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Coupling of plasmons to polar phonons in GaAs quantum wells
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Mode coupling between the degenerate electron-hole plasma and longitudinal-optical phonons in
GaAs quantum wells is treated theoretically. Both the plasmons and coupled modes are found to be
confined in long-wavelength ranges. In contrast to bulk crystals, the condition that the dielectric
function of the coupled system is negative is necessary. The wave numbers of the coupled modes in

the GaAs well of 50 A in width are smaller than 2X10 and 1.5X10 cm ' at the electron density
of 1 X 10' and 1 X 10"cm ', respectively, where the modes exhibit no Landau damping. These re-
sults indicate that the plasma does not affect carrier heating through the Frohlich interaction.

I. INTRODUCTION

The energy relaxation of hot electrons in semiconduc-
tors provides information about fundamental physical
processes such as electron-phonon and electron-electron
interactions. At high carrier density a strong reduction
of the energy loss rate of hot electrons has been observed
in GaAs quantum wells (QW's) as well as in bulk GaAs,
and this reduction is ascribed mainly to the formation of
hot phonons. '

Though the eFect of hot phonons may be dominant,
theoretical works still have predicted that the Frohlich
interaction is screened appreciably by the density fluctua-
tion of carriers. ' Recently, however, Ruhle and Pol-
land and Polland et al. reported that heating rates of
cold carriers in GaAs were independent of their densities
at least up to 4X10' cm in the bulk and to 1X10'
cm in the QW's, thereby concluding that the screening
of the Frohlich interaction was negligible.

In this paper we show a theoretical treatment of the
mode coupling between the plasmon and longitudinal-
optical (LO) phonon in the GaAs QW's and discuss the
screening problem. Concerning the electron-phonon in-
teractions in the QW most of the work reported so far
has assumed that the phonons are three dimensional in
nature, ' and then the screening of the Frohlich interac-
tion between quasi-two-dimensional electrons and bulk-
like LO phonons has been discussed first with the Debye
model. In subsequent studies' ' the screened scatter-
ing potential has been assumed to be represented by the
bare potential divided by the dielectric function of the
carrier plasma. In this method the interactions between
the plasmons and LO phonons do not seem to be correct-
ly taken into account.

As discussed in a previous paper, ' the best way to
resolve the screening problem is presumably to begin
with the study of the mode coupling, since at least the
long-range part of the plasmon-LO phonon interactions
is absorbed into the coupled modes. In the bulk GaAs it
has been shown' that at the electron density of 1 X 10'
cm the frequency of the LO phonons in a long-
wavelength range becomes nearly equal to the transverse

II. COUPLED MODE IN QUANTUM WELL

%'e consider a double heterostructure consisting of a
GaAs layer sandwiched by A103Gao 7As 1ayers as illus-
trated in Fig. 1. This is a symmetric three-layer slab
waveguide, for which we seek guided modes propagating
in the direction parallel to the interfaces, the z direction
in the coordinate axis shown in Fig. 1. We take the
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FIG. 1. Quantum well structure and the coordinate axis.

optical-phonon frequency, the fact of which means that
the longitudinal electric field associated with the LO pho-
non in this wavelength range is almost screened. On the
other hand, LO phonons having shorter wavelengths are
not affected by the plasma and hence the scattering of
electrons by these phonons is unchanged.

The mode coupling in QW's has been studied on the as-
sumption that the total dielectric function vanishes. ' '
This is, however, inapplicable to the present problem
since the boundary conditions at heterointerfaces of the
electromagnetic fields should be considered both for
plasmons' ' and phonons.

In Sec. II we treat the coupled mode as a guided mode
in a three-layer waveguide which makes a model of the
GaAs QW's. Dispersion relations of and phonon contri-
bution to the coupled modes are calculated numerically.
The results of the calculations are discussed in Sec. III in
connection with the screening problem.
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Here, co is the frequency, co& and co&; are longitudinal opti-
cal frequencies, and co, and co„are transverse-optical fre-
quencies.

In the QW are there free carriers resulting from doped
impurities or generated by optical means, and hence the
dielectric function of the GaAs layer becomes anisotrop-
ic. We assume that the carriers are degenerate in the
ground subband and polarizable in the yz plane only, thus
neglecting intersubband excitations. This assumption is
valid in the limit of vanishingly smaH well width. Then,
the dielectric function e~ perpendicular to the GaAs layer
may be approximated as

&i = e0(co)', (3)

but the dielectric function e~~ in the parallel direction be-
comes

dielectric continuum model for the response of lattice
ions to external fields, where the dielectric functions
eo(co) and ei(co) of GaAs and Alo 3Ga07As may be writ-
ten, respectively, as

eo(co) =~„(coi co —)/(co', co'—),

for ~x~ & d /2. From Eqs. (8)—(10) we find

Eik EII[(Rico /c ) q ]

y =q —e, (co)co /c

and from the boundary conditions at x =+I /2,

y = —[Ei(co)/EII]k cot(kd /2) .

Combining Eqs. (11) and (12) leads to

o(co)K +eIII =EII[EO(co)—e, (co)](cod/2c)

(13)

I =Q—=qd/2, (15)

eo( co)E =
i @II i I

and Eq. (13) is rewritten as

(16)

where K =kd/2 and I =yd/2. In our case co is at most
10'4 s ' and hence the right-hand side of Eq. (14) is negli-
gibly small. From Eqs. (13) and (14) we find that the TM
modes can be obtained when @II &0, eo(co) )0, and
ei(co) )0. With eII

= —
I@I~I I and the approximation of

neglecting terms proportional to (co/c), Eqs. (12) and
(14) lead, respectively, to

eII =eo(co)+4m.y, (4) r tansy=[~i(~)/~~II~]x (17)

where g is the susceptibility of the quasitwo-dimensional
electron gas. In calculating the dispersion relations of
the coupled modes we take the real part y, of g in Eq. (4).

Since the longitudinal electric field due to the plasmons
is in the well layer, it is suScient to consider the trans-
verse magnetic (TM) mode' ' of the form
exp[i(cot —qz)] with q as a wave number. From the
Maxwell equations we have the following relations
among the electric fields E, E„and the magnetic field
H in the well

(i co@i/c)E„=iqH»,

(i ~~II /c)E, =aH, /ax,
(ico/c)H =iqE +aE, /ax,

(6)

where c is the light velocity. Substituting Eqs. (5) and (6)
into (7) we obtain

0 Hy E'yN

Eg ~ +E~)
ax C

—
q H =0

H =(x/~x~ )8 exp( —y ~x~ )exp[i (cot —qz)] (10)

and a similar equation in the barrier layers in which

We are looking for a guided wave whose fields are
sinusoidal inside the well and decay exponentially out-
side. The field H„can be expressed as either an even or
an odd function, of which the even one is excluded here
because it gives photonlike anodes. Thus we have

H» = A sin(kx)exp[i (cot —qz)]

for ~x~ & d /2, where d is the width of the well, and

ei(co) ~eII ~Q =0 (20)

which corresponds to some earlier results. ' ' In the
case of the bulk or the two-dimensional crystal we have
@II

=0 from Eq. (6) as usual, since aH» /ax =0 in the bulk
or E =H =0 in the two-dimensional case.

Figure 2 shows the dispersion relations calculated from
Eq. (18) for the plasma of electrons and holes of equal
densities, where ihe dashed and solid lines correspond to
the electron or hole density X = 1 X 10' cm and
1X10' cm, respectively. In the calculations we take
the well width of 50 A, the electron and hole effective
masses of 0.067 and 0.45 m, the Stern's result' to the sus-
ceptibility g, and the parameter values in eo(co) and ei(co)
from the paper of Kim and Spitzer. The upper branch
in Fig. 2 represents the plasmori-LO phonon coupled
mode, while the lower branch is the well-known two-
dimensional plasmon mode though a little mixing of pho-
nons may be found. The range of the wave number in
each branch is determined from the fact that the modes
exist only when e~~ &0. In these ranges the imaginary part

Substituting Eq. (16) into Eq. (17) and using Eq. (15), we
find the dispersion relation

tan f [[eI~//eo(co)]' Q $
=e, (co)[ eII/eo(co)]

' . (l8)

For small q and small co,
~ @II f approaches to co /co, where

co is the plasma frequency, and then Eq. (18) leads to

co =co„[qd /2e, (0)]' (19)

The square-root dependence on q of co has been already
reported for the quasitwo-dimensional plasma. ' ' For
d ~0, Q will be small and Eq. (18) leads to
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10 III. DISCUSSION

The magnetic field H of the coupled mode has been
given as the odd function of x, so that the transverse elec-
tric field E is odd and the longitudinal electric field E, is
even. This indicates that the coupled mode can be taken
as longitudinal on the average about x. However, it can
also be regarded as propagating with zigzag ways in the
well through the following expressions of the electric
fields:

0
0 0.5 1.0

l

1.5 2.0

E„=E„+exp[ i—(kx +qz)] E,—exp[i(kx qz)]-,

E, =E,+exp[ i (k—x +qz))+E, exp[i (kx qz)) —.
(22)

(23)
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FIG. 2. Dispersion relations of the coupled plasmon and
phonon modes for degenerate electron-hole plasma in the GaAs

0

quantum well of 50 A in width. The dashed and solid lines cor-
respond to the plasma density N=1X10" and 1X10' cm
respectively.

8 = [eo(co)—e„]'/t [eo(co)—e„]'+(4~yg)'I, (21)

since the charge Auctuations are proportional to the sus-
ceptibilities. The dashed (X = 1 X10' cm ) and solid
(N =1X10' cm ) curves in Fig. 3 represent the phonon
strength ratio of the coupled modes (the upper branch) in
Fig. 2, indicating that at X =1X10' cm the coupled
mode is almost phononlike, while it becomes rather
plasmonlike at X =1X10' cm

of y is found to be zero, and therefore these modes exhib-
it no Landau damping.

As in the previous paper, ' we define the ratio of pho-
non strength R

Figure 4 shows the ratio of the transverse to the longitu-
dinal electric fields for the coupled modes in Fig. 2 calcu-
lated from

IE. ZE, I
=kxq—, (24)

which is derived from Eqs. (5), (6), and (9). In long wave-
lengths (q (1X10 cm ') the coupled modes are found
to be nearly transverse though there the frequency is
equal to the longitudinal-optical frequency ~I.

Our model for the GaAs QW can be easily extended to
GaAs-A1GaAs heterojunctions by replacing e, (co) of one
of the barrier layers with Ep(co). Dispersion relations of
the coupled modes for this heterojunction model are
found to be very similar to those for the GaAs QW. Be-
sides, we have examined a fictitious model in which the
dielectric functions of both barrier layers are equal to
eo(co), that is, the model in which the carriers are
confined in a potential well but the dielectric function is
homogeneous. In this case also we have obtained similar
results to the GaAs QW except some difference in the ra-
tio IE. iE;+I.

As shown in Fig. 2 the mode coupling occurs only in
the long-wavelength ranges. Because the long-range in-
teractions between the plasmons and LO phonons are in-
cluded in forming the coupled mode, the Frohlich in-
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FIG. 3. Phonon strength ratio defined by Eq. (21) for the
coupled modes (the upper branch in Fig. 2) as a function of the
wave number.

FICi. 4. Wave number dependence of the ratio of transverse
to longitudinal electric fields for the coupled modes (the upper
branch in Fig. 2).



39 COUPLING OF PLASMONS TO POLAR PHONONS IN GaAs. . . 10 195

teractions due to uncoupled LO phonons are unchanged.
The wave number of phonons absorbed by the electrons
and holes at the Fermi surface is in a limited range relat-
ed to the Fermi wave number and the energy of the pho-
nons. With d =50 A and &vI =5.52X10' s ' we obtain
the range of the wave number component q in the yz
plane of the phonons absorbed by the electrons as fol-
lows: 2 03X10 &q &3 15X10 cm ' at X=1X10'

and 1.31 X 10 &q &4.86X 10
Ã=1X10' cm . These ranges shift to higher values
for the holes because of the large e6'ective mass. The
wave number of the coupled mode is found in Fig. 2 to be
smaller than 2X10 and 1.5X10 cm ' for X=1X10'
and 1 X 10' cm, respectively. Consequently, we con-
clude that the plasmons do not have any significant eff'ect
on the carrier heating process due to the Frohlich in-
teraction.

We have neglected intersubband excitations in the cal-
culation of y. This may not be a good approximation to
holes, where intersubband energy di6'erences are relative-
ly small. In the long-wavelength approximation, contri-
bution of the intersubband excitation to the dielectric
function is given as

—N pcoF co~ leo {N co~j,2 2 2 2

where A~~ is the Fermi energy and Ace~ is the energy
diA'erence between the ground and the vth subbands.
Since the hole effective mass is large, this contribution
may be negligible as compared to the dielectric function
of the electron plasma, except cases of co& -co,~.

In conclusion, we have calculated the dispersion rela-
tions of the coupled plasmon-LO phonon mode in the
GaAs QW with assuming the dielectric continuum model
for the lattice ions and the degenerate two-dimensional
gas model for the carriers. To obtain the coupled mode,
it is found that e~~ &0 is necessary instead of 6~I

=0 in the
exactly two-dimensional model. Since main phonons ab-
sorbed by the carriers at the Fermi surface remain uncou-
pled, the Frohlich interaction participating with the car-
rier heating process are not screened.
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