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Magnetic-field-dependent self-consistent electronic structure
of an inversion layer in the two-subband state
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An electron inversion layer with two populated electric subbands at zero magnetic field is con-
sidered in a perpendicular quantizing magnetic field. The band bending in the direction of the mag-
netic field depends on the latter via the occupation of the Landau levels according to their ordering
and to their degeneration. Full self-consistent calculations are performed taking properly into ac-
count this eAect for the first time. It is shown that qualitatively new features of the Landau-level
spectrum and of the subband occupation appear. Most important is the occurrence of finite mag-
netic field regions where two Landau levels coincide and where both of these levels are partially oc-
cupied.

I. INTRODUCTION

Transport properties of the quasi-two-dimensional
(Q2D) electron gas in inversion layers are of importance
for fundamental research as well as for technical applica-
tions. ' The magnetotransport measurements especially
yield much information on the electronic nature of Q2D
systems. Therefore the energy spectrum of such systems
in perpendicular magnetic fields is of special interest.

In recent years an increasing number of results con-
cerning the electronic structure of inversion layers in
magnetic fields were published where the influence of
such semiconductor characteristics as nonparabolicity,
band mixing, or impurity scattering were discussed. But
up to now, to our knowledge, besides our preliminary re-
sults, there exists only one Landau-level (LL) calcula-
tion considering the magnetic field in a self-consistent
way.

In this paper we present full self-consistent calculations
of the LL's for a Q2D electron gas with more than one
occupied electric subband and show that several qualita-
tively new features of the LL spectrum occur. The most
interesting new property is that a coincidence of two par-
tially occupied LL s appears in various finite regions of
the magnetic field.

II. FORMULATION OF THE PROBLEM

The system investigated is the symmetric potential
(position-dependent conduction-band edge) caused by a 5
sheet of a fixed positive charge per unit area NT (as a
model for 6 doping layers or grain boundaries ), nega-
tively charged acceptors in the depletion layer (density

N„), and the inversion electrons (see Fig. 1).' To
demonstrate the main efFect, nonparabolicity of the con-
duction band, spin splitting, and the influence of band-
mixing efFects are omitted. The calculations are done for
temperature T~0 K. Parameters like efFective mass m *

or energy gap E are chosen according to conditions in

p-type InSb.

If a magnetic field 8 is applied parallel to the z direc-
tion (perpendicular to the Q2D electron gas), for a para-
bolic band in the efFective-mass approximation, the
Schrodinger equation separates into an equation for the
motion in the (x,y) plane and the equation for the en-
velope wave functions y;(z):
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cu, =e8/m, i, I =0, 1,2, . . . (3)

E; being the subband energies and l the Landau quantum
number. (As usual in the determination of the E,t, their
broadening due to disorder, scattering, etc. is omitted. )

Simultaneously all charges have to satisfy Poisson's equa-
tion

&(z)= — [n (z)+N e(d —lzl) —N, n(z)],
A

l'(lzl =d) =E„ l"(lzl =d) =0 .

The following parameters are used: E =235.2 meV,
m *=0.0155m„e„=17.4, N = 5 X 10 cm for

lzl (d, and N =0 for lzl )d. For T~O the acceptors
are ionized over the space charge width 2d, which has to
be determined in the self-consistent cycle. The difFerence
between conduction-band edge E, and the Fermi energy

[An asymmetric gauge was assumed for the vector poten-
tial A= (

—By, 0,0).] The energy spectrum reads as

E;) =E; +E(
=E;+A'co, (l+ —,'),
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with a spin-degeneracy factor 2 and with the Fermi-Dirac
distribution function f (E). In tlie second step in (6) the
k„ integration yields the degeneracy factor e8/h accord-
ing to the properties of the wave function (5). Indeed, the
density depends only on z as already assumed in (4). The
total inversion electron density per unit area is
n, =I ddz n (z). For T~O K all f (E;& ) have the value

0 or 1 only for integer (M) filling factors
v= n, /(2e8 /h ) =M determining the values
8' '= nh/2 Mein the vicinity of which the number of
occupied LL's is changed by one. For the magnetic field
in the region between the 8' ' (except level crossing, see
below) one level E, i, lies in the region
IE; & E~ I

&—kii T~0 and one has 0 &f (E;.i.) & 1 for this
level. Therefore, it is convenient to write (6) as

n(z)= g v;Iy;(z)i
2'

l

FIG. 1. Schematic representation of the system investigated.
(a) Charge distribution, consisting of a 5 sheet of a fixed positive
charge NT, negatively charged acceptors N in the depletion

layer 2d, and the inversion electrons n(z). (b) The symmetric
potential caused by the charge distribution shown in (a}.

E~ in the bulk equals E, —E+=234.9 meV, and there its

magnetic field dependence is neglected. Throughout the
calculations Ez was defined as the zero of the energy
scale: EF=0. The density of the positive charges XT is
assumed as a fixed quantity rejecting the real conditions
in 5 doping layers or grain boundaries. We chose
X&=0.72X 10' cm to have two occupied subbands for
zero magnetic field. Corresponding to the boundary con-
ditions in (4) we set g;(IzI ~ d) =0 in the numerical calcu-
lations. This assumption causes an error for the subband
energies less than 0.01%.

The eigenfunctions of the decoupled three-dimensional
Schrodinger equation [Eqs. (1) and (2)] in an infinite Q2D
system,

g v; =v, one v; not integer (7)

where v, (8 ) is the filling factor of the ith subband and in
general (except for 8' ' and level crossing) one v; (for
i =i') is not integer, refiecting the partial occupation of
this level which then practically coincides with the bulk
Fermi energy.

According to (4) one has charge neutrality

XT=n, +2% d .

The system of equations (2)—(4), (7), and (8) has to be
solved numerically in a self-consistent manner with the
magnetic field as the parameter. The v;(8) must be
determined according to the ordering of the levels (3).
Thus, most important is that according to (7) the charge
distribution depends on the occupation of the LL's and
hence on the magnetic field. But the charge distribution,
in turn, determines the subband energies E; and hence
the LL's (3). In this way the electric subband energies E;
determined by (2) become magnetic field dependent via
the occupation of the LL's although (2) is decoupled ex-
actly from (1).

m*m,
1 /4

(2'i Ii/~) —i z2

(5)

III. RESULTS AND DISCUSSION
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(6)

are normalized to 5;;.5&&.5(k —k' ). Consequently the ei-
genvalues are infinitely degenerate with respect to k~.
Hi(g) are the Hermite polynomials. The density of in-
version electrons is given with (5) as

Usually the calculations of the LL's (e.g., Refs. 8 and
10) were done non-self-consistently insofar as the spec-
trum (3) is used (eventually modified for nonparabolicity
of the band structure) where the subband er'ergies E; are
determined self-consistently but for zero magnetic field.
Such calculations are often denoted as self-consistent
ones' though they are not, as explained above. In Fig. 2
such a non-self-consistent scheme (solid lines) is com-
pared with our full self-consistent results. [To compare
our results with usual notations, we chose for the figures
the potential bottom V(z=O) as the energy zero. ] For a
better understanding at first, peculiarities of the non-self-
consistent scheme are discussed. In this case n, is fixed;
the Fermi energy varies with one LL and jumps to the
next one at the value 8' ' as already discussed above.
Furthermore, there are points where LL's belonging to
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FIG. 2. Non-self-consistent (solid lines) and self-consistent
results (points and crosses) for the LL scheme. Points are the
solutions using Eqs. (2)—(4), (7), and (8), and the crosses are those
using Eqs. (2)—(4), (8), and (9). The boM line represents the Fer-
mi energy F+ in the non-self-consistent picture. Arrows show
the crossing points where EF changes from one LL to another
without any jump.

FIG. 3. Self-consistently calculated subband occupations n„
and total electron density n, as functions of magnetic field B.
Points and crosses as in Fig. 2.

diff'erent subbands cross each other (in Fig. 2 indicated by
arrows). If one of them is partially occupied, the Fermi
energy follows one level (belonging to the subband i) and
changes then to the other LL (of the subband i') without
any jump. But in this case a finite amount of charge is
transferred from subband i to i ' having different envelope
functions and hence different spatial extensions.

Now let us look at the magnetic-Geld-dependent self-
consistent results obtained as described in Sec. II. They
are denoted by points. It is seen that the new dependence
of the LL's on the magnetic field causes quantitative devi-
ations from the non-self-consistent scheme up to 0.1fi~,
for higher magnetic fields. They decrease for smaller
fields. At the "jumps" (v integer) it is actually V(z), not
the Fermi energy, that is changed abruptly. More pre-
cisely, this happens in a very narrow region of the rnag-
netic Geld, as will be shown in more detail in a subsequent
paper. "

In Fig. 3 the subband occupations n„=2eBv, /h .and
the total inversion electron density n, = g; n„are shown.
The occupations are strongly dependent on B since in any
case with increasing field due to the degeneration 2eB/h
of the LL's, the number of electrons in a completely oc-
cupied LL increases. At the same time, the partially
filled LL is depopulated. The total density n, varies only
slightly [charge exchange between inversion and de-
pletion layer according to (8) with AT=const]. The self-
consistent calculation yields for high magnetic fields (only
one LL occupied) an almost linear dependence of
the density on the magnetic field with a slope dn, /
dB ——2. 2 X 10 cm T ' (note that n, itself is of the
order 10" cm ). An analytical estimate gives for this
slope —fieoe„/(m "ed) and with the parameters used here—2. 1X10 cm T

Figure 4 shows the magnetic field dependence of the
subband energies. Their behavior is closely connected
with the magnetic Geld dependence of the subband occu-
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FIG. 4. Self-consistently calculated subband energies E; (rel-
ative to the potential bottom} as functions of magnetic field 8.
Points and crosses as in Fig. 2.

pations shown in Fig. 3. In dependence on the fact that
the partially filled LL belongs to the one or the other sub-
band, both subband energies [relative to V(z =0, B)]
show the following behavior with increasing magnetic
Geld: They either both decrease with decreasing separa-
tion or they both increase with increasing separation. Al-
though, of course, this subband energies E; arise only
from the motion in the z direction they determine the
whole spectrum according to (3). This results in a vary-
ing slope of the LL's E;& contrary to the non self-
consistent picture (cf. Fig. 2). In several regions of the
magnetic field dE;/dB exceeds d(A'co, /2)/dB. There-
fore, e.g., for B—1.2 T the LL E,o decreases with in-
creasing magnetic field (also on the absolute scale with
E~ =const as the energy zero).

Finally, let us look at the regions around the crossing
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points of the non-self-consistent scheme (indicated in Fig.
2 by arrows). It is seen that the partially filled level in the
full self-consistent scheme approaches another one (filled
or empty) for increasing magnetic field at some value 8
and at higher value for decreasing field. In the vicinity of
this point there remains a finite interval of the magnetic
field in which the self-consistent scheme as described in
Sec. II has no solution. This was already predicted quali-
tatively by us. '

What actually happens is the following. For increasing
B, the one partially occupied level (say E; t ) with
0(f (E; i ) ( l approaches another one (E;-t ) which may
be empty [f(E,-,-)=0] or completely Slled [f(E;-i-)= I].
If the separation ~E, i E,'i —

~
between these two levels

becomes comparable to kti T ( ~0), it is no longer
justified to assume that only one level is occupied partial-
ly. Thus, in the 8 region in question, instead of (7) one
has to use

n(z)= g v;~g;(z)~

two v; (i =i', i") not integer (9)

and to take into account that for T~O both these levels
coincide with one another and with the Fermi energy:
E,'&.=E;-I-=Ez. In the interval the partial occupation
changes from one of these levels to the other one continu-

ously. Numerically one has now to solve the system of
equations (2)—(4), (8), and (9). Of course, in the self-
consistent cycle one has to determine one quantity more
than before, namely the second partial occupation.
Indeed, one has also the additional condition of coincid-
ing levels. The numerical solution is unique in this way.
Results are indicated by crosses in Figs. 2—4. One sees
the common level around the original crossing point and
the transfer of charge from one subband to the other (n„)
connected with only a slight change of the total density
n, . It should be emphasized that the occurrence of a
finite interval on the magnetic field scale where two levels
for T~O coincide is a qualitatively new feature of the
spectrum.

We conclude that by properly taking into account the
dependence of the occupation of the Landau levels on the
magnetic field, one is led to new and interesting features
of the self-consistently calculated electronic structure of
inversion layers. For the first time this was demonstrated
here for a symmetric potential. General considerations
on this question will be published elsewhere. " The pecu-
liarities concern the total electron density, the subband
occupations, the subband energies, and the complete
Landau-level spectrum. For the latter, most important
is, in our opinion, the coincidence of two Landau levels
and the partial occupation of both in finite magnetic-field
regions.
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