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Excitonic spectra of asymmetric, coupled double quantum wells in electric fields
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The excitonic spectra of asymmetric, coupled double quantum wells in external electric fields
were analyzed by a two-band model in the effective-mass envelope-function approximation. Only
bound states exist because we assumed that the potential profile has an infinite potential energy at
both ends of the double-quantum-well structure. The absorption spectra were calculated in the di-
pole approximation for the excitonic and the continuum contributions. The variations of the en-
velope functions, the eigenenergies, the oscillator strengths, and the absorption spectra with electric
fields for symmetric and asymmetric wells are presented. We found that, without fields, the asym-
metry of the double-quantum-well structures can yield nonzero oscillator strengths for forbidden
transitions, but these are too weak to be important in the absorption spectra. With increasing fields,
asymmetries of the well structures can yield entirely different spectra depending on the shifts of the
central barrier towards the right side or the left side of the well. Theoretical and experimental re-
sults were compared and good agreement was reached.

I. INTRODUCTION

In their most general sense, excitons are elementary
crystal excitations produced when a crystal strongly ab-
sorbs light of a given photon energy which creates
Coulomb coupled electron-hole pairs. The effect of an
electrical field on excitons in semiconductors' has been
studied thoroughly and has been widely used in many
electro-optic devices. ' The Franz-Keldysh effect states
that, at a given photon energy, the absorption coefficient
of the interband transitions increases with electric field. '

This can be interpreted as a shift of the absorption edge
to lower photon energies. When the Coulomb interaction
is taken into account, the direct consequences are a
broadening of the exciton-absorption line and a shift of
the exciton resonance to lower photon energies as the
field increases. ' ' This broadening occurs because the
electric field lowers the lip of the Coulomb potential ener-
gy and concentrates the wave function on the lip side of
the Coulomb potential. . Consequently, the probability of
the electron escaping from the hole (field ionization) in-
creases. ' In short, asymmetry of the effective potential
(Coulomb potential plus electric potential) has a great
influence on optical-absorption spectra.

Recently, a great deal of attention has been
focused on investigations of the electr oabsorption in
GaAs/Al„Ga, „As quantum wells (QW's) because of the
possibility of designing new types of high-speed electro-
optic modulators. Upon the application of electric
fields (no matter how small) to wells with infinitely thick
barriers, the system strictly has no bound states simply
because one of the conduction band edges in the barrier
regions is lowered to —~ by the field, i.e., the potential
becomes open. ' Therefore, discrete energy levels be-
come continua. However, if the fields are not excessively
large, we can treat the particle as quasibound in an
effective region, and perform the calculation variational-
ly ' or by perturbation. " Alternatively, the exact solu-

tion of the effective-mass Schrodinger equation can be ob-
tained by using the resonance-tunneling technique and
yields a continuous energy spectrum. ' ' The optical-
absorption spectra as a function of field have been report-
ed' for a variational method with the valence-band mix-
ing taken into account. These studies focused on single
quantum wells and show that (1) exciton resonances per-
sist even at room temperature; (2) when an electric field is
applied perpendicular to a QW large shifts in the optical
absorption to lower (red shift) or higher (blue shift) pho-
ton energies remain well resolved with little broadening;
(3) the intensities at the exciton-resonance energies de-
crease (increase) for allowed (forbidden) transitions as
field increases. All these features are quite different from
the effects seen in the bulk semiconductor, GaAs.

The band-gap engineering of quantum-confined sys-
tems offers more complex structures, such as the coupled,
double quantum well (CDQW), ' which permits fiexi-
bility in the study of the Stark effect on excitons and can
enhance the performance of electro-optic devices. This
structure consists of a pair of QW's separated by a barrier
thin enough that particles can interchange between wells
by tunneling through the barrier region. Variations of
exciton resonance energies with electric fields have been
investigated theoretically using the tunneling resonance
technique' ' and the perturbation method. ' Usually in
experiments, samples are fabricated in CDQW p i n--
structures so that bias voltages can be applied. However,
in theoretical treatments, the effect of electric fields is cal-
culated. Thus, when theoretical and experimental results
are compared, a suitable relation between field and bias
voltage must be assumed.

This study was undertaken to ascertain the degree to
which structural asymmetries inadvertently introduced
into coupled pairs of QW's during growth would affect
optical properties. The model developed here permits us
to calculate the absorption spectrum of asymmetric
CDQW's (i.e., two coupled wells of difFerent thicknesses)
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as a function of electric field. In our model, we assume
that the potential energies at the interfaces of p-i and n-i
of the CDQW p i n--structures are infinite. This assump-
tion ensures the existence of only bound states in the sys-
tem with electric fields. Confined excitons are described
by using the effective-mass approximation in the two-
band model. In Sec. II, we present our theoretical mode)
for calculating the eigenenergies and the corresponding
envelope functions, and then discuss the excitonic and
continuum contributions to the absorption coefficient. In
Sec. III, numerical results and experimental data are
compared. The inAuences of the spatial asymmetry of
the CDQW with and without fields are discussed in de-
tail. Finally, a summary is presented. In the Appendix
numerical schemes for solving the Schrodinger equation
are discussed.

II. THEORY: TWO-BAND MODEL
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In our theoretical model, we consider an asymmetric
CDQW to have finite depth (V, in the conduction band
and Vh in the valence band) and to experience an external
electric field F along the z axis as shown in Fig. 1. Here,
Eg is the band-gap energy, D „D2, and 8 are the barrier
thicknesses, and 8', and 8'z are the well thicknesses.
The quantity 5, defined as (Wi —W2)/2, indicates the de-
gree of the spatial asymmetry of the CDQW structure.
The point 0" is at the center of AB. A confined exciton
is then described by using the effective-mass envelope-
function approximation. Throughout this section, we
adopt atomic units, A=moe /2A' for the energy unit,
and aii=h' /moe for the length unit, where mo is the
free-electron mass. The total Hamiltonian for the system
is given by

or ( —B/2 —W, D, ) . —

Here, m, , mh*, and p are the electron effective mass, the
hole (heavy or light) eff'ective mass, and the reduced mass,
respectively, I' is the applied electric field, a is the dielec-
tric constant, and p is the relative displacement of the
electron and hole in the x-y plane. H, and H& are used
to describe the electron and hole motion in the z direc-
tion, respectively, and H,„ is employed to depict the exci-
tonic effect via the Coulomb interaction.

We attempt to solve the eigenvalue problems of Eqs.
(2)—(4) separately. Firstly, let us consider Eq. (2) for the
electron. The envelope functions f„(z, ) for the electron
satisfy

H =H, +H~ +H,„, H, f„(z,)=E,„f„(z,), n =1,2, 3, . . . (6)
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FICir. 1. The potential profile of the CDQW structures.

where E,„, the eigenenergy, is measured from the refer-
ence point 0 as indicated in Fig. 1. Because the potential
energy V, (z, ) is assumed to be infinite at both ends [see
Eq. (5)], the appropriate boundary conditions for f„(z, )

are

f„(z,=B/2+ Wz+D2 )

=f„(z,= —B/2 —W, D, )=0. —
The discrete eigenenergies E,„and the corresponding
eigenfunctions f„(z,) which satisfy Eq. (5) and boundary
conditions [Eq. (6)] can be solved numerically as accu-
rately as desired by using the Runge-Kutta method. This
numerical scheme is discussed briefly in the Appendix.
An identical numerical procedure can be applied directly
to calculate the eigenenergies E„and the corresponding
eigenfunctions g (zh) for the hole. From Eq. (3), we
write

H„g (z„)=E, g (z„), (8)

with the boundary conditions

g~(zh B/2+ W2+D2)—
=g (zh = —B/2 —Wi Di )=0 . (9)—

Here, E, is measured from the reference point 0' as
shown in Fig. 1. Once E,„and f„(z,) for electron and
E, and g (zh ) are determined, Eqs. (1) and (4) give
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V&p„(p)— —f dz, f„(z, ) f dzb g (zb)[p +(z, —zb) ] ' $„~(p)=E,„p„~(p),p —oo —oo
(10)

where P„(p) is the envelope function for the exciton and
E,„ is the corresponding eigenenergy. The boundary
conditions are P„(+~ ) =0. The total energy E„
(apart from the bulk energy gap Es) and the total en-
velope function g„of the system with an electron in the
nth state and a hole in the mth state are

and

Enm Ecn + Um +Eex

v'pg„(p—) —(p'+—&„' )
'~' P„(p)

p /C

~m (p, z„zb ) =f„(z, )g~ (zI, )P„~(p) .

It is important to note that, since any information about
the electric Geld I' is implicitly contained in the functions
f„and g, Eq. (10) has an implicit electric-field depen-
dence. '

Examination shows that Eq. (10) is di%cult to solve, ei-
ther numerically or analytically, without further approxi-
mations. For simplicity, we inay approximate Eq. (10) by

1+ exp[ 2'—(p/~ E,„)' ]

(17)

a'"(co)=—g [P'I„' ly„(0)125(E„' +E,—iri~)].
n, m, v

(18)

for the excitonic contribution, and

P'I„' ly'„(o)l'a""(co)=-
n, m, v, k

kX 5 +E„—Ao)
v

(19)

for the continuum contribution, with the overlap integral

The absorption coefticient for radiation of angular fre-
quency co propagating along the z axis of the system is
calculated by employing the dipole approximation to
obtain

where

(p), (12) I„=f dz, f dz„ f„(z,)g ( b)5(z, —zb)

(20)
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1 /2

In this approximation, aH information about F is implicit-
ly included in A„ through functions f„and g . For the
exciton energy of the ground state, E,„=Eh & 0, we adopt
a variational method to approximate Eb by choosing the
normalized trial wave function

5(x)~I [m(x +I' )] (21)

where P is the momentum matrix element and the sub-
index v is used to distinguish the heavy hole (H) or light
hole (L) in the valence band. In order to include the
effects of spectrum line broadening, we replace the 5
function in Eqs. (18) and (19) by a Lorentzian function of
half-width I:

X exp
p( 2+ g 2 )1/2

2
(14) a(co) =a'"(co)+a""(a)) . (22)

and then perform the integration over k in Eq. (19). The
total absorption coefticient o. is

where p is the variational parameter. By using Eq. (14),
the expectation value of E,„ in Eq. (12) is given by

p' p'2I'Ei(ri) 2p p
4 4(1+2') ~ 1+21

where E, (ri) is the exponential integral with 2)=pA„
After minimization of ( Eb ) with respect to p, we obtain
the exciton binding energy in the 1s state and the approx-
imated $„(p). The physical quantity needed for later
discussions of the absorption coefficient is

(0)l =p /22r(l+pA„) . (16)

For the exciton energy in the continuum (E,„~0), we
neglect the A„ term in Eq. (12), and lg„(0)l is given
by22

Note that when we perform the sum over v for the heavy
hole and the light hole in Eqs. (18) and (19), the relation
of (P )H/(P )L=—', is incorporated. The oscillator
strength for the heavy-hole exciton and the light-hole ex-
citon is defined as

(0„)=C'[P I„ lg„(0)l ], v= H, L, (23)

where C' is proportionality constant. Conventionally, we
categorize optical transitions into two classes: (1) if
n =m the transitions are allowed, and (2) if n~m, the
transitions forbidden. However, when an electric Geld is
applied to quantum wells, the potential proGle becomes
asymmetric, and allowed transitions may weaken and for-
bidden transitions may become observable. Finally, from
the E„and Eb assigned in Eqs. (20) and (15), we define
the calculated energies
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(24)

which we directly compare to experimental data.

III. NUMERICAL RESULTS AND DISCUSSION

In order to perform numerical calculations using the
model developed in Sec. II, we need to specify the struc-
ture parameters: V„VI„Di,D2, Wi, W2, B, mz" (L and
H), and m,*, for a CDQW. The photoluminescence exci-
tation spectra of a CDQW under various bias voltages,
reported in Ref. 20, were originally assigned the follow-
ing structural parameters: Ga, „Al„As/GaAs with
x =0.27, V, =237.2 meV, V~ =101.7 meV, D) =D2
=850 A, 8'& =75 A+5, 8'2 =75 A —5, B = 18 A, m,'
=0.067, mH =0.377, and mL =0.087 for the masses in
the well regions, and m,*=0.089, m H =0.4, and
mL =0.107 for the masses in the barrier regions. The
common parameters are ~=12.2 for the dielectric con-
stant and Eg =1519 meV for the energy gap of bulk
GaAs. This CDQW is spatially symmetric if 5=0. We
use this set of data as our input for the numerical calcula-
tions, and the results are discussed below. In this section,
we assign the notation nmH (nmL) to represent the tran-
sitions between the electron in the nth state and the
heavy (light) hole in the mth state.

have 022H )0»„, while when ~5~~60 A, i.e., the left
well almost disappears, we have 022H (O»i . For forbid-
den transitions [Fig. 3(b)], when ~5~~0, O„H~„L~~O
because the double quantum well has spatial symmetry
which yields antisymmetric integrands of g f„ in Eq.
(20). As ~5~ increases, oscillator strengths first increase
and then decrease to zero when ~5~~60 A. Here, the
CDQW behaves like a single well which has spatial sym-
metry and yields antisymmetric integrands. As well,
Figs. 3(c) and 3(d) show the total energy E„o'H~„L~ [as
defined in Eq. (24)] as a function of ~5~ for the allowed
and forbidden transitions, respectively. For the allowed
transitions, as ~5~ increases, E';,'H and E';,'i decrease
monotonically while E22'H and E22'I increase to maximum
values and then decrease.

The absorption coefficient a(iiico) for various ~5~ is
shown in Fig. 4. In the optical energy range of interest,
we see only four peaks, which are identified as allowed
transitions. The forbidden transitions do not show up in
the absorption spectra because the oscillator strengths

0.13

A. Without electric fieM, I' =0

First, we investigate the simplest case, i.e., when the
system is electric-field free. A typical CDQW with 5
(0, i.e., Wi (left well) decreasing but W2 (right well) in-

creasing with increasing ~5~ with B and AB fixed is
indicated in Fig. 1. The envelope functions for various
5's with 0~ —5 ~ 60 A are plotted in Fig. 2 for the heavy
hole. Figure 2(a) shows the envelope functions for the
heavy hole in the ground state, i.e., g, (zi, ), while Fig.
2(b) gives the envelope functions for the heavy hole in the
first excited state, g 2(zh). When ~5~=0, g, (gz) has
spatial symmetry (antisymmetry) with respect to zh as ex-
pected, because the potential profile has spatial symme-
try. When ~5~ increases, W, (8'z) for the left (right) well
decreases (increases); thus, the probability of finding a
hole in the left (right) well decreases (increases), and

g, (zh ) becomes asymmetric in zl„as shown in Fig. 2(a).
When

~
5

~

is larger than 15 A or so, g, is nearly zero in

the left-well region. Thus, the CDQW behaves like a sin-

gle well and g& becomes almost symmetric in z&. In con-
trast, the results for the first-excited state are quite
different. As indicated in Fig. 2(b), when ~5~ increases,
the probability of finding a hole in the left (right) well in-
creases (decreases). However, when ~5~ is larger than 40
A or so, g2(zh ) becomes almost antisymmetric because
now the CDQW behaves like a single quantum well.
Similar conclusions are reached for the envelope func-
tions of electron, f„(z,), and light hole.

The oscillator strengths, O„H[„ i ], are shown in Figs.
3(a) and 3(b) as functions of ~5~ for the allowed and for-
bidden transitions, respectively. For the allowed transi-
tions [Fig. 3(a)], we see that the oscillator strengths have
oscillatory behavior as ~5~ increases. When ~5~~0, we
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FICx. 2. Three-dimensional plots of the envelope function as
functions of zq and 5 without electric field for the heavy hole in
{a) the ground state and {b) the first-excited state.
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(c) and for forbidden transitions (b) and (d), respectively.

are one order of magnitude weaker than the oscillator
strengths for the allowed transitions for any value of 5, as
shown in Figs. 3(a) and 3(b). Here, we notice that when
~5~ increases the 1lH and 11L peaks shift toward lower
energies, while the 22H and 22L peaks shift toward
higher energies, and then move backward to lower ener-
gies. These conclusions are refiected exactly in Fig. 3(c).
The llH and 22H peaks (11L and 22L peaks) indicate
stronger (weaker) absorptions mainly because the oscilla-
tor strengths for the heavy (light) hole are stronger
(weaker), as shown in Fig. 3(a). Here, we conclude that
without electric fields, even if we make the CDQW asym-
metric (5&0), the oscillator strengths for the forbidden
transitions are nonzero but too weak to be clearly observ-
able in the absorption spectra.

B.Symmetric wells with electrical fields (5=0, F+0)

Even when the structures of the CDQW's are sym-
metric (5=0), the potential profiles becomes asymmetric
with respect to the center 0 of the barrier if an external
electric field F is applied as shown in Fig. 5 for the
conduction-band edge. The envelope functions for vari-
ous F's in the ground state (the first-excited state) are
shown in Figs. 6(a) [6(d)], and 6(b) [6(e)], and 6(c) [6(f)] for
electrons, heavy holes, and light holes, respectively. For
the electron in the ground state, Fig. 6(a) indicates that
(1) when the field I' is zero, f, (z, ) has spatial symmetry;
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first-excited state because of its higher energies.
Oscillator strengths as a function of F are plotted in

Figs. 7(a) and 7(b) for allowed and forbidden transitions,
respectively. Figure 7(a) [7(b)] shows that for the allowed
(forbidden) transitions, when F increases, oscillator
strengths decrease (increase) in the low-field region.
Among forbidden transitions, 02IH may become the
dominant transition in the high-field region (Ii —100
kV/cm). The variations of the total energies E„"'H~„
[Eq. (24)] with the field I' for allowed and forbidden tran-
sitions are shown in Figs. 7(c) and 7(d), respectively.

C. Asymmetric wells with electrical fields (F+0, 5~0)
0 0

We take 5=10 A and —10 A as examples to illustrate
the consequences of the asymmetries of the double-
quantum-well structures. If 5 equals 10 A ( —10 A), 8'i
equals 85 A (65 A) and 8'2 equals 65 A (85 A), i.e., the
left well becomes thicker (thinner). We assume that the
electrical 6eld is along the z, & axis. The envelope func-
tions f2(z, ) for the electron in the first-excited state are
chosen as examples, and shown in Figs. 8(a) and 8(b) for
5= 10 A and —10 A, respectively. When I' is 0 kV/cm,
Fig. 8(a) [8(b)] shows that more electrons populate the
right (left) well. As F increases, electrons begin to redis-
tribute themselves. When F is 100 kV/cm, we see that
the possibility of an electron leaking out of the CDQW
and residing in the left-barrier region is larger (smaller) if
5 is 10 A (

—10 A), as shown in Fig. 8(a) [8(b)]. There-
fore, from comparison of Fig. 6(d) with Figs. 8(a) and

8(b), we expect to see significant changes in E„"'H~„
and O„H ~„L)as functions of F. We summarize all these
variations in the absorption spectra in Figs. 9(a), 9(b), and
9(c) with 5=10, 0, and —10 A, respectively. We find
that (1) with F =0 kV/cm only absorption peaks due to
allowed transitions are present in the spectra since the os-
cillator strengths for forbidden transitions are too small
to be significant in the absorption even when 5&0, as
shown in Fig. 4; (2) with increasing F, absorption peaks
due to allowed transitions quickly disappear and absorp-
tion peaks due to forbidden- transitions are observed in
the spectra. Note that when F&0 and if (1) 5=10 A,
there are two dominant absorption peaks: the 12H peak
on the lower-energy side and the 21H peak superimposed
with the 12L peak to produce a strong absorption line on
the higher-energy side; (2) with 5= —10 A, only one
dominant peak, 21H, appears on the lower-energy side
and weaker peaks 21L and 22H appear in the higher-
energy side. Here, we conclude that, by shifting the cen-
tral barrier to the right-hand side or to the left-hand side
of the double quantum well (see Fig. 1), the absorption
spectra as a function of F are varied drastically not only
in the line shapes but also in the peak locations of the en-
ergy spectra.

D. Comparison with experimenta1 results

In applying the model developed above to calculate ab-
sorption spectra as a function of applied electric field to a
specific structure which has been studied experimentally
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FICx. 7. %'ith 6=0, the oscillator strengths and the total energies are plotted as a function of fields F for allowed transitions (a) and
(c) and for forbidden transitions (b) and (d), respectively.
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previously, we found that the best agreement between
calculated exciton energies and oscillator strengths and
experimentally derived results was obtained using a set of
structural parameters slightly different from the nominal

'dth is consistent with our latest results on single- W
bexciton energies whose widths were obtained direct y y

monitoring reAection high-energy electron-diffraction
oscillations. The new set of input parameters is
GaI Al As/GaAs with x =0.29, V, =247. 1 meV,
Vh = 119 meV, D

~
=D2 =850 A W& = W2 =64 A 8 = 15

A, m,'=0.0665, mH =0.34, and mI =0.105 for the
masses in the well regions, m, . =0.0904, m H. =4 *.=0.36 and
m L =0.13 for the masses in the barrier regions, ~=12.2,
and E = 1519 meV.

The experimental photoluminescence excitation (PLE)
spectra as a function of electric field F are given in the
left-hand column [Figs. 10(a)—10(d)], while the calculated
absorption spectra are presented in the right-hand
column [Figs. 10(e)—10(h)]. The correspondence with the
notation of Ref. 20 is 11H= 1, 22H =3, 11L=6, 22L =8,
12H=2, 21H=5, 12L=4, and 21L=7. It is important
to realize that while PLE spectra are analogous to ab-
sorption spec ra,t s ectra they are not identical. Therefore, exact
agreement of the calculated results and the PLE spectra
is not expected. However, it is reasonable to assume that
when strong (weak) peaks are present in absorption spec-
tra, they will also be present in PLE spectra. This is
clearly evident in Fig. 10 for several different values of

electric field. The calculated and experimental exciton
energies nmH (nmL) g

'es (E'" E—) as a function of F are shown in
Figs. 11(a) and 11(b) for the allowed transitions and for-
bidden transitions, respectively. The conversion from ex-
perimental measured voltage to internal electric field was
accomplished by assuming that the total net voltage (ap-
plied minus built-in) occurred across the undoped region
in the structure. For allowed transitions, calculated
curves are in excellent agreement with experiment [Fig.
11(a)], but for forbidden transitions the agreement is less
satisfactory, particularly for the 12H and the 12L transi-
tions. This may be a consequence of the fact that band
nonparabolicities and light- and heavy-hole mixing were
omitted in the calculations.

IV. SUMMARY
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We have studied the excitonic spectra of asymmetric
coupled double quantum wells in external electric fields
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FICs. S. The envelope functions for the electron in the first-
excited state with (a) 5=10 A and (b) 5= —10 A under three
electric fields. E=0 (solid curves), 50 kV/cm (long bars), and
100 kV/cm (short bars).
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FIG. 9. The absorption spectra of the CDQW are plottelotted
with various electric fields for (a) 5=10 A, (b) 5=0, and (c)
5= —10 A.
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FIG. 10. The experimental PLE spectra (left-hand column)
compared with the calculated absorption spectra (right-hand
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electrical field included, were solved numerically in order
to obtain exact eigenenergies and eigenfunctions. Only
bound states exist because we have assumed infinite po-
tential wells at both ends of the CDQW structure. A hy-
drogenlike Schrodinger equation was derived to describe
the excitonic effects and was solved variationally for the
ls state. The absorption spectra were obtained by using
the dipole approximation for the excitonic and the con-
tinuum contributions. The line shapes were assumed to
be I.orentzian. We examined variations of the envelope
functions, eigenenergies, oscillator strengths, and absorp-
tion spectra with the fields for symmetric and asymmetric
wells. We found that, without electric fields, asymmetries
of the CDQW structure can yield nonzero oscillator
strengths for "forbidden" transitions, but these are too
small (about 1 order of magnitude less than the oscillator
strengths of "allowed" transitions) to be important in the
absorption spectra. Also, we found that with increasing
electric fields, asymmetries of the CDQW structure can
yield entirely different absorption spectra, depending on
the shifts of the central barrier towards the right- or left-
hand sides of the well. We compared our theoretical cal-
culations with the experimental results on the absorption
spectra and the locations of the exciton peaks in energy,

FIG. 11. The total energies of (a) allowed transitions and (b)
forbidden transitions vs electric fields I:. Theory (solid curves)
and experiment (dots).

and were able to reach good agreement if we chose the
parameters of the CDQW appropriately. In conclusion,
it is important to point out that while QW widths for sin-
gle wells can be determined relatively straightforwardly
by using energies of quantum well excitons, widths of
coupled double wells are more difficult to obtain. Howev-
er, from the good agreement between experiment and
theory demonstrated in this work, it appears that the
model developed here can yield accurate results.

APPENDIX: NUMERICAL SCHEME FOR Eq. (6)

It is well known that the Runge-Kutta method can be
used to solve simultaneous first-order and, hence, higher-
order ordinary differential equations. When combined,
Eqs. (2) and (6) become



10 142 LEE, VASSELL, KOTELES, AND ELMAN 39

where all subscripts have been omitted in the original
equations, and m'(z) and V(z) are constants in various
regions 1 —5, as indicated in Fig. 1. In region 1, we have

1
, B,Q+ [ V +F(z) E]—/=0,

and we identify 1( —+ Y, and B,1(~Y2. Then, Eq. (A2)
can be cast as

Y)= Y2

E —Vg=(mF)'" z—
F

with F )0 assumed. After differentiating Y, (z) with re-
spect to z and combining with Eq. (A6), Y', (zi ) =
Yz(zi ) has the simple form written as

Y~= Bi '[g(z =zl )] . (A7)

For a given set of input data (m', V, F, E), Eq. (A7) gives
the exact slope of g(z). The other initial conditions are

Y2=M'(V+F, E)Y, ,— (A2) Y3 (ZI ) Y4(zl ) Y5 (zL ) =0 (A8)

where the prime represents Bz. The physical quantities
needed for calculating the absorption coe%cient and for
Eq. (13) are

Y3= f dz Yf for normalization,

Y4 = f dz z Y, for average z,

Y~ = f dz z Y2 for average z

Thus, we have

Y' =Y
3

Y4 =zY],
Y~ =z Y1

(A3)

(A4)

(A5)

Y, (zl )=0 . (A6)

We know that the general solution for Eqs. (Al) and (A2)
is a linear combination of Airy functions, Ai(x) and
Bi(x). Thus, we write

Y, (z)=C, Ai(g)+C2Bi(g),

where

In order to save computing time for faster convergence,
we perform the following analysis. One of the initial con-
ditions at z =zL = —8/2 —W, D, is given by E—q. (7) as

because of Y, (zi )=0. The first-order differential equa-
tions (Al) —(A5) are solved simultaneously with condi-
tions (A6) —(A8) and terminated at z =zL =8/2 —W, .
This completes the calculations in region 1.

In region 2, we replace m' —+m and V~O in Eq. (A2)
and set Y,zl = Y, (zL ) for i =1—5, except i =2, which
needs special care. To ensure the continuity of the parti-
cle Aux, Y2(z) [i.e., y'(z)] requires

Y2(zL )=m'Y2(zI )/m .

Then, Eqs. (Al) —(A5) with initial conditions discussed
above are solved for region 2. Similar numerical pro-
cedures are performed for regions 3, 4, and 5. The
boundary at the right-hand side is z =z~
=B/2+ 8'2+Dz. For a given set of input data
(m', V, F,F), we examine Y&(zz ) iteratively until it con-
verges to a desired small positive quantity A, . If Y, (z~ )

has not converged to A, , we choose a new value of E until
the criterion Y, (zz )

~
A, is satisfied. This completes the

eigenvalue problem for the electron in the conduction
band. A more efficient way to complete the computing is
to use the fact that when z ~+ oo, and FWO, Y, (z) must
converge to CAi(x) where C is a constant. Thus, we
evaluate the absolute value of a quantity

Y, (z)/Yz(z) —Ai(g)/m'F)' Ai'(g) =i) .

%"hen g converges to k as desired at z =z' ~ z~, the com-
putation is ended.
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