
(2.59)

2.58
(2.56)

2.61

2.66

X(B»)

1.19

1.08

1.14

—0.26
(0.14)

—0.57
(—0.77)

—0.50

—0.34

and trends for the potassium halides. The negative value
of d844/dP is somewhat unusual and is not observed in
cubic-structure metals. d844/dP is quite sensitive to the
repulsive interaction; the excellent agreement for all of
the potassium compounds and correct trend between
NaCl and KCl indicates that our treatment of the overlap
repulsion is appropriate.

The mode Gruneisen parameters y; can be determined
from the pressure derivatives of the elastic constants.
For a particular vibrational mode of frequency co;, the
y; = —d(lnco;)/d(in V). For the low-frequency acoustic
modes this may be written as y,. = —,' +(BT—I
28;~ )(dB;J.IdP). This latter expression may be derived by

using co; =k;U;, where k; is the wave vector and U; is the
wave velocity of the mode. The experiment measures the
elastic moduli in terms of the propagation velocity by
8;J=pv;. . Using a bulk modulus BT=—BPIBlnV, we
obtain the relation between y; and the pressure deriva-
tives giv.en above.

Calculated values of y(8&&), y(B&2), and y(B~) are
listed in the last three columns of Table IV with experi-
mental values at T=195 K given in parentheses. Vr'e

note that y(844 ) is predicted to be small and negative, in
contrast to the other values, and in agreement with ex-
periment for KC1, though not NaCl.
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