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Biexciton states in semiconductor quantum dots {spherical microcrystallites) are investigated
variationally, and the biexciton binding energy and the oscillator strength are calculated as a func-
tion of the quantum-dot radius, the electron-to-hole mass ratio, and the dielectric constant ratio of
the semiconductor to the surrounding medium. The most important mechanisms for enhancing the
biexciton binding energy and the oscillator strength are clarified. One is the quantum confinement
effect, which increases the spatial overlap between carriers, leading to enhanced Coulomb interac-
tion. Another is the dielectric confinement effect due to the dielectric constant discontinuity at the
interface between a semiconductor microcrystallite and the surrounding medium. This effect arises
from the penetration of electric force lines through the surrounding medium with a relatively small
dielectric constant and leads to an enhancement of the Coulomb interaction. It is found that the
frequency dispersion of the third-order nonlinear susceptibility g' ' shows an out-of-phase behavior
at the one- and two-photon resonances, which is characteristic of the exciton and biexciton transi-
tions. For typica1 materials which are promising for observation of the biexciton state in microcrys-
tallites, the values of the biexciton binding energy, the third-order nonlinear susceptibility y'", and
the two-photon absorption coefficient K2 of the biexciton state are predicted theoretically.

I. INTRODUCTION

Recently the excitonic states in semiconductor micros-
tructures have attracted much attention from the funda-
mental physics viewpoint and also from the interest of
applied physics, owing to enhanced excitonic optical non-
linearity and fast response time. ' ' In semiconductor
microstructures of lower dimensionality, the energy levels
of carriers become discrete due to the quantum
confinement effect. At the same time, the oscillator
strength, which is distributed over continuum states in
bulk materials, becomes concentrated on the sharp tran-
sitions of excitons and consequently the excitonic optical
nonlinearity becomes enhanced and the saturation power
becomes reduced relative to those of the bulk semicon-
ductor. On the other hand, the biexciton state in semi-
conductor microstructures has not yet received much at-
tention. The biexciton state in two-dimensional
quantum-well structures was investigated theoretically
several years ago. ' However, it was not until recently
that the biexciton state was observed convincingly in II-
VI compound semiconductor quantum wells. ' The biex-
citon state in one-dimensional quantum wire structures
was recently studied theoretically and the enhancement
of biexciton binding energy was predicted. '

In semiconductor microstructures of lower dimen-
sionality, the spatial overlap between an electron and a
hole is increased, leading to the increase in the Coulomb
binding energy and the oscillator strength. As an ulti-
mate limit of the reduced dimensionality, the zero-
dimensional materials such as semiconductor microcrys-
tallites are expected to show a much more enhanced
binding energy of the biexciton state and to have an
enhanced oscillator strength of the two-photon genera-
tion of the biexciton state. However, in the case of the

biexciton state, the Coulomb repulsion between like parti-
cles, namely two electrons and two holes, is also
enhanced in microstructures. Thus the biexciton binding
energy is not enhanced straightforwardly as the particle
size is reduced but is dependent on a delicate balance be-
tween the Coulomb attraction and the Coulomb repul-
sion. Furthermore, in actual samples of semiconductor
microcrystallites such as CdS, Se in glass and CuC1 in

NaCl, the difference of dielectric constants between the
microcrystallites and the surrounding medium is rather
large. The significance of the dielectric constant discon-
tinuity at an interface in enhancing the Coulomb interac-
tion was first pointed out by Keldysh. It is found re-
cently that in two-dimensional quantum-well structures
the exciton binding energy and its oscillator strength de-
pend sensitively on the dielectric constant ratio between
the well and barrier materials. ' While the electrons and
holes are confined within a quantum well, the electric
force lines among electrons and holes pass through the
surrounding medium with a relatively small dielectric
constant. As a result, the screening effect is reduced and
the Coulomb interaction among electrons and holes is
enhanced to yield a large binding energy. The same situ-
ation holds also in the zero-dimensional materials.
Thus the effect of the dielectric constant discontinuity,
which will be referred to as the dielectric confinement
effect hereafter, should be taken into account in the cal-
culation of the biexciton binding energy.

Recently Banyai et aI. reported a calculation of the
biexciton resonance in a GaAs quantum dot employing
the adiabatic approximation in which the electron motion
is frozen in. Their calculation seems to suggest a nega-
tive biexciton binding energy, namely repulsive exciton-
exciton interaction for the moderate confinement regime.
However, the adiabatic approximation is too simple to
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take into account the correlation among two electrons
and two holes. Here we employ a more elaborate varia-
tional approach to incorporate fully the four-particle
correlation and investigate systematically the dependence
of the biexciton binding energy and the oscillator
strength on the quantum-dot radius, the electron-to-hole
mass ratio, and the dielectric constant ratio between the
quantum-dot material and the surrounding medium. It is
found that the dielectric confinement effect plays an im-
portant role in enhancing the biexciton binding energy
even for the moderate confinement regime.

The biexciton state consists of two excitons and is
known to have a giant oscillator strength for two-photon
generation. Thus the optical nonlinearity via the biex-
citon state is expected to be enhanced by the giant oscilla-
tor strength. At the same time, the frequency dispersion
of the third-order nonlinear susceptibility is expected to
show a characteristic behavior at the two-photon reso-
nance different from that at the one-photon resonance.
These features will be discussed in detail in the text.
Furthermore, since the nonlinearity arises from the two-
photon coherence instead of the saturation of exciton
population, the response time of this nonlinearity is ex-

I

pected to be very fast.
In Sec. II, the relevant Hamiltonian is given for the

biexciton state, namely for two electrons and two holes in
the effective-mass approximation, and in Sec. III, details
of variational calculation are presented. The results on
the biexciton binding energy and the oscillator strength
are given in Secs. IV and V. The nonlinear optical prop-
erties and the two-photon absorption of the biexciton
state are discussed in Sec. VI. Typical materials which
are promising for observing the biexciton state in micro-
crystallites are given in Sec. VII and their third-order
nonlinear susceptibilities and two-photon absorption
coefficients are estimated.

II. FORMULATION

The lowest state of a biexciton in a semiconductor
quantum dot will now be investigated. It is now well
known that the effective-mass approximation is applic-
able even for semiconductor microcrystallites containing
only as few as 100 atoms. Then the relevant Hamiltoni-
an for two electrons and two holes is given as
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with e=e, /e2. I'„ is the Legendre polynomial of the nth
order and 8, . is the angle between r; and r .. The first four

Here R is the radius of the quantum dot, r, and rb (r]
and rz) denote the coordinates of holes (electrons), and
mb (m, ) is the mass of hole (electron). The dielectric
constant of the quantum dot and the surrounding medi-
um is denoted by eI and e2, respectively, and o.'„ is defined
by

I

terms represent the kinetic energy and the next six terms
are the direct Coulomb energies among two electrons and
two holes. The remaining ten terms represent the in-
teraction energy among four particles and their image
charges. The first four terms of these ten terms are the
self-image potentials of four particles due to their image
charges and the next six terms are the mutual image po-
tentials among four particles and their image charges.
This Hamiltonian is a natural extension of the exciton
Hamiltonian to the biexciton case.

To find out the lowest state of the four particles, a vari-
ational wave function is employed as

( r ] r2 r rb ) = C jo ( wr ] /R )jp ( wr2 /R )jo ( n r, /R )j 0 ( n rb /R )r,b exp( 5r, b
)—

X I exp[ —a(r „+r2b ) p(r, b+ r2, )]+exp—[—p(r], + r2b ) a(r, b+ r2, )]I—, (2.3)

where r;1 =
I r; rj I, jo is t—he zeroth-order spherical Bessel

function, C is the normalization constant, and a, p, y,
and 6 are variational parameters to minimize the energy,
namely

z =&@ IHIP' )/&e Ic (2.4)

I

In the energy-level scheme, two electrons and two holes
occupy the lowest subband states forming a spin-singlet
pair, respectively. Thus the spatial part of the wave func-
tion is symmetric with respect to the exchange of two
holes or two electrons. The first four factors in (2.3)
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stand for the lowest subband states in a spherical quan-
tum dot whose wave function vanishes at the surface.
This boundary condition is reasonable since the energy-
gap difference between the quantum-dot material and the
surrounding medium is rather large in actual samples.
The wave function describing the relative motion among
four particles is taken to be identical with that employed
by Akimoto and Hanamura. It is implicitly assumed
that the quantum-dot size is so small that the quantum
confinement energy is larger than the Coulomb energy
among electrons and holes. Thus the above variational
wave function is most suitable for the case of strong
confinement. For larger quantum dots, we should in-
clude higher-lying subband states in the variational wave
function. However, in the case of excitonic state, an ela-
borate calculation including higher-energy subband levels
shows that the simplest wave function composed of the
lowest subband states still gives a good estimate of vari-
ous quantities even for the moderate confinement re-
gime. Thus it can be expected that the wave function
(2.3) can give a reasonable description even for the
moderate confinement regime. In the above variational
wave function the electrons and holes are not handled
symmetrically and thus the zero slope of physical quanti-
ties, e.g. , biexciton binding energy, with respect to the
change of the electron-to-hole mass ratio at the positroni-
um limit (m, =mb ) is not assured. However, since the
electron-to-hole mass ratio is rather small in actual ma-
terials, the above variational wave function is suKciently
accurate to yield reliable estimates of physical quantities.

exp( —ar," ) =fd'ke ' ' f(ka) (3.2)

For a positive value of a, g and f are given as

g(k, a)=
n. (k +az)

f(k, a)= 1

2m(k +a )

(3.3)

(3.4)

with

e "=f d k e'"'h (k, y, 5), (3.5)
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1
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In the bulk semiconductor, the four parameters a, P, y,
and 5 in (2.3) are usually supposed to be positive to inhib-
it the wave function from becoming infinitely large. In a
semiconductor quantum dot, however, there is no reason
to believe that these parameters are all positive, because
carriers are confined three dimensionally. In fact, as will
be mentioned later, the parameter P turns out to be nega-
tive for many combinations of the physical parameters.
For a negative value of a, these functions and related in-
tegrals are given in Appendix D. As for the interhole

~'abwave function r,~&e ", y should be positive physically
to take into account the hole-hole repulsion, and 5 turns
out to be positive in the variational calculation. Then its
Fourier transform is simply given by

III. CALCULATION OF VARIOUS INTEGRALS (3.6)

In this section, calculational details of various integrals
which appear in (2.4) are presented. In the calculation of
the matrix elements, it is convenient to introduce the
Fourier transform of an exponential function as

A. Calculation of normalization integral

exp( ar; )=f—d ke' " "g(ka), (3.1)
To illustrate the details of calculation, we shall take up

a typical term in ( 4
~

4 ), namely

f d r1 f d rz f d r, f d rbj 0(k1r, )j0(k1rz)j0(k1r, )j0(k1rb)r, &~e
' exp( —2ar1, 2Pr1b —2I3rz, —2arzb!—, (3.7)

where k, =m /R. Substituting the Fourier transforms of (3.1) and (3.5), we obtain

f d rl f d r2 fd".f d "bJO(k lrl )j 0(klr2 )JO(k lr )j0(k lrb )

X f d k,b f d k„f d k» fd kz, f d kzhb( ,k,b2y, 2)5g( k„1a2) g( k», p2)g( k„2p2)g( kzb2 a)

Xexp[ik, b (r, rb)+ik„—(r, —r, )—ik, b (r, —rb)+ikz, (rz —r, ) —ikzb (rz —rb)] .

Making use of the expansion of a plane wave in terms of spherical waves, namely

(3.8)

e'"'= g i "(2n +1)j„(kr)P„(cos8),
n=0

(3.9)

where j„and P„are the spherical Bessel function and the Legendre polynomial of the nth order, respectively, and car-
rying out the integration with respect to the angular parts of r „r2, r„r&, k,b, k„, k», kz„and k2b, we arrive at the
expression
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(4')' dr, rj p(k, r, )f drbrbj p(k, rb) f dririjii(kiri) f drzrzjo(ki"z)
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Here ( I', m ', I",m "l I, m ) and ( I, m
l

I', m ', I",m ")are the Gaunt coefficients, defined by

(I', m', I",m" ll, m)= f dQ Y&, , (Q)Yi" .(Q)Y& (II)

and

(I,mll', m', I",m")= f dQ Y&' (Q)Y& .(Q)Y&- -(0),

(3.10)

(3.11)

(3.12)

where the integration is over the solid angle. These coeKcients have the following symmetry:
(I', m', I",m" ll, m)=(l", m", I', m'll, m)=(l, mll', m', I",m")=(I,mll", m", I', m'). The expressions of the Gaunt
coefficient are given in Appendix C. We can perform the k integration in (3.10) analytically as

f dk k g(k, a)j/(«;)ji(«J)=G/(r/ rJ'a) (3.13)
0

and
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0

Similarly, in the calculation of the Coulomb energy, we need an integral defined by
~ ~
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0

The explicit expressions of these functions are given in Appendix A. The final expression of (3.7) is obtained as

(3.14)
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(3.16)

Then the normalization constant C is determined from

1=(e le
= 2C (4n)' f dr, r,jp(k, r, )f drbrbj p(k, rb) f dr, r,jp(k, r, )
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+Gi (r, , r, ;a+P)Gi (ri, rb, a+P)Gi-(rz, r, ;a+P)Gi (rz, rb, a+P)] . (3.17)

B. Calculation of Coulomb energy

Now we calculate the Coulomb terms. From the symmetry of the variational wave function (2.3) with respect to the
exchange of electrons and holes, it is obvious that

(3.18)

Thus the six Coulomb integrals are reduced to three types of integral, namely

C(, = (3.19)
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C,b
—4'm 4'm (3.20)

2

e r —r
(3.21)

C,b is given by e /e} times the right-hand side of (3.17), replacing 2y with 2y —1. Making use of the functions in
(3.13)—(3.15), C„ is calculated as
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To calculate the Coulomb energy C,2 between two electrons, we employ the following expansion:
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C. Calculation of surface polarization energy

The details of calculation of the surface polarization energy are presented. From the symmetry of the variational
wave function, we find
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Thus the surface polarization energy can be written in terms of five types of integrals, namely
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The integrals S11' and S,',"' can be written similarly to (3.17). Expanding the Legendre polynomial in terms of spherical
harmonics as

n

P„(cos8, )= g Y„(Q,)F„(Q ),
2n +1 p= —n

(3.33)

we obtain essentially the same expression for S'pz' as (3.24) except for the replacement of r "& Ir &+' by (r1r2)". Through
a similar procedure of calculation, S'1",' can be expressed as

11( 2
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+ 2G[(r1,r, ;a+p)G/ (r1, rb, a+'p)

X G1.(r2, r, ;a+p)G1-(r2, rb;a+p)], (3.34)

where (l, m, l, m ll', m', 1",m") is an integral of product of four spherical harmonics and its expression is given in Ap-
pendix C. In the same way, we find

11( 2

Sab dr, rj o{k1ra ) drbrbj o{k1rb ) dr1r 1jo{k1r1) dr2r 2j o(k 1r2 )
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+2G1 (r1 r. a+0)G1 {r1 rb a+P)G1"(r2 ra a+P)G1"(r2 rb a+P)l . (3.35)

D. Calculation of kinetic energy

Calculation of the kinetic energy is rather complicated and requires an ei%cient algorithm. We make full use of the
vanishing property of the wave function at the particle surface and the Gauss formula. First of all, from the symmetry
of the wave function 4, we notice that

&e IV'le &=&e.lv'le. &, &e. lv'. Ie &=&+ IV'le. &.

From the Gauss formula, we find that

fdr+ V', C = fdr(V,—C. )', fdre V'. C = fdr(—V,e )',

(3.36)

(3.37)

where the integration (dr) is carried out over r„rb, r1 and r2 To reduc.e (V1@ ) into a tractable form, we factorize
as

with

=fgh, (3.38)

f =jo{k1r1»

g =exp( —ar„13r» —Pr2, —ar2b )+exp( —Pr„ar—» —ar2, 13r2b ), — —
—

GrabJo{klr2)jo(klr )jo(klrb)rabe

Then we have

(3.39)

(3.40)

(3.41)

(V,4 ) =[(V,f) g +2fg(V, f)(V,g)+f (V,g) ]h =[(V,f)V, (fg )+f (V1g) ]h

and applying the Gauss formula to the first term, we find

fdr(v, @ )'= fdr[ (V',f)fg'+ f'(V,g)']h' .—

(3.42)

(3.43)
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Noticing that [Vi+(k, ) ]f=0, we finally have

(e ~Vt~e. ) = fdr[ —(k', )'f'g' —f'(V,g)']h'.
The first term is simply —(k i ) times the normalization integral in (3.17). The second integrand is written as

f (V,g) h =j o(k, r, j)o(k, rb )jo(k, r, )j o(k ir2 )r,fe

(3.44)

X 2 a +P +2aP
r1a r1b

exp( —2ar i, —2Pr ib 2/3r—2,
—2ar2b )

+2 2aP+(a +P )
r1, r]b

exp[ (a—+p)(r„+r»+r2, +r» )] (3.45)

The integral of the first, second, and fourth terms in (3.45) can be expressed similarly to (3.7). To calculate the integral
of the third term in (3.45), we notice that

r1, -r1b
4aP exp( —2ar „2Pr» —2—Pr2, 2ar—2b ) =V„V»exp( 2ar i—, —2Pr» 2P—r2, 2ar—2b ),

r1~ r1b
(3.46)

where r„and r, b are regarded as independent variables. Introducing the Fourier transforms of (3.1) and (3.5), we can
derive the expression

~ ~

~ r
de o(k&r, )jo(k&rb)jo(kiri)j o(kir2)r, be ' 4aP exp( —2ari, —2Prib 2Pr—2,

—2ar2b)
.2 0 2 0 .2 0 .2 0 2y

—26"ab 1& 1b

r la rib
= f de o(k', r. )Jo(k', rb)Jo(k', r, )J o(k', r, )fd'k. „fd'k, .1' d'k» fd' l,.J d'k»

X h (k,b, 2y, 25)g (k „,2a)g (k», 2p)g (k2„2p)g ( k2b, 2a)(k„.k» )

Xexp[ik, b.(r, —rb)+iki, (ri —r, ) —ikib (ri rb)+ik2, —(r2 —r, ) ik2b (—r2 —rb)] .

Further introducing the expansion (3.9) and making use of the recurrence relation '

(2n +1)xP„(x)=(n +1)P„+i(x)+nP„ i(x),
we arrive at the expression

(3.47)

(3.48)

(4~) C «.r.jo(k ir. ) «brbJO(k lrb) drir iJ

0(kiri�

) dr2r2JO(k lr2)
10 2 2 ~ 2 0 2 2 0 2 2 0 2 2 0

0 0 0 0

X g g g ~(l', m', l",m "~l,m)~ H&(r„rb , 2y, 25)G'&:(r2, r„2P)GI„(r&,rb', 2a)
l, m I', m' I",m"

[l'GI. (r„r&,2a)G&, (rb, r&,'2P)+(l'+1)Gi+(r„ri', 2a)GI+(rb, r&', 2P)], (3.49)

where GI
—+ is de6ned by

G&+(r;, r;a)= f-"dk k g(k, a)j&(kr;j)i+, (kr ),
0 (3.50)

with g (k, a) given in (3.3) and its analytic expression is given in Appendix A. The integral of the fifth term in (3.45) can
be calculated in a similar manner. These complete the calculation of (0&

~ Vi ~4 ).
Now let us proceed to the calculation of (&0 ~V, ~4 ). Factorizing 4 as

=fghe, (3.51)

with

f =j (ko, r, ),
g =exp( —ari, prib pr2, ar2b)+—exp( —pr„arib ——arz,—pr»), — —

—5r
g =r~e 'b

ab

e =jo(kirb Vo(kiri Vo(kir2»

we can derive that

fdr(v, @ ) =f dr[ —(V,f)fg h +f (V,g) h f g h (V, h) —2(V,f V,—h)fg h]e

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)



39 BIEXCITON STATES IN SEMICONDUCTOR QUANTUM DOTS. . . 10 213

Making use of the relations

[V, +(k i ) ]f=0

and

(3.57)

y(y+1) 25(y+1) +52a 2I"
b rab

(3.58)

we can perform the integration of the first and third terms in (3.56) in the same way as the normalization integral of
(3.7). The calculation of the second term in (3.56) proceeds in a similar way to that of (3.45). For a typical term corre-
sponding to (3.47), we obtain

I 2 0
a

I 2 0 I 2 0 I

~

2 0 ~

a
2

~ 2~ra b a I
I

a 2
~

~
a
~ ~

a
r, 1 r, 2

de 0(k, r, )j 0(k, rb)jp(k, r, )j p(kir2)r be "4aP exp( —2ar„2P—r» 2I3r2, ——2ar2b)
~1a ~2a

(4~) & 22 0 ii 22 0 ii 2 2 P 2 2 0
11

f dr rj 0(kir, )f drbrbj 0(k, rb) f dririjp(kiri) f dr2r2jp(kir2)
0 0 0 0

1 II III
i ' ' (1',m', 1",m" ~l, m)(l, m~1„m„l2, m2)

I, m I', m' I",m" I&, m
&

12, m2 p= —1

X (1„m„1,p I
1 ', m '

)(12,m 2 I
1",m ",1,p )H& ( r„rb, 2y, 25 )

(I' —ll ) (I"—12 )
X 6&

' (ri, r, ;2a)G& (r„rb', 2P)G& (r2, r, ;213)G& (r2, rb, 2a), (3.59)

where 1'=1,+1 and 1"=12+1 and the superscript (1'—li ) or (1" 12) corr—esponds to (+) in (3.50). In this way the
second term in (3.56) can be calculated. The calculation of the fourth term in (3.56) is performed as follows. First of
all, we have

2(V,f V, h)f—g he = 4ki
~a I'ab

—25r b—5 Jp(k ir. )J i(k ir. }jo(kirb }J0(klr 1 }J0(klr2)r. b e
I'ab

Noticing the relation

X texp( —2ar, .—213r» —2pr2. —2«2b)+exp[ —(a+p)(r, .+r,b+r2, +r2b)]I . (3.60)

r, .r,b —2er ra

~a ~ab ~ab Pa
(3.61)

and introducing the Fourier transform of the exponential functions, we can rewrite the integral of the 6rst term in the
curly braces of (3.60) as

2iki fde 0(k, r, )ji(k,r, )j 0(k, rbj)0(k,ri)j~(kir2) f d k,b f d ki, f d kib

4

X f d k2, f d k2bh (k,b, 2y, 25)g(k„,2a)g(k», 2p)g(k2„2p)g(k2b, 2a)
7a

Xexp[ik„.(r.—r, )+ik,. (r, —r, ) —ik» (r, —r, )+1k,. (r, —r. )—ik» (r, —r, )] .

Substituting the expansion (3.9) for the plane wave and making use of the recurrence relations of (3.48) and

j,'(x) = [jl, ,(~) (1+1)j,+,(x) ] l—(21 + 1),

(3.62}

(3.63)

we obtain the final expression

2k, (4n)' f dr, rj 0(k, r, )ji(k,r, ) f drbrbj 0(k, rb) f dr, rj 0(k, r, )f dr2r2J'p(k, r2)
0 0 0 0

X g g g [(1',m', 1",m" (l, m)( P&(r„rb, 2y, 25)
I, m I', m' I",m"

where PI is defined by

X Gi.(ri, r„2a}Gi''(r i, rb', 213')Gi-(r2, r, ;2p)Gi (r2, rb', 2a), (3.64)

P&(r„rb', 2y, 25) = f dk k h (k, 2y, 25)j 1'(kr, )j &(krb), (3.65)
0

with h(k, y, 5) given in (3.6) and its explicit expression is given in Appendix A. Here j/ is the first derivative of j&. The
integral of the second term in the curly braces of (3.60}can be rewritten in a manner similar to (3.64).
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Now the basic integrals appearing in the kinetic-eriergy terms are all reduced to numerically tractable forms. The ex-
pansion in terms of spherical harmonics in all the above expressions is carried out up to I = 10 to assure sufhcient accu-
racy.

IV. RESULTS AND DISCUSSION

The biexciton binding energy Bxx is defined by the
difFerence between the biexciton energy Exx and twice
the exciton energy 2Ex, namely

&xx =2Ex —Exx- (4.1)

This binding energy is a function of the quantum-dot ra-
dius R, the electron-to-hole mass ratio m, /ml„and the
dielectric constant ratio e, /e2 of the semiconductor ma-
terial to the surrounding medium. The dependence of
Bxx on the quantum-dot radius R is plotted in Fig. 1 for
a few values of the electron-to-hole mass ratio m, /mh
with a fixed value of e, /e, (=4.0). In the following the
units of energy and length will be taken as the effective
exciton Rydberg (Ry) and the exciton Bohr radius (as ),
respectively, of the bulk semiconductor material. The
binding energy increases as the radius is reduced and this
increase is stronger for smaller electron-to-hole mass ra-
tio. However, as the particle size is reduced further, the
binding energy begins to decrease and eventually becomes
negative. This implies that the exciton-exciton interac-
tion becomes repulsive in a small-sized particle. In a
small-sized particle the increase in the electron-electron
and hole-hole Coulomb repulsion becomes predominant
and cannot be compensated for by the deformation of the
wave function for the four-particle relative motion. The
dependence of Bxx on the quantum-dot radius is again
plotted in Fig. 2 for a few values of the dielectric constant
ratio e, /ei with a fixed value of m, /m„(=0. 2). The in-
crease of the binding energy is stronger for a larger value
of e&/e2. This is a manifestation of the dielectric
confinement effect. The dependence of Bxx on the
electron-to-hole mass ratio is given in Fig. 3 for a few
values of the quantum-dot radius with a fixed value of

Ei/Ei (=4.0). The binding energy increases with decreas-
ing m, /mz and takes a maximum value at the hydrogen
limit (m, /mi, =0) as in the case of bulk materials. The
increasing trend is stronger for smaller particle radius as
a manifestation of the quantum confinement effect. In
Fig. 4, the same dependence is plotted for a few values of
the dielectric constant ratio e&/e2 with a fixed value of
R /aii (= 1.0). It is again confirmed that the binding en-
ergy depends strongly on the dielectric constant ratio

i/Ei'.
In order to see more clearly the importance of the

dielectric confinement effect in enhancing the biexciton
binding energy, we plot Bxx as a function of the dielec-
tric constant ratio e, /ez in Fig. 5 for several values of
R/as with a fixed value of m, /mi, (=0.2). The binding
energy increases with increasing e&/e2 and the increase is
prominent for smaller quantum-dot size. In Fig. 6, the
same dependence is plotted for several values of the
electron-to-hole mass ratio m, /rnh with a fixed value of
R /as (=1.0). In this case also, the strong dependence of
Bzx on e, /e2 is demonstrated.

Finally, the variational parameters a, P, and 5, which
minimize the biexciton energy, will be plotted. In the
variational calculation, the parameter y is fixed to be uni-
ty for simplicity of numerical calculation because the nu-
merical algorithm becomes too time consuming for gen-
eral real numbers of y. However, we confirmed that this
restriction does not bring about any serious error in es-
timating the binding energy and the oscillator strength of
the biexciton state. In Fig. 7 these parameters are plotted
as a function of the dielectric constant ratio e, /e2 with
fixed values of R/aii (=1.0) and m, /ml, (=0.2). Here
these parameters are scaled by k „namely a/k i, P/k i,
and 5/k, are plotted. It is to be noted that the parameter

5-

0.5 l.O ).5 2.0
R/aB

FIG. 1. Dependence'of the biexciton binding energy B» on
the quantum-dot radius R normalized by the bulk exciton Bohr
radius a& is plotted for a few values of the electron-to-hole mass
ratio m, /mh with a 6xed value of e&/e2 (=4.0).

0.5 1.0
RlB

IE2=

10
4
1

2.0

FIG. 2. Dependence of the biexciton binding energy 8» on
the quantum-dot radius R normalized by the bulk exciton Bohr
radius a& is plotted for a few values of the dielectric constant ra-
tio e& /e2 with a fixed value of m, /mz (=0.2).
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61IE2~0
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4.0

2.0
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~/FTig
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rngmh
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FKs. 3. Dependence of the biexciton binding energy B» on
the electron-to-hole mass ratio m, /mq is plotted for a few
values of the quantum-dot radius R/a& with a fixed value of
e, /e2 (=4.0).

FIG. 4. Dependence of the biexciton binding energy Bxx on
the electron-to-hole mass ratio m, /mq is plotted for a few
values of the dielectric constant ratio e&/e2 with a fixed value of
R/a~ (=1.0).

P takes negative values. The parameter 5 shows a rather
large change compared to a and P. This implies that the
hole-hole separation is affected much by the change of
the dielectric constant ratio due to the enhanced
Coulomb interaction, while the electron-hole relative
motion shows little change. In Fig. 8 the variational pa-

rameters are plotted as a function of the electron-to-hole
mass ratio m, /mz with fixed values of 8/az (=1.0) and
E&/e2 (=4.0). As the hole mass becomes lighter, the hole
kinetic energy increases and the hole-hole relative motion
becomes extended. At the same time the electron-hole
relative motion is also afFected.

V. OSCILLATOR STRENGTH OF TRANSITION FROM EXCITON TO BIKXCITON STATES

Now that the variational wave function of the lowest biexciton state has been determined and the exciton wave func-
tion in a quantum dot is already obtained in the previous paper, we can calculate the oscillator strength of transition
from exciton to biexciton states. This oscillator strength will be denoted by f»» and that of the excitonic transition by
f», respectively. These are given by

f = 1&xxlplx & I',
mokmxx x

(5.1)

(5.2)

where IX) and IXX) denote, respectively, the exciton and the biexciton states, mo is the free-electron mass, p is the
momentum operator, and fico» and %co»»» are the exciton energy and the transition energy from exciton to biexciton
states, respectively. The exciton and biexciton state wave functions including explicitly the spin structure can be writ-
ten as

(5.3)

(5.4)

where the second-quantized form in the Wannier representation is employed, a (P) represents the spin-up (-down) state,
4, and C, are the exciton wave function and its normalization constant, respectively, and IO) denotes the ground state
of the crystal. Then the momentum matrix element is calculated as
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FIG. 5. Dependence of the biexciton binding energy B» on
the dielectric constant ratio e&/e2 is plotted for several values of
R /a& with a fixed value of m, /mz (=0.2).

FIG. 6. Dependence of the biexciton binding energy B» on
the dielectric constant ratio e&/e2 is plotted for several values of
m, /mz with a fixed value of R /a& (= 1.0).

(XX~p~X) =t 2C, C m„g @ (r„rz, r„r&)4,(rz, rb),
~1'~2' ~b

(5.5)

where m„= (cr~p~ur ) is the momentum matrix element between atomic Wannier orbitals. This is written more explic-
itly as

&2m„3 d ri d rz d rbJo(k i"i )Jo(kirz Vo(k i"b)r~ibe
rn e 3 y"

(Uo)'

X [exp[ ar ib ariz —(—P+—a, )r z)b+ e px[ I3rib Pr iz
—(a—+—a, )rzb ]I, (5.6)

where Uo is the volume of the unit cell, a, is the inverse exciton Bohr radius in a quantum dot, and a, P, y, and 5 are

1.4-

1.3

U5-

0
1.0

-0.5- -05-

FIG. 7. The variational parameters a, p, and 5 scaled by koi

are plotted as a function of the dielectric constant ratio e&/e2
with fixed values of R/az (=1.0) and m, /mI, (=0.2).

FIG. 8. The variational parameters a, P, and 5 scaled by k,
are plotted as a function of the electron-to-hole mass ratio
m, /mI, with fixed values of R /a& (= 1.0) and E'] /G2 (=4.0).
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the variational parameters concerning the biexciton state. A typical integral in (5.6) can be calculated as

f d3r f d3r f d3r j 2(ko r )J2(kor )J2(kor )rr e Ib "12 "2b

=(4m) f dr, r, f dr2r2 f drbrbj o(kiri)jo(kir2)j o(k irb) X (21+1)H,(r„rb;y, 5)G&(r„r2;a)G, (rz, rb;13) .
0 0 0 1=0

(5.7)

On the other hand, the momentum matrix element of the exciton transition is calculated as
'1/2

(xlplo& =m, „m' 1

2rraI a
(5.8)

where a =2a, /k& and

1(a)=f dk t Si(km ) ——,
' [Si((k +2)vr)+sgn(k —2)Si( lk 2 I~)] l(k+a )

(5.9)

where Si is the sine integral function. The biexciton os-
cillator strength fx~ will be normalized by the oscillator
strength fo of the band-to-band transition given by

fp= 2

m0E
(5.10)

where E is the band-gap energy. In the following, how-
ever, we will assume A'coax z-=%co&=-E and will plot
essentially the ratios of the squared momentum matrix
elements as

/j', =
I & xxlplx & I'/m, ', ,

f /f, =I &xlpI0&I'/~, '„.
(5.1 1)

(5.12)

In Fig. 9 the normalized oscillator strength fxx/fo is
plotted as a function of the quantum-dot radius for a few
values of m, /mb with a fixed value of e, /e2 (=4.0). The
oscillator strength increases with increasing quantum-dot
radius as in the case of excitonic transition. This is be-
cause the number of unit cells available for coherent exci-
tonic or biexcitonic polarization increases with the parti-
cle size. The increasing trend of the oscillator strength is
stronger for smaller values of m, /mb. In the limit of
vanishing quantum-dot radius, the oscillator strength

should go to zero because there is no unit cell sustaining
the transition dipole moment. Here, however, the plotted
quantities are essentially the ratios of the squared
momentum matrix elements as shown in (5.11) and (5.12)
and we have a finite value (=2.0) of flax/fo in the limit
of R ~0. Actually, the subband energies and ~zz z be-
come infinite, resulting in the vanishing fxx, according to
(5.1). Furthermore, it is interesting to note that in the
limit of 8 ~0, we have

I&xxlplx&I /I&xlpl0&I =1 . (5.13)

This implies that the two excitons composing a biexciton
become uncorrelated in a small-sized particle because the
kinetic energy dominates over the Coulomb correlation
energy.

In order to look at the effect of the dielectric
confinement, the dependence of fxr on R is plotted in
Fig. 10 for a few values of e, /e2 with a fixed value of
m, /mb (=0.2). The difFerence due to the change of the
dielectric constant ratio is rather small. In Fig. 11 fz» is
plotted as a function of m, /mb for several values of the
quantum-dot radius R with a fixed value of e, /F2 (=4.0).
The dependence on m, /mb is rather weak compared to
that on R. The same dependence is plotted in Fig. 12 in

10-
61IE2=4.0 m+J~~

0.2
0.6
1.0

fYlg+ 0.2

0.5 1.0 2.0 0.5 1.0 2.0

FIG. 9. Dependence of the normalized biexciton oscillator
strength fr~/f p on the quantum-dot radius R /as is plotted for
a few values of m, /mg with a fixed value of el/e2 (=4.0).

FIG. 10. Dependence of the normalized biexciton oscillator
strength fxr Ifo on the quantum-dot radius R /as is plotted for
a few values of el/e2 with a fixed value of m, /mj, (=0.2).
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FIG. 13. Dependence of the normalized biexciton oscillator
strength f»»/fo on the dielectric constant ratio e, /e2 is plotted
for a few values of R /a& with a fixed value of m, /mI, (=0.2).

FIG. 11. Dependence of the normalized biexciton oscillator
strength f»»/fo on the electron-to-hole mass ratio m, /mi, is
plotted for several values of R/a& with a fixed value of e&/e2
(=4.0).

an expanded scale for a few values of e, /ez with a fixed
value of R /aii (=1.0). In this case also the dependence
on E//e2 is not very strong.

In order to see more clearly the dielectric confinement
effect, the oscillator strength f»» is plotted as a function
of e, /e2 with a fixed value of m, /ms (=0.2) in Fig. 13
and with a fixed value of R/aii (= 1.0) in Fig. 14, respec-
tively. The dependence on e, /e2 is rather weak in either
case. Furthermore, in Fig. 14, f»» begins to decrease
when ej/e2 exceeds a certain value. In order to inspect
the reason for this rather weak dependence, we plot the
normalized exciton oscillator strength f»/fo and the ra-

R/e8=1.0

tio of the oscillator strength of the biexciton state to that
of the exciton state f»»/f» in Fig. 15 as a function of
e&/e2 with fixed values of R/aii (=1.0) and m, /m&
(=0.2). It is found that f»/fo and f»»/f» have oppo-
site dependence on e, /e2, and that as a product of both
factors, f»»/fp is almost constant. The increase in
f»/fo with increasing e&/e2 is a consequence of dielec-
tric confinement, which enhances the electron-hole
Coulomb binding. The extent of electron-hole relative
motion shrinks and the spatial overlap between an elec-
tron and a hole increases, leading to the increase in f».
The oscillator strength f»» is associated with the process
of creating another exciton to form a biexciton when an
exciton is already present. It is proportional partly to the
spatial extent of the exciton-exciton relative motion in
the biexciton state. The hole-hole relative motion, which
gives a measure of the exciton-exciton relative motion,
becomes extended with increasing e, /ez, as seen from 5
in Fig. 7. However, since all particles are confined within
a microcrystallite, the spatial extent of the exciton-
exciton relative motion has an upper limit and is not

4.1
4.10- 0.2

0.6
1.0

4Q5-

1.0

FIG. 12. Dependence of the normalized biexciton oscillator
strength f&»/fo on the electron-to-hole mass ratio m, /m„ is
plotted for a few values of e&/e2 with a fixed value of R/az
(=1.0). Note that the vertical scale is expanded compared to
that in Fig. 11.

0.1 1.0 10
61/K2

FIG. 14. Dependence of the normalized biexciton oscillator
strength f»»/fo on the dielectric constant ratio ei/ez is plotted
for a few values of m, /mi, with a fixed value of R /a~ (=1.0).
Note that the vertical scale is expanded compared to that in Fig.
13.
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e, /ez. Since, as mentioned before, our calculation is car-
ried out for the strong-confinement regime, in which the
subband energy spacings of both electrons and holes are
larger than the Coulomb binding energy, the argument of
the increase of fx and fxx with the particle radius
should be restricted within this regime. Actually, the
magnitude of oscillator strength is determined by the
coherence volume of excitonic or biexcitonic polariza-
tion ' and in turn the coherence volume is limited by
scattering by phonons and by defects or impurities. Thus
there would exist an optimum particle size for obtaining
a maximum oscillator strength.

FIG. 15. The normalized exciton oscillator strength fx/fo
and the ratio of oscillator strength of the biexciton state to that
of the exciton state fgxlfx are plotted as a function of the
dielectric constant ratio e&/e2 with fixed values of R /a~ {=1.0)
and m, /mq {=0.2).

strongly dependent on the dielectric constant ratio e~/e2
This explains the weak dependence of fez/fo on e, /e2.
Thus the dielectric confinement is not very effective in
enhancing the oscillator strength fxx. However, since
the oscillator strength for the two-photon generation of a
biexciton state is proportional to the product fxxfx, the
biexciton resonance can be enhanced by the dielectric
confinement effect, namely for a large value of the dielec-
tric constant ratio e, /e2

Thus the large oscillator strength of the biexciton reso-
nance is demonstrated in a semiconductor quantum dot.
It is predicted that in order to obtain a large oscillator
strength, it is favorable to choose a small value of
m, /mb, a large value of R, and an optimum value of

I

VI. NONLINEAR OPTICAL PROPERTIES
AND TWO-PHOTON ABSORPTION

OF THE BIKXCITON

As discussed in the preceding section, the two-photon
excitation of the biexciton state has a large oscillator
strength. Accordingly, the optical nonlinearity via the
biexcitonic state is expected to be enhanced. At the same
time, this nonlinearity arises from the two-photon coher-
ence instead of the population saturation of the excitonic
state and thus it holds a promise of very fast optical
response.

A. Nonlinear optical properties of the biexciton

In this subsection the optical nonlinearity via the exci-
ton and biexciton states will be discussed on the basis of a
three-level model. Hereafter, the ground state will be
denoted by g, the excitonic state by e, and the biexciton
state by b, respectively. Through the perturbation expan-
sion up to the third order as given in Appendix E, we ob-
tain the third-order nonlinear optical susceptibility g' ' as

ilp„l' 1

2' i (co,g 2')+co—2)+y,g g (~z —~))+y(~

( ~eg ~1 ) +y eg ( ~2 ~eg ) +y eg

ilP„I' IPb, I'

4A

1 1

i (cob, —2coi+M2)+ Yb (~& ~& +yll

i (co,g
—co, )+y,g

+-
1 ( co2 ci)~g ) +y ~g

EII „I' Iyb, I' 1 1 1

4fg3 i(co,g 2', +co )+—2y, ig(cobg
—2'))+ybg i(co,g

—co))+y,g

4g ~ (rob ~21 +~2) +yb ~ (~b 2col)+ Yb l (& rd)+y, (6.1)

where Am;. , p;, and y;. denote the energy difference, the
transition dipole moment between i and j levels, and the
dephasing rate of the transition dipole moment, respec-
tively, and

y~~ (yb~~) is the population decay rate of the ex-
citon (biexciton) state. The transition dipole moment is
related to the oscillator strength as

A'e

IJ 2 IJm 0&ij
(6.2)

The first two terms in (6.1) arise from the saturation of
excitonic population, whereas the remaining two terms
arise from the nonlinearity via the two-photon coherence
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of the biexciton state. In order to see the two-photon res-
onance with respect to the biexciton state, we introduce
the off-resonance 6, defined by

2%A =A'(2', —
cong ) .

Then other off resonances are given by

A'(co, —co, ) =B~~/2 —A'b, ,

A'(co~, —co, )= Bz~—/2 fib, —,

(6.3)

(6.4)

(6.5)

where Bzz is the biexciton binding energy given in (4.1).
Thus the one-photon resonance appears at Ah=+Bzz/2.
In the following we consider the degenerate case, i.e.,
CO

~
—6)p

—Q).

In order to see the typical behaviors of the third-order
susceptibility g' ', we scale all the off-resonance energies
and the relaxation constants in terms of y, , and choose
the following typical values:

Ybe Peg& Ybg /Peg O' ~ 1
& Y))/Yeg

(6.6)

The frequency dispersion of g' ' for yqg/y, g=O. 1

shown in Fig. 16, which shows a resonance at the two-
photon transition (b, =0) and two resonances at the one-
photon transition (A'b, =~ Bzx /2) corresponding to
co=io, and cob, . It is interesting to note that the frequen-
cy dispersion at the two-photon resonance is opposite to
that at the one-photon resonance (fib, =Bx~/2). The
imaginary part of p' ' at the two-photon resonance is pos-
itive and the real part changes its sign from negative to
positive when the frequency is scanned from above,
whereas the imaginary part of y' ' at the one-photon res-
onance is negative and the real part changes its sign from
negative to positive when the frequency is scanned from
below. These features of frequency dispersion can be un-
derstood qualitatively from (6.1). The frequency disper-
sion around the one-photon resonance at co=co,z is deter-
mined dominantly by the first term of (6.1) and can be
written as

Similarly, the frequency dispersion around another one-
photon resonance at co=nb, is contributed mainly by the
second term of (6.1) and is approximated as

Peg Pbe
(6.8)

4A' y

On the other hand, the frequency dispersion around the
two-photon resonance at 2~=cob~ is determined by the
third and fourth terms of (6.1) and can be approximated
as

~l),gl I pb, l

4R (B~~/2A) +y,g

1

(i'~ /2'+ y,g )

1

t (a)b 2c—o)+yb

Peg P~e 1
(6 9)

i (co&g
—2')+y&

where we assumed that B~z/A )&y, and yb, ——y, .
From the sign of prefactors in front of the last complex
Lorentzian factors in (6.7)—(6.9), it is seen that the fre-
quency dispersion around the resonance at co=co, is op-
posite to those around the resonances at co=cob, and
2~=cob . This feature is independent of the sign of the
biexciton binding energy Bzz. The only difference due to
the change of sign of B+z appears in the order among
three resonances on the frequency axis. In the case of
positive B~~, we have cub, &cob~/2 &co,~, whereas for the
case of negative B~&, i.e., when the exciton-exciton in-
teraction is repulsive, we have co, &co& /2&co&, . The
schematic frequency dispersions around these resonances
are plotted in Fig. 17.

The two-photon resonance is sensitive to the value of
yb . In the case of yb /y, ~=1.0, although not shown
here, the two-photon resonance at 6=0 is smeared out
by the broad background of the one-photon resonance at
fib, =Biz /2, while the other parts of the frequency
dispersion are almost identical to Fig. 16.

~lp„l' 2y„
2A Y)) (co Qj ) +Y g

&(~ g ~)+Y g

(6.7)
e-——R

Im

Ll
L
5$

= 0o
a
D
th

CO

be ~2

W

FIG. 16. Frequency dispersion of y' '. The parameters are
given in the text. 6=0 corresponds to the two-photon reso-
nance with the biexciton state and 4=+A»/(2A) (=+2.«y,~)
to the one-photon resonances, respectively.

wbe

FIG. 17. Schematic representation of frequency dispersion of
y"' around the one- and two-photon resonances for positive and
negative values of the biexciton binding energy 8». The real
(imaginary) part is shown by a dashed (solid) line.
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For the absorptive optical nonlinearity, the most ap-
propriate figure of merit representing the eSciency of op-
tical nonlinearity is y ' divided by the product of the ab-
sorption coefficient a and the exciton (or photocarrier)
lifetime v.. Denoting the incident power density and the
number density of photoexcited carriers by I and N, re-
spectively, the nonlinear change of a is related to the
imaginary part of g' ' as

L
t5

0
E

a =ao+a2I =ao+o.N,
32& co

6'oc

flCO
CT= a2 .

ao1

(6.10)

(6.11)

(6.12)
FIG. 18. Figure of merit of the third-order optical nonlinear-

ity g' '/a. The parameters are the same as in Fig. 16.

n =no+ n2I =no+ gN, (6.13)

In the same way, the associated change of the refractive
index n is related to the real part of y' ' as most clearly the advantage of two-photon resonant exci-

tation of the biexciton state in enhancing the optical non-
linearity.

n, = Rey"',16m.

eoc
(6.14) B. Two-photon absorption of the biexciton

%co'g= n2
ap7

(6.15)

ao(co)=
'

1 Keg
CO + CO~g

(CO COe& ) +yeg
(6.16)

~Veg

Here o. and g represent, respectively, the change of a and
n per one electron-hole pair, or an exciton in a unit
volume, and have dimensions of area and volume. The
derivation of these relations is given in Appendix F.
Thus g' '/ao~ is a fundamental quantity describing the
efficiency of absorptive optical nonlinearity. The carrier
lifetime ~ is in general dependent on the carrier energy.
Hereafter, however, we ignore the energy dependence of
r and calculate g' '/ao. As for the absorption coefficient
ao, we take a model form combining the Lorentzian
shape in the higher-energy side and the Urbach tail in the
lower-energy side, namely

As mentioned in the preceding section, the oscillator
strength of transition from exciton to biexciton states is
very large in semiconductor microcrystallites. As a
consequence, the two-photon absorption coefficient of the
biexciton can be also enhanced. Experimentally, one of
the most direct evidences of the biexciton state is the ob-
servation of two-photon absorption. The two-photon ab-
sorption coefficient is related to y' '(co; —m, —co, co),

namely

a(co)= Imp' 'lE(co)l
C(6 )1/2

(6.17)

Around the two-photon resonance, 2'-=cobg, y' ' can be
approximated as given in (6.9),

~2Ip,s I Ipb, l

Ayb B
(6.18)

where N is the number density of semiconductor micro-
crystallites. As seen from (6.17), the two-photon absorp-
tion coeScient is proportional to the incident power
I (co). Thus a more fundamental quantity which depends

The results are shown in Fig. 18. In the case of
yb /y, =0.1, sharp structures are seen at the biexciton
resonance. The figure of merit ly' 'l/ao at the two-
photon resonance is about twice as large as that at the
one-photon resonance, although the magnitude of y' ' it-
self at the two-photon resonance is smaller than that at
the one-photon resonance. Even when the dephasing rate
ybg is increased (y&g /y, g

= 1.0), the figure of merit at the
two-photon resonance is still comparable to that at the
one-photon resonance, as shown in Fig. 19, although the
above sharp structures are smeared out. Furthermore,
the response time of optical nonlinearity via the two-
photon coherence of the biexciton state is determined
mainly by the dephasing constant yb and is expected to
be very fast because the saturation mechanism of exciton
population is not relevant. These features demonstrate

'o 0
F
O
O

~
Ql

LL

FIG. 19. Figure of merit of the third-order optical nonlinear-
ity g"'/a. The parameters are the same as in Fig. 16 except
that ybg/y, g

=1.0.
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only on material parameters will be introduced by

a(co) 32m. o) (i) (6.19)

Finally, we wiH discuss some typical materials which
are promising for observing the biexciton state in micro-
crystallites. The first candidate is the CdS& Se mixed
semiconductor microcrystallites embedded in a glass ma-
trix, which seem to be realized in a semiconductor-doped
filter glass. For CdS microcrystallites in a glass matrix,
the relevant parameters are given as '

m, /m], ——0.24, e ] /E2= 3 '~ 8 fo =8. 14 (7.1)

For a particle radius of R /a~ = 1, i e , R. -=. 30 A, the biex-
citon binding energy 8~& is estimated to be about 56
meV. This binding energy is about 14 times as large as
that in bulk CdS (Refs. 32 and )3) and is sufficient to en-
sure the stability at room temperature. The oscillator
strength of the exciton and biexciton states are calculated
as

fx/fo= 5» fxx/fo=—41. — (72)

Another example is a GaAs microcrystallite in vacuum
with the relevant parameters

m, /m& -=0. 14, e]/e2=-12. 6, fo =-19.0 . (7.3)

Actually, this type of sample is realized in GaAs quan-
tum disks patterned by electron-beam lithography, in
GaAs quantum boxes patterned by focused ion beam
and in GaInAsP/InP quantum-box structures fabricated
by holographic lithography, although the surrounding
medium is not vacuum in these cases. For a particle ra-
dius of R /a~ =0.2, i.e., R =27 A, we obtain

Bxx —=46 meV fx/fo =2.6 fxx/fo=—2 3 (7 4)

This binding energy is about 90 times as large as that in
bulk GaAs (Ref. 29) and about twice as large as the
thermal energy at room temperature (k~ T =26 meV).

The third candidate is a CuC1 microcrystallite embed-
ded in a NaCl matrix with the relevant parameters '

E]/E$=2 3 fo =—5 ~ 90 (7.5)

The small-angle x-ray-scattering data reveal that the
shape of CuC1 microcrystallites is lakelike rather than
spherical. ' These microcrystallites may more ap-
propriately be called quantum disks than quantum dots.
However, the eFect of microcrystallite shape on the biex-
citon binding energy and on the optical properties may be
small, as long as the microcrystallite size is larger than
the exciton Bohr radius or the biexciton radius. This
seems to be the case for actua'1 samples of CuC1 micro-
crystallite in NaC1. For a CuCl particle with radius of
R /a~ =3, i.e., R -=20 A, we estimate

where I(co) is given in (F7). This is exactly equal to
az(co) in (6.11). Kz(ci)) is positive definite because Imp( '

is positive, as given in (6.18). The values of K2 will be
given for typical materials in the next section.

VII. TYPICAL MATERIALS

Bxx—- 114 meV, fx/f o-=28.6, fxx/f o =-22.4 . (7.6)

This binding energy is about 3 times as large as that in
bulk CuCl (Refs. 40 and 41) and is much larger than the
thermal energy at room temperature. This favors a CuC1
microcrystallite as being one of the most promising sam-
ples for observing the biexciton state in microcrystallites.
Most recently, Itoh has observed successfully the biex-
citon state in this material and has obtained the biexciton
binding energy of the same order as the predicted value.

Now the third-order nonlinear optical susceptibility
g' ' will be calculated based on the formalism presented
in the preceding section. Since the magnitude of g' ' de-
pends sensitively on the relaxation constants, we must be
careful in choosing the values of them. In the following,
the longitudinal relaxation constant

y~~
of the exciton

state is identified with the inverse of radiative lifetime,
namely

2n8 ci)

~li Pl OC

(7.7)

The dephasing rate y, can be determined from the
homogeneous linewidth of the excitonic absorption spec-
trum. However, the other dephasing parameters yb, and

yb are not well identified experimentally even in bulk
materials. For CuC1 crystals, the relaxation parameters
y,~, yb„and ybg were determined through line-shape
fitting of the resonant-Raman scattering spectra. Thus,
for the purpose of order estimation, we employ the fol-
lowing values, ]]iy,g =]]iy&, =1 meV, and ]]]y&g =0. 1 meV,
commonly for three materials. We found that the magni-
tude of g' ' is not very strongly dependent on these pa-
rameters around the above values. Employing a typical
particle number density X of 10' cm, we estimated the
magnitude of g' ' for both the one- and two-photon reso-
nances and listed the results in Table I. y' ' values at the
one-photon resonance are quite large and comparable to
that of GaAs quantum-well structures. On the other
hand, y' ' values at the two-photon resonance are of the
order of 10 —10 esu. As mentioned before, the mag-
nitude of g' ' is proportional to the square of the oscilla-
tor strength and in turn the oscillator strength is deter-
mined by the smaller value of the microcrystallite volume
and the coherence volume. Since, at the same time, the
magnitude of g' ' is proportional to the particle number
density, it may be possible to realize a g' ' value of the or-
der of 0.1 or 1 esu by choosing an optimum particle size
and by increasing the particle number density.

The two-photon absorption coefficients of these materi-
als are estimated by employing the dephasing constant
fiy&s of 0.1 meV in (6.19) and are listed in Table I. These
values will yield an easily measurable absorption
coefficient for an incident power of 1 MW/cm . The es-
timated value of E2 for CuC1 microcrystallites is about
an order of magnitude smaller than the observed values
of K2 for bulk samples of CuCl. " ' However, in con-
sideration of the small volume fraction of microcrystal-
lites about 0.1%, a dense packing of microcrystallites will
possibly lead to a 2-order-of-magnitude enhancement of
E2 over the bulk value.



39 BIEXCITON STATES IN SEMICONDUCTOR QUANTUM DOTS. . . 10 223

TABLE I. Material parameters and theoretical estimates of
the biexciton binding energy 8», the third-order optical non-
linearity y' ' at the one- and two-photon resonances, and the
two-photon absorption coefticient K2 for typical semiconductor
microcrystallites.

m, /mq
E') /E'g

R (A)
R /a~
8&z (meV)
Bz& {bulk, meV)
y' ' (esu)

(one photon)
y"' (esu)

(two photon)
E2 {cm/W)

CxaAs
in vacuum

0.14
12.6
27
0.2
46
0.5

1.0X 10

1.3x10-'
4.2x10-'

Cds
in glass

0.24
3.8
30
1.0
56
4.4

6.8x10-'

7.7X 10
1.7X 10

CuCl
in NaCl

0.22
2.3
20
3.0
114
34

2. 1X10

1.2X 10
7.2X 10-'

VIII. CONCLUSIONS

Biexciton states in semiconductor quantum dots are in-
vestigated variationally and dependences of their binding
energy and oscillator strength on the quantum-dot radius
(R), the electron-to-hole mass ratio (m, /m&), and the
dielectric-constant ratio (ei/e2) are clarified for the first
time. Most importantly, the significance of the dielectric
confinement effect in enhancing the biexciton binding en-
ergy and the oscillator strength is demonstrated. It is
found that in order to obtain a large biexciton binding en-
ergy it is favorable to choose an optimum value of R, a
small value of m, /mz, and a large value of @i/ez. On the
other hand, in order to obtain a large oscillator strength,
it is advantageous to choose a large value of R, a small
value of m, /mz, and an optimum value of e, /e~. For
typical materials which are promising for observation of
the biexciton state in microcrystallites, the values of the
biexciton binding energy, the third-order nonlinear sus-
ceptibility y' ', and the two-photon absorption coe%cient
K2 of the biexciton state are predicted theoretically.

A paper by Banyai et al. has recently appeared
which discusses the nonlinear optical properties of the
biexciton state in semiconductor quantum dots. In their
paper the biexciton binding energy is not given exphcitly
and its dependence on physical parameters is not exam-
ined systematically. Vfe would, however, like to mention
a few words on the results found by Banyai et al. in com-
parison with our results. They conclude that in the
moderate confinement regime the biexciton energy is
larger than twice the exciton energy, even when the
dielectric effect is included; namely, the biexciton binding
energy is negative. The moderate confinement regime is
specified by

(7 R 1(1+0 aB 1+0
where o. is the electron-to-hole mass ratio, and az is the
exciton Bohr radius. For realistic values of o., the above
range is overlapping with the range discussed in the
present paper. Thus their conclusion that the biexciton

binding energy is negative in the moderate confinement

regime is contradictory to our result. Their calculation
in that regime is based on the adiabatic approximation, in
which the holes are assumed to be moving in the average
Coulomb potential due to the strongly con6ned electrons.
Furthermore, they introduce a harmonic approximation
for the effective hole-hole potential. These approxima-
tions lead to an oversimpli6cation of the problem and are
likely to discard the important part of correlation energy
among electrons and holes, which may lower the biexci-
ton energy. On the other hand, our variational approach
treats all the energy terms on an equal footing without
any approximations, at the cost of more involved algebra.
Thus, the above discrepancy may arise from the
difference in the theoretical approach. However, we be-
lieve that our results are more reliable than theirs because
our variational approach has not introduced various sim-
plifying approximations.

In our variational wave function, only the lowest sub-
band levels are included as the envelope function associ-
ated with the electron-hole four-particle correlation func-
tion. This type of variational wave function is usually
thought to be applicable only for the strong con6nernent
regime. However, we found, surprisingly enough, that
the variational wave function including only the lowest
subband levels gives a very accurate estimate of the exci-
ton energy, not only for the strong confinement regime,
but also for the intermediate and even for the weak
confinement regimes, in particular, for the particle radius
up to several times the exciton Bohr radius. The
difference in the energy eigenvalue from the result of a
more elaborate calculation which includes many of the
higher subbands is only a few percent, although in the
eigenfunction the higher subband states begin to contrib-
ute substantially at the particle radius of a few times the
exciton Bohr radius. Thus, for the biexciton state also,
the present variational wave function is expected to give
a very good estimate of the energy eigenvalue even for
the intermediate (moderate) confinement regime.

Banyai er al. also discuss the effect of the dielectric
constant difference between the semiconductor particle
and the surrounding medium. They say that the absence
of the dielectric effect causes the increasing difference be-
tween the biexciton energy E2 and twice the exciton ener-

gy 2E&. In our understanding, the dielectric effect causes
the enhancement of the Coulomb interaction and conse-
quently increases the exciton and also the biexciton bind-
ing energies as long as the dielectric constant of the serni-
conductor is higher than that of the surrounding medi-
um. Since in the case of Banyai et al. the biexciton bind-
ing energy is negative, we can assume that the absence of
the dielectric effect raises the biexciton energy by an
amount more than twice the increase in the exciton ener-

gy and hence causes the increasing E2 —2E ~.
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APPENDIX A: EXPRESSIONS GF 6» I"i ~ ~» I's ~ AND GI

GI is defined by

Gl(x„xb.,a)= f dk k g(k, a)jl(kx, )jl(kxb),
with

(A 1)

g(k, a)=
n(k +a )

(A2)

where jl is the lth-order spherical Bessel function. Noticing the relation jl(x) =
—,'[hl"'(x)+hl' '(x)] and making use of

the analyticity of hI')(hl( ') in the upper (lower) half-plane of x, we obtain

G,(x„x;a)= [h,"'(iax )j,(i ax )+iax iiI" (iax )j l(i ax )+iax hl"'(iax )J'1'(i ax )], (A3)

where x & =max(x„xb) and x & =min(x„xb). These spherical Bessel and Hankel functions for pure imaginary argu-
ments can be written in terms of modified Bessel functions. However, it is more convenient numerically to rewrite them
by the following expressions:

j,(ix) =(2ix)'J, ' '(x), h,"'(ix) =iH,"' )(x)/(2ix)'+',

j~((x) (2lx )I —1JR (1)(x) h (1)'( lx )
—1HR ( 1 )(x ) /(2lx )I+2

(lx ) (2lx)1
—2gR (2)(x) ii (1) (lx ) lHR (2)(x ) /(21X )1+3

and so on. The explicit expressions of Ji '"'(x),Hl '"'(x) (k =0, 1,2, . . . ) are given in Appendix B. Then we have
'1

(A4)

1
Gi ( xa, xb,

' a ) 8'(xx ) x )
IHR(0)( )JR(0)( )+ ( [ HR(1)(ax )JR(0)(ax )

+H, ' '(ax )J, '"(ax )]J . (A7)

Similarly, the function F&, de6ned by

Fl(x, , xb', a)= f dk k f (k, a)j, (kx. )jl(kxb),

with

f (k, a)= 1

2~(k +a )

is calculated as

x'
HR(0)( )JR(0)( )8~ 1+1 (A10)

The function 0& de6ned by

Hl(x„xb, 3', 5)= f d'k k h (k, Y,5j)l(kx, ')ji(kxb ), (A 1 1)

(2m) ik (5 ik) +)' —(5+ik) + (A12)

can be calculated in the same way as above for non-negative integers of y. For @=0, Hl(x„xb,'0;5) reduces exactly to
G, (x„xb , 5) For examp. le,. we find

x'
H (x x . 1 5) — I4[HR(1)(5X )JR(0)(5X )+HR(0)(5X )JR(1)(5X )]+HR(2)(5X )JR(0)(5X )

327T x )
+2H,""(5x,)Z,""(5X,)+H,'"'(5x, )J,""(5x,)], (A13)

H (x x '2 5)= — [6[H ' '(5x )J ' '(5x )+2H "'(5x )J "'(5x )+H ' '(5x )J ' '(5x )]64~ ' x'.+'

+HR(3)(5X )JR(0)(5X )+3HR(2)(5X )JR(1)(5X )+3HR(1)(5X )JR(2)(5X )

+H,R("(5X, )I,'")(5X, ) I .



39 BIEXCITON STATES IN SEMICONDUCTOR QUANTUM DOTS. . . 10 225

More generally, for non-negative integer values of y, setting n =2+y, we find that
n dn —1

f dk k h(k, y, 5)jl(kx, )jl(kxb)=', [5hl"'(i5x) )jl(i5x()], (A15)

and we can derive that
r

n

[5hl("(i5X) )j,(i5x()]=, , —,
' g „C„H, (")(5X) )Jl '" "'(5x()

d5" (25)" x')+' ' „()"
n —1

+n g C H '"'(5x )J '" ' "'(5x )
r=0

(A16)

Now it is easy to derive a formula for Pl defined by

Pl(x„xb, y, 5) = f dk k h (k, y, 5)JI'(kxa)JI(kxb),
0

with the same function h as given in (A12), if one notices that

PI(x, »b"y 5)
d

dk k "(k y 5)JI(kx )Jl(kxb)=
d „,[5hl ( 5Xo )Jl( 5X )]

d ~ 2 . . ( —1)" d d" '
(1) .

dXa 0 4m dx, dg"

where y is a non-negative integer and n =2+y. After some manipulation we get a general formula

d ] Xb nl

I a I b (25)„ I+2 2 n r I a Y I[5h(1)(I5x )J (15X )] 1 y C [rHR(r)(5X )+ 1HR(r+1)(5X )]JR(n —r)(5X )a l b
a Xa r=0

n —1

C [rHR(r)(5X )+ 1HR(r+1)(5X ) ]JR(n —1 —r)(5X

(A17)

(A18)

(A19)

for x )xb, and

n

I b I a (25)n I+1 & n r I a 2 I[5h"'(i5 j (' )]= —' g [rJ '"'(5x )+—'J '"+"(5x )]H '" "'(5x )a I b
Xa Xb r=0

n 1

+n g C [rJ '"'(5x )+—'J"'"+"(5x )]H '" ' "'(5x ) (A20)

for x, (xb. Using these formulas, Pl(x„xb, y, 5) can be calculated straightforwardly. For example, for y =2, we have

Pl(x„xb', 2, 5)= f dk k h(k, 2, 5)jl'(kx, )jI(kxb)
0

l

32~3 l+21a 1 b l a l bt6[H ' '(5x )J ' '(5x )+H "'(5x )J '"(5x )]

+3[HR (3)(5x )JR (0)(5x ) +2HR (2)(5x )JR (1)(5x )+HR ( 1 )(5X )JR (2)(5x )]

+ 1[HR(4)(5x )JR(0)(5x )+3HR(3)(5x )JR(1)(5x )

+3HR(2)(5 )JR(2)(5 )+HR(1)(5 )JR(3)(5 )]I
for x, )xb, and

l 1

l a I b l a l b
[6[JR(2)(5 )HR(0)(5 )+JR(1)(5 )HR(1)(5 )]

'lT Xb

(A21)

+3[JR (3)(5X )HR (0)(5X )+ 2JR (2)(5X )HR(1)(5X )+JR (1)(5X )HR (2)(5X

+ & [JR(4)(5 )HR(0)(5 )+3JR(3)(5 )HR(1)(5 )+3JR(2)(5 )HR(2)(5x )

+Jl '"(5x, )HI '(5xb)]] (A22)
for x, (xb.

In a similar way we can calculate Gl
—(x„xb',a) in (3.50). Here we derive the expression for a more general integral

defined by
k3

G„(x„xb,a)= f dk j„(kx, )j (kxb),
(k +a) (A23)
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where integer numbers n and m are different by an odd number. We note that 6„„+,(x„xb,a)=G„—(x„xb,'a). The
above integral is calculated as

~ Pl

(2ia)m —n —1 I2HR(0)(ax )JR(0)(ax )+ 1[HR(1)(ax )JR(0)(ax )+~R( 0)( ax )JR())(ax )]I (A24)
Xa

fol x )xb~ and
Xn

(2i a)n
—m —I n [2JR(0)(ax )JIR {0)(ax )+ 1 [JR {l)(ax )~R(01(ax )+JR (0)(ax )~R() )(ax

Xg

for xa (xb.

(A25)

APPENDIX B: SPHERICAL BESSELAND HANKEL FUNCTIONS FOR PURK IMAGINARY ARGUMENTS

In this appendix, a numerical algorithm to calculate the spherical Bessel and Hankel functions for pure imaginary ar-
guments is presented. From the power-series expansion of the spherical Bessel function

we find

(
—1) (n +m)!

0 m!(2n +2m + 1)!

(n +m)!x
0 m!(2n +2m +1)!

(81)

(82)

..(. ) 2(2. )„1~ (n+m)!(2m+n)x
m!(2n +2m +1)! (83)

(n +m)!(2m +n)(2m +n —1)x
m!(2n +2m +1)!

More generally, the pth derivative of the spherical Bessel function is given by

j(~)(ix)=(2ix)" ~J„"{~)(x)

(n +m)!(2m +n)(2m +n —1) . (2m +n —p+1)x
m!(2n +2m +1)!

and J„(~)(x)is defined by this expression.
%'ith respect to the spherical Hankel function, it is convenient to start from the power-series expansion

(84)

(85)

Then we have

z, 0 r!(n —r)! 2z
(86)

and

h(, )(. )
2ie "

~ (2n —r)!
(2 )„

(2ix)" +' „=, r!(n —«)!

h„' (ix)= g ', (x+n r+1)(—2x)",4ie " (2n —r)!
(2ix)" „=0 «' n «)'

(87)

(88)

h„""(ix)=— g '
[x +2(n r+1)x+(n—r+1)(n —r—+2)](2x)" .

(2ix)" +' „=, r!(n —r)!

More generally, we can derive

i~„R{~)(x)

(2ix )n +p + 1

( 2P e y (2n r)
[ p ( p

)n+p+1 «1(n r)1 P

+ C (n r+1)(n r+—2) (n r+k)x~ —+-
p k

+(n —r +1)(n r+2) (n —r +p)](2x)—",
and this expression defines H„(~)(x).

(89)

(810)
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APPENDIX C: INTEGRAL OF PRODUCTS OF THREE AND FOUR SPHERICAL HARMONICS

The integral of product of three spherical harmonics can be written in terms of the Clebsch-Gordan coeScients as

(l, m~l', m', l",m")—= f dQ Y&' (Q) Y&. (Q) Y&- -(Q)

(2l'+ 1)(2l"+ 1)
4m(2l + 1)

(l, o~l, o, l",0&(l, m~1', m', 1",m"
& . (CI)

This is equivalent to the formula

Yi (Q) Yi (Q) —=

I ) +1~

I = ll ] 12 I

(2l, +1)(2l2+1)
4~ 2l+1) (l, O~l), 0, l2, 0&(l,m~l„mi, l~, m2 & Yi (Q),

where m =m &+m2. Making use of this formula twice, we can calculate the integral of product of four spherical har-
monics as

(li, m„l2, m2~l3, m3, l4, mq)—:f dQ Y,
* (Q)Yi (Q)Yi (Q)Yi (Q)

[(2l i + 1)(2l2+ 1)(213+1)(2l4+ 1)]'~~
=5

PE ) +Nl2, M3+PPlg
I 4n(21+ I)

X(1,0(l„O,l,0&(l,m[l„m„l, m &(1,0)1,0, l, 0&(l, m)l, m, l, m„&,

(C3)

where m =m, +mz=m3+m~ and the sum of l is implied over the common interval of (~li —lz~, li+l2) and
( ll —l. l, l, +l. )

APPENDIX D: EXPRESSIONS OF GI, Eg, AND 61+ FOR NEGATIVE KXPONKNT

The calculation in Appendix A i. carried out assuming implicitly that the exponent a is positive. However, the ex-
ponent can take a negative value, as mentioned in the text. Thus we have to extend the formalism in Appendix A to the
case where the exponent is negative. In this case the Fourier transform is not well defined because of divergence at the
infinity. However, since the interparticle distance r;~

=
~r;

—r
~

is less than the diameter of a quantum dot, i.e., 2R, we
can restrict the Fourier integral from 0 to 2R and obtain a finite integral. Then the function g(k, a) is replaced by
g(k, a;R) given by

g(k, a;R)=(2m') f dr r2e "fdQe'"'

I
vr (k+a)

R~
—2aR —sin2kR +cos2kRk'+a' 2 2 acos2kR +(a —k2)2 sin2kR

(k +a2)

where the first term in the square brackets corresponds to g (k, u). Similarly f (k, a) is repiaced by

2R ik rf (k, ~;R ) = (2m') f dr r f d Qe'"'= —sin2kR +cos2kR
o r 2m k +o. k +(x

Then we have

~ ~
( 4a x,xb)—

dk k~g(k, a;R)JI (kx, )JI (kxI, )= G&(x„xi„a)+e(—a)
0 2'

X IJ ' '(~a[x, )J/ '(~a[xi, )+—'[J "(~a~x, )J ' '(~a~xi, )

+J'"'(I~I»J""(1~Ixi,)1I,
and

(D2)

(D3)

f dk k f(k, a;R)j&(kx, j)&(kxl, )=F&(x„x„;a)+6(—a) JI"' '(~a~x, )Ji ' '(~a~xi, ),
0 l a I b I a& b&

where 6 is the Heaviside step function and GI and FI are given in Appendix A. It is quite interesting to note that these
integrals are independent of R, although the integrands are dependent on R. Another integral which is necessary in the
variational calculation is given by
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f dk k g(k, aR)j„(kx, )j (kxb)= G„,„(x„xb,'a)+6( —a) (2i~a~x, )"(2i~a~xb)
0

X IJ„' '(~a~x, )J ' '(~a~xb)+ —,'[J„"'(~a(x,)J"' '(~a~xb)

where G„(x„xb,a) 'is given in Appendix A.

+J ' '(ia[x )J "'(iaix )]I

APPENDIX E: DERIVATION OF THE THIRD ORDER NONI. INEAR SUSCEPTIBILITY y' '

The third-order nonlinear optical susceptibility y' ' is calculated employing a three-level model for the exciton-
biexciton transitions. Hereafter, the ground state will be denoted by g, the excitonic state by e, and the biexciton state
by b, respectively. The equation of motion for the density matrix is generally written as

P = — [H,P ]—+ I"P . (El)

The equations of motion for matrix elements are written explicitly as

iE(t)
Peg ( ~eg 'Yeg )Peg +

g [Peg(Pgg Pee )+PebPbg ]

iE (t)
Pgg y )~Pee ~ (PgePeg PegPge )

b + iE(t)
Pee y}~Pee y~~~Pbb g (PegPge PgePeg +PebPbe Pbepeb ) &

iE (t)
Pbb y ~~Pbb +

g (PbePeb PebPbe ) ~

iE (t)
Pbe ( ~be ) be )Pbe +-g [Pbe (Pee Pbb ) PgePbg ]

iE(t)
Pbg ( ~bg Ybg )Pbg +

g (PbePeg Peg Pbe )

(E2)

(E3)

(E5)

(E7)

where m," and p;. denote the frequency difference and transition dipole moment between i and j levels, respectively, and
y;. is the dephasing rate of the transition dipole moment p, The trace of the density matrix is conserved, namely

Pgg +Pee +Pbb 1

For an electric field E given by

E(t)= —,'[E(co})e ' +E(co~)e '+c.c.],
we expand each matrix element in powers of E as

(E8)

(E9)

p p(o) +p( & ) +p(2) + ~ ~ (E10)

with the initial condition that Pgg'(0) = 1 and other matrix elements are zero. By the successive iteration of the pertur-
bation expansion with respect to E, we obtain

P,'"(t)= f drexp[( iso, —y, )—(t —r))E(~), (El 1)

P(2}( Ip„ I'
z f dt& f dt2exp[ —yt}(t t&)+( ice,g

—y—,—g)(t, t )]E2(t&)E(t )2—
I}M„I'+ dt, dt2exp[ —

y~~(t t})+(tee,g
—y,g )(—t

& t2 )]E(t})E (t2), —
o o

(E12)

(2) (2)
pgg pee

pbg'(t)= — f dt, f dt2exp[( itob yb )(t —t, )+( ia), —y,—)(t~ ——tz)]E—(t})E(t2),

(E13)

(E14)
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p~, )(t)= — f dt, f dt2 f dt3exp[( —ico,g
—y,g)(t t,—) —yii(t& t—2)

+( i—co„—y„)(t,—t, )]E(t, )E(t, )E(t, )

f dt, f dt2 f dt3exp[( i—co,g
—y,g)(t t, —) —yii(t, t2—)

+(ico„y„—)(t, t, )]E—(t, )E(t, )E(t, )

&I@be I Peg t '& '2f dt, f dt2 f dt3exp[( ico—, —y,g)(t t, )+—( i—cobg ybg—)(ti tq)—

+( ico—„—y„)(t, t, )]E—(t, )E(t, )E(t, ),
t~

p'b3'(t)= f dt& f dt2 f dt3 exp[( icob, ——yb, )(t t, ) —yii—(t, t2)—

(E15)

+( ico, ——y, )(t~ t3)]E—(t, )E(t~)E(t3)

+ "", "' f'dt, f dtz f dt3exp[( icob, ——yb, )(t t, }——
yii ti t2)—

+(ico„y„)(t,—t, )]E(t—, )E(t, }E(t,}

tIPeg I Pbe+, dt i dt2 dt3exp[ ( t cob, —yb, )( t——t i )+ ( icobg
——yb, }(t i

—tp }
o o o

+( —ico„y„)(t,——t, )]E(t, )E(t, )E(t, ) .

The third-order nonlinear polarization is given by

pp —
pge peg +pebpbe +c.c.

(E16)

(E17)
—i (2coi —A@2)t

Extracting the polarization component with the time dependence of e ' ', we define the third-order nonlinear
susceptibility by

P' '(2co, —co2)= —,'[y' '(2co, co~; co„—co„—co2)E(co—, )E(co, )E*(co2)e ' ' +c.c. ] .

Then we have

alp„ I' 1 1

2R i(co,g 2co&+co2)+y—,g i(co2 co&)+y

x i(~„—~,)+y„ +
t (cop coeg )+yeg

ill, g I'IPb, I' 1 1 1

4R t (co,g
—2co]+cop)+y,g t (cobg 2co$)+ybg t (co,g co/)+y, g

t ling, g I'I)Mb. I'

4'
1 1

~ (~b 2~1+~2)+yb t (co2 co/ }+yii

i (co,g
—co&)+y,g i (co2 —co,g)+y, g

ily, g I'Ii b, I' 1 1 1

4g i(cob, —2coi+co2)+yb, i (cob 2coi)+ybg i(co,g
——coi)+y,

(E19)

APPENDIX F: RELATIONS AMONG Rey' ',
IIX ~ n 2~ a2& 'peg, AND +eI(3)

The relations between the real and imaginary parts of
y' ' and the nonlinear changes of refractive index g,I, and E(t)= —,'[E(co)e ' '+c.c.], (F1)

of absorption coe%cient 0,I, per one electron-hole pair in
a unit volume are derived. For a monochromatic electric
Aeld given by
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the third-order nonlinear polarization is written as

I" '(t) = ,' [I"—'(co)e ' '+ c.c.],
and the third-order nonlinear susceptibility g' '(co) is
defined by

where a is the absorption coe%cient and ~ is the popula-
tion lifetime. This equation has a stationary solution

(F1 1)

&"'(co)=y"'(co)E(co)E(co)E*(co) .

The dielectric constant is given by

(F3) Thus we find

%co
'Ver =

AV
(F12)

e= I+4m'"'(co)+4m'' '(co) ~E(co)
~

=co+4~X~ '(co)IE(co)l (F4)

2m. Rey"'(co)
n =no+ ~ IE(~)l'=no+n21,

np
(F6)

where ep is the linear susceptibility. Then the refractive
index n is defined by the real part of the square root of e
as

(3)
n +ilc=&e=no+ ~E(co)~ (FS)

no
with n&&=(eo)'~ . When ee is assumed to be dominantly
real, we have

The absorption coefficient a is given by

a(co) = Imp(co),
4&N

npe

with

g(co) =g'"(co)+y"'(co) ~E (co) ~' .

Then we have

a= [Imp'"(co)+Imp' '(co)~E(co)~ ]
npe

o'p+a2I .

(F13)

(F14)

(F15)
where I is the incident power per unit area given by

I = EXH= iE(co)i
4m Sm

(F7)

16~ -Rey"'(co) . (F8)

Thus the coef5cient nz of nonlinear change of the refrac-
tive index is given by

a2= Imp' '(co) .
32& N

C Ep
(F16)

The absorption change o.,z per one electron-hole pair in a
unit volume is defined by

The coefFicient a2 of nonlinear change of the absorption
coe%cient is calculated as

esp a =up+a, &N, (F17)
To obtain g,z, defined by

n =no+q, &N, (F9)

~ aN= I ——, (F10)

with the electron-hole pair density N per unit volume, we
must relate N to I. The rate equation for N is given by

and is given by

f2COo.,z
= a2a~

(F18)

Thus it is seen that the eKciencies of optical nonlinear-
ity g,& and o,I, are proportional to the real and imagi-
nary parts of y' '/ar, respectively.

iAl. L. Efros and A. L. Efros, Fiz. Tekh. Poluprovodn. 16, 1209
(1982) [Sov. Phys. —Semicond. 16, 772 (1982)].

A. I. Ekimov and A. A. Onushchenko, Fiz. Tekh. Polupro-
vodn. 16, 1215 (1982) [Sov. Phys. —Semicond. 16, 775 (1982)].

A. I. Ekimov, Al. L. Efros, and A. A. Onushchenko, Solid
State Commun. 56, 921 (1985).

~L. E. Brus, J. Chem. Phys. 80, 4403 (1984).
sL. E. Brus, IEEE J. Quantum Electron QE-22, 1909.(1986).
Y. Kayanuma, Solid State Commun. 59, 405 (1986).

7S. V. Nair, S. Sinha, and K. C. Rustagi, Phys. Rev. B 35, 4098
(1987).

S. Schmitt-Rink, D. A. B.Miller, and D. S. Chemla, Phys. Rev.
B 35, 8113 {1987).

T. Takagahara, Phys. Rev. B 36, 9293 (1987).
~ T. Takagahara, Surf. Sci. 196, 590 (1987).

E. Hanamura, Phys. Rev. B 37, 1273 (1988).
G. W. Bryant, Phys. Rev. B 37, 8763 (1988).

' R. K. Jain and R. C. Lind, J. Opt. Soc. Am. 73, 647 (1983).

P. Roussignol, D. Ricard, and C. Flytzanis, Appl. Phys. A 44,
285 (1987).
J. Yumoto, S. Fukushima, and K. Kubodera, Opt. Lett. 12,
832 (1987).
M. Mitsunaga, H. Shinojima, and K. Kubodera, J. Opt. Soc.
Am. B 5, 1448 {1988).
D. A. Kleinman, Phys. Rev. B 28, 871 (1983).

~sQ. Fu, D. Lee, A. Mysyrowicz, A. V. Nurmikko, R. L.
Gunshor, and L. A. Kolodziejski, Phys. Rev. B 37, 8791
{1988).
L. Banyai, I. Galbraith, C. Ell, and H. Haug, Phys. Rev. B 36,
6099 (1987).

L. V. Keldysh, Pis'ma Zh. Eksp. Teor. Fiz. 29, 716 (1979)
[JETP Lett. 29, 658 (1979)].

E. Hanamura, N. Nagaosa, M. Kumagai, and T. Takagahara,
Mater. Sci. Eng. B j., 255 (1988).
T. Takagahara, in Technical Digest of the XVIth Internation-
al Conference on Quantum Electronics (Tokyo, 1988), p. 620



39 BIEXCITON STATES IN SEMICONDUCTOR QUANTUM DOTS. . . 10 231

(unpublished).
L. Banyai, M. Lindberg, and S. W. Koch, Opt. Lett. 13, 212
(1988).

~4E. Hanamura, Solid State Commun. 12, 951 (1973).
Z. W. Fu and J. D. Dow, Bull. Am. Phys. Soc. 31, 557 (1986).
O. Akimoto and E. Hanamura, J. Phys. Soc. Jpn. 33, 1537
(1972).

27M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, 10th ed. (Dover, New York, 1972).

~sE. U. Condon and G. H. Shortley, The Theory ofAtomic Spec
tra (Cambridge University Press, Cambridge, England, 1970).

~9G. W. 't Hooft, W. A. J. A. van der Poel, L. W. Molenkamp,
and C. T. Foxon, Phys. Rev. 8 35, 8281 (1987).

OJ. Feldmann, G. Peter, E. O. Gobel, P. Dawson, K. Moore, C.
Foxon, and R. J. Elliott, Phys. Rev. Lett. 59, 2337 (1987).

3~Physics of II VI and-I VII Co-mpounds, Semimagnetic Semi
conductors, Vol. 17b of Landolt-Bornstein, edited by O.
Madelung, M. Schulz, and H. Weiss (Springer, Berlin, 1982).
Y. Nozue, T. Itoh, and M. Ueta, J. Phys. Soc. Jpn. 44, 1305
(1978).
J. Puls, I. Ruckmann, and J. Voigt, Phys. Status Solidi 8 96,
641(1979).

34Physics of Group IV Elements and III VCompound-s, Vol. 17a
of Landolt-Bornstein, edited by O. Madelung, M. Schulz, and
H. Weiss (Springer, Berlin, 1982).
K. Kash, A. Scherer, J. M. Worlock, H. G. Craighead, and M.
C. Tamargo, Appl. Phys. Lett. 49, 1043 (1986).
J. Cibert, P. M. Petrol; G. J. Dolan, S. J. Pearton, A. C. Gos-
sard, and J. H. English, Appl. Phys. Lett. 49, 1275 (1986).
Y. Miyamoto, M. Cao, Y. Shingai, K. Furuya, Y. Suematsu,

K. G. Ravikumar, and S. Arai, Jpn. J. Appl. Phys. 26, L225
(1987).
T. Itoh, Y, Iwabuchi, and M. Kataoka, Phys. Status Solidi B
145, 567 (1988).
T. Itoh, Y. Iwabuchi, and T. Kirihara, Phys. Status Solidi B
146, 531 (1988).
G. M. Gale and A. Mysyrowicz, Phys. Rev. Lett. 32, 727
(1974).

~ N. Nagasawa, N. Nakata, Y. Doi, and M. Ueta, J. Phys. Soc.
Jpn. 39, 987 (1975).

~2T. Itoh, in Nonlinear Optics of Organics and Semiconductors,
edited by T. Kobayashi (Springer-Verlag, Berlin, in press).

"E.Hanamura and T. Takagahara, J. Phys. Soc. Jpn. 47, 410
(1979).

~D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard,
and W. Wiegmann, IEEE J. Quantum Electron. QE-20, 265
(1984).

45N. Nagasawa, T. Mita, and M. Ueta, J. Phys. Soc. Jpn. 41, 929
(1976).

6Vu Duy Phach, A. Bivas, B. Honerlage, and J. B. Grun, Phys.
Status Solidi B 84, 731 (1977).

47L. Banyai, Y. Z. Hu, M. Lindberg, and S. W. Koch, Phys.
Rev. B 38, 8142 (1988).

48N. Bloembergen, nonlinear Optics (Benjamin, New York,
1965).

49T. Yajima and H. Souma, Phys. Rev. A 17, 309 (1978).
A similar derivation is given in H. B. Gibbs, Optical Bistabili-
ty: Controlling Light with Light (Academic, New York,
1985).


