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Thermal emission of holes from defects in uniaxially stressed p-type silicon
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Iron-acceptor pair defects in silicon are insensitive to stress. These defects therefore provide con-

venient reference points from which to measure the effects of uniaxial stress on the valence-band

structure in silicon. Despite the strong mixing of light- and heavy-hole bands at low values of stress,
we find that for thermal emission the stress-split valence band can be approximated as two indepen-

dent bands that displace rigidly with increasing stress according to the shear deformation potentials.
The spherical approximation for the effective masses is not consistent with these deformation poten-

tials because the approximation incorrectly partitions the density of states between the two bands.
We establish the correct partitioning of the density of states numerically, and find stress-dependent

density of states that approximately conserve the center of gravity of the split valence bands. Uni-

axial stress data on the Fe-Al defects in silicon are used to experimentally verify the numerical re-

sults. The analysis described in this paper can be easily generalized to determine the stress proper-
ties of hole traps in any p-type semiconductor.

I. INTRODUCTION

Semiconductors are placed in states of uniaxial stress
for many different applications. Far-infrared detectors
based on shallow-level absorption are often placed under
uniaxial stress to extend the sensitivity of the detectors to
longer wavelengths. ' Carrier statistics, and particularly
the density of states at the band edge, play an important
role in these devices by defining defect occupancies and
carrier detrapping lifetimes. Uniaxial stress is also com-
monly used as a probe of defect symmetry and structure.
There has been recent work in the use of uniaxial stress in
conjunction with thermally stimulated emission of car-
riers from deep-level defects. ' This thermal ionization
technique is also known as deep-level transient spectros-
copy (DLTS). Defect energies are derived by measur-
ing the rates of thermal emission of carriers from defects
to the band edge. The emission probability is defined
through detailed balance, which includes the density of
states in the band and the thermal velocities of the car-
riers. For these applications and techniques, it is crucial
to understand how the uniaxial stress affects the thermal
emission of carriers from defects to a stress-split valence
band.

There have been decades of research covering the
stress properties of the valence-band edges (and shallow
acceptors) in semiconductors. Much of the theoretical '

and experimental work' has been focused on defining the
effective masses and the deformation potentials of the
band extrema. The typical analysis techniques include
excitonic recombination luminescence" ' and cyclotron
resonance, ' all studied successfully under uniaxial stress.
The structure of the valence band has presented a chal-

lenge because of its nonparabolic energy bands. The
valence band in silicon is also complicated by the small
spin-orbit splitting. The energy splittings of the valence-
band edge have been measured accurately using lumines-
cence, and are found to vary nonlinearly with stress be-
cause of interaction with the split-off band. The curva-
ture of the valence band has been studied through cyclo-
tron resonance under uniaxial stress. Good agreement
has been found between theory and experiment for large
stresses. '

These analysis techniques investigate the stress proper-
ties of the band extrema alone; they do not give a good
measure of the effects on the energy band structure at
wave vectors away from the extrernum point in k space.
Yet the thermal properties of carriers in the bands at
finite temperatures depend strongly on the band structure
away from the extremum. In this paper we emphasize
the thermal emission probability of holes from electrical-
ly active defects in the band gap to the valence-band
edge. It therefore must be considered how stress affects
valence-band states with energies several k~T from the
band edge. The results derived for the band-edge
effective density of states and the thermal velocities are
general and can be used for any problem involving carrier
statistics under stress. This paper begins by describing
the stress insensitivity of the iron-acceptor pairs in sil-
icon, justifying their use as reference points for measuring
the effects of uniaxial stress on the valence band. The
zero-stress structure of the valence band is described
briefly, including the difficulty of defining an effective
mass. In Sec. IV we present the derivation of thermal
emission from defects to multiple, parabolic bands and
generalize the results to include the continuous energy
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dispersion of a band with a complicated structure such as
the valence band under uniaxial stress. The effects of
stress on the thermal emission of holes from defects to
the valence band is discussed in depth in Sec. V. We de-
velop an independent-band model that describes the
valence band as two parabolic bands that displace rigidly
with increasing stress according to the deformation po-
tentials b and d. For this choice of the energy shifts, the
effective masses describing the density of states must be
chosen consistently. The spherical approximation is not
consistent with these deformation potentials because the
approximation incorrectly partitions the density of states
between the two bands. We establish the correct parti-
tioning of the density of states through numerical in-
tegration of the Bir-Pikus Hamiltonian, and find stress-
dependent effective masses that approximately conserve
the center of gravity of the split valence bands. Experi-
mental verification of the independent-band model using
the effective masses derived in Sec. V is provided in Sec.
VI with the presentation of uniaxial-stress deep-level
transient spectroscopy (DLTS) data on Fe-Al pairs in sil-
icon.

II. IRON-ACCEPTOR DEFECTS IN SILICON

Iron-acceptor pairs are the dominant deep-level defects
present in p-type silicon following iron diffusion and
quenching. These defects include the species Fe-B, Fe-
Al, Fe-Ga, and Fe-In. The pairing reaction occurs in p-
type material in which the Fermi energy lies in the lower
half of the gap. For this position of the Fermi level, both
the iron and the acceptor are ionized, but with opposite
charge. The resulting Coulomb attraction between the
ionized donor and acceptor provides the mechanism for
the capture of the mobile interstitial iron by the substitu-
tional group III element.

Iron-acceptor pairs in silicon were first detected by
Ludwig and Woodbury' using electron paramagnetic
resonance (EPR). The defects were found to be highly
anisotropic and to exhibit trigonal symmetry, except for
FeIn which exhibited orthorhombic symmetry (ordinarily
called rhombic Ij. Recently a rhombic I configuration
has also been identified' for Fe-Al using EPR. Detailed
studies of the EPR of Fe-B pairs in silicon have been car-
ried out independently by Gehlhof and Segsa' and van
Kooten, Weller, and Ammerlan. ' They both arrive at a
strong negative trigonal field. On physical grounds the
trigonal field would be expected to be strongly repulsive
because of the negative charge of the boron. The model
for the iron-acceptor pairs (derived from the EPR data}
places the iron in the tetrahedral interstitial site adjacent
to the substitutional boring in the trigonal centers (2.35-

O

A nearest-neighbor separation}. In the rhombic I center
of Fe-Al the iron is assumed to be situated in the next-
nearest-neighbor interstitial site with respect to the boron
(2.72-A next-nearest-neighbor separation). Of course, the
iron atom is likely to relax towards the substitutional site
because of the attractive Coulomb field.

Iron-acceptor pairs in silicon have been studied exten-
sively using deep-level transient spectroscopy. ' ' After
iron diffusion in silicon a level is observed at E„+0.44

eV. This level is assigned to the isolated interstitial iron.
A level is also observed at E, + 0.10 eV in Si:Bafter iron
diffusion which has been ascribed to the Fe-B pair. Two
defect levels have been observed in Si:Al after iron
diffusion, one at E, + 0.13 eV and another at E, + 0.20
eV. These are designated as Fe-Al-2 and Fe-A1-1, respec-
tively, and have tentatively been identified as the rhombic
I and trigonal Fe-Al configurations observed in EPR.

The most interesting feature of the iron-acceptor pairs
is their metastability. Chantre and Bois have demonstrat-
ed that the Fe-Al-2 defect is a metastable state of the
Fe-Al-1 defect. The transformation between the two
configurations is controlled by charge-state dependencies
of the total energy. The activation energy for the trans-
formation is about 0.5 eV. The phenomenological model
proposed to explain this metastability is based on the
electrostatic energy of the Fe+ in the electric field of the
ionized acceptor. The iron atom in the stable state is as-
surned to lie in the nearest-neighbor interstitial site, while
in the metastable state it is assumed to lie in the next-
nearest-neighbor interstitial site (this model is identical to
the model proposed to explain the EPR results of Fe-A1).
This model gives reasonable predictions for the energy
differences between the stable and metastable states, and
the activation energy for transformation is of the same
order as the activation energy for diffusion of interstitial
iron.

A. Insensitivity to stress

The paramagnetic iron-acceptor center is attributed to
the 3d configuration of the iron. The hyperfine splitting
from the interaction with the spin —', on "B is clearly ob-
servable and gives an unambiguous identification of the
defect. The Fe-B as well as one of the Fe-Al EPR signals
show strongly anisotropic g tensors with C3„symmetry.
This symmetry is consistent with the iron occupying the
nearest interstitial site adjacent to the ionized acceptor.
Recently, uniaxial stress was applied in conjunction with
EPR to attempt to observe electronic redistribution or re-
orientation of the C3, axis of Fe-B pairs. ' No significant
changes in the amplitudes of the EPR signals originating
from the defects parallel and off parallel to the stress
direction were observed. From the magnitude of the
stress and the temperature at which the stress was ap-
plied, an upper limit of 0.3 eV per unit strain was set for
the strain coupling of the defect. From this upper limit,
we can conclude that the Fe-8 pairs will show energy
splittings from uniaxial stress less than 3 meV/GPa. This
value is consistent with predicted magnitudes of the shear
deformation potentials for these defects based on the
electrostatic model of Chantre and Bois. Such small
splittings are below the resolution of DLTS. Contribu-
tions to the stress dependence of the iron-acceptor pairs
from remnant orbital degeneracy (or near degeneracy} is
still possible, and these effects could produce anisotropic
energy shifts (although no splittings), but the magnitudes
of the anisotropy are still likely to be only the order of 5
meV/GPa.

The hydrostatic shifts of the Fe-Al pairs have been
measured under hydrostatic pressure ' to be 12
meV/GPa for Fe-Al-1 and 9.6 ineV/GPa for Fe-A1-2.
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Uniaxial stress has a hydrostatic component equal to
one-third that of hydrostatic stress. A small shift of
roughly —3 meV/GPa towards the valence band will
occur for the defect energy from the hydrostatic com-
ponent of the uniaxial stress. This value, as well as the
possible shear anisotropy of less then 5 meV/GPa, are
both much smaller than the energy shift of between 20
and 30 meV/GPa that the top of the valence band experi-
ences under uniaxial stress. Therefore the iron-acceptor
pairs are relatively insensitive to stress and we can use the
stress dependence of the DLTS spectrum of iron-acceptor
pairs as a probe of the effects of stress on the valence
band.

B. Stressed DLTS data
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Iron was diffused for 2 h at 1000'C into (1X6X10)-
mm oriented samples of 5)&10' cm aluminum- or
boron-doped silicon. The samples were quenched in air.
The quench is necessary to capture the iron as intersti-
tials without precipitation. The samples were etched and
allowed to oxidize before evaporation of the contacts.
We evaporated 300 A of gold onto one surface to form
the Ohmic contact. The rectifying contact was formed
by evaporating 1000 A of Al onto the opposite side. The
evaporation was performed with minimal current in or-
der to avoid heating of the contact. The aluminum was
covered by 300 A of gold to protect the aluminum from
the indium electrical contacts. Typical concentrations of
the Fe-Al levels after preparation ranged from 5)& 10' to
5)&10' cm

The stress samples were cut from the contacted sample
into (1X1X 6)-mm parallelepipeds. The ends of the cut
samples were etched to remove the sharp edges. We at-
tached 32-gauge wire to the samples using pressed indium
contacts. Samples were mounted into a DLTS stress ap-
paratus capable of achieving 1 GPa of uniaxial stress on a
sample with a 1-mm cross section. The stress data were
taken with the time constant of the DLTS correlator set
to a fixed value, around 3 ms. Zero-stress data were tak-
en and then the stress was increased by intervals of about
0.1 GPa to nearly 1 GPa. The zero-stress measurement
was repeated afterwards to check for stress hysteresis.
Data were always taken for increasing temperature under
0.01 atm of helium exchange gas in order to equilibrate
the temperatures within the stress rig and remove any
effects from thermal hysteresis. Characteristic DLTS
data for iron-boron pairs in silicon are shown in Fig. 1 for
[110]-oriented stress. The DLTS peak experiences a
dramatic shift to lower temperature with increasing
stress. Furthermore, the shift appears to be nonlinear,
with asymptotic behavior at low stress. In view of the
stress insensitivity of the iron-boron pairs, these two
features arise predominantly from the effects of stress on
the valence band. The goal of this paper is to under-
stand, in detail, all the contributions to the temperature
shift of thermal emission from hole traps in uniaxially
stressed p-type material.

III. STRUCTURE OF THE VALENCE BAND

The top of the valence band in silicon originates from
the three valence p orbitals of silicon. At the center of
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FIG. 1. Shift of the DLTS peak as a function of increasing
[110]-oriented uniaxial stress for Fe-B in silicon.

the Brillouin zone the band is threefold degenerate (in the
absence of spin-orbit effect) and transforms as the I,(O„)
representation of the point group of the crystal. For
finite k vector this degeneracy is broken, resulting in en-

ergy dispersion with a small and a large curvature. Un-
der the inhuence of the spin-orbit interaction, the I 5

symmetry at the I point is broken into a I 8 quartet cor-
responding to j=—,

' and a I 7 doublet corresponding to

j= —,', which is split off from the I 8 energy by an amount

b. .. called the spin-orbit splitting. Silicon is special
among the common semiconductors in that the spin-orbit
splitting is relatively small compared to the bandgap,
6, , =0.044 eV compared to E,„=1.15 eV. This small
splitting has important consequences for the structure of
shallow-acceptor wave functions, and plays a significant
role in high-stress experiments.

The energy dispersion, including the spin-orbit interac-
tion, is shown for finite k vector in Fig. 2. The structure
of the valence band is composed of a heavy-hole band and
a light-hole band (which are degenerate at the center of
the Brillouin zone) and a split-off band. The energies of
the heavy and light holes are given by

E(k)=Eo+(62k /2mo)[A+(B~+sC )'~ ],
s =(k„k'+k„k, +k k, )/k

where the plus sign is for light holes and the minus sign is
for heavy holes. The parameters A, 8, and C determine
the curvature of the bands, and hence the effective
masses. The curvatures of the bands at the origin are not
unique, but depend on the direction of the k vector.
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Heavy-hole
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where the subscripts 1 and 2 refer to the two different
bands, v is the thermal velocity of the carriers and n. is
the number of carriers in the respective band, s is the
fraction of unoccupied defects, b is the fraction of occu-
pied defects, and cr is the capture cross section, which
may be different for capture from different bands. The
transition processes are shown in Fig. 3.

The ratio of occupied traps to unoccupied traps is

&/s =y exp[ (E—T E~—)/kit T], (6)

an

ght-hole
nd

where ET is the defect binding energy, EF is the Fermi
level, and y is the defect degeneracy factor. For a single
band the number of carriers occupying that band can be
approximated as

n =n;exp[(EF E; )/—kT]

FIG. 2. Structure of the valence band at zero stress. The
spin-orbit interaction splits the original I & symmetry at k=0
into I, and I, symmetries, separated by 5, ,

Effective masses can still be defined by expanding the
Auted energy surfaces in spherical harmonics. In this
spherical approximation, the average effective masses are
given by

=N exp[(E»„,—EF )/ks T] .

where n; is the intrinsic carrier concentration in the band
and E, is the intrinsic Fermi level. The band effective
density of states is given by

N =2(m Dosks T/2M )

where m Dps is the density-of-states effective mass. Equa-
tion (7) can be retained for each band separately in the
multiple-band situation,

n& &
——n;& 2exp[(EF —E;)/k&T]

1/m,'„=(1/mo)[A+(B +C /6)' ] . (2) =N) zexp[(E, 2 Et; )/ktt T—],
The parameters A, B, and C have been found from
cyclotron-resonance experiments' ' to be A = —4.27,
8 = —0.63, and

~

C
~

=4.93 at 1.26 K. The correspond-
ing zero-stress heavy- and light-hole masses are
mg* ——0.47 and mI* ——0.16.

IV. THERMAL EMISSION OF CARRIERS
TO MULTIPLE BANDS

where N, 2 is the density of states defined in the same
manner as for a single or degenerate band and E& 2 is the
respective band-edge energy.

Solving directly for g, +g2 gives the total emission
probability,

e(r)=cT (tr&(v)m f (r)expI[ET(r) E, (r)]/k—ttTI

+02(r)m z (r)exp[ [ET(r)—Ez(r)]/ks T I ) .
The total probability for the thermal emission of a car-

rier from a single defect to multiple bands is the sum of
various independent emission probabilities. These bands
may be degenerate, or not. For heuristic purposes the
case for two distinct bands is considered first, denoted as
bands 1 and 2. Since no distinction can be made whether
the carrier is emitted to band 1 or to band 2, the emission
processes to these bands are independent and the total
emission probability per unit time becomes

Band 2

Band 1

ovn,
1 I 1

'2"2 "2

g21 g12

(10)

e0 g 1 +g2 (3)

where the g are the generation rates of carriers from the
defect level to band j. Since all the defects with the same
ground state are equivalent, they will all have this same
emission probability, which will lead to a single-
exponential decay of the DLTS signal,

N(t) =N(0)e (4) Defect

The expression for e0 can be obtained through detailed
balance. The detailed-balance equation is

o lv)n]s+o 2v2n~s =g, b+g2b,

g1 g2

FIG. 3. Transition processes between a defect and multiple
bands. The capture and thermal emission probabilities from
and to two dift'erent bands are presented.
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1/3m @os —( m, m 2 m 3 ) (12)

where the m, are the principal values of the effective-
mass tensor. The thermal effective mass m,'h is defined by
the average thermal velocities ( u ), , as

This equation is the independent-band model for emission
of carriers to two bands. The stress dependence ~ of the
effective masses, energies, and capture cross sections have
been explicitly included.

The quantities m i (r) and m 2 (r) are averaged eff'ective

masses arising from the mass dependencies of the thermal
velocities and density of states. This average effective
mass is

m =(m Dos ) (mi'h )

where m Dos is the density-of-states mass defined by

ops f u(E, r)n(E, ~)dE=b fg(E)dE,

where the number of carriers at energy E is given by

n(E, r)=N(E, r)exp[ (E—E,—)/k, T],

(14)

(15)

where

(n V„E)E,.=
n )E ' SE

and N(E) is the density of states at energy E F.or com-
plete generality, the stress dependence of the density of
states and thermal velocity is included explicitly. The
average energy- and stress-dependent thermal velocity
u(E, r) is

u(E, r) =( I /iir)( nV„E)E, ,

m th 3kii T/( u

1/m,"„=—,'(1/m, + I/m2+ I/mi)
(13) f dsE

4~ N(E, r)
(16)

The emission probability in the independent-band
model of Eq. (10), though a biexponential in temperature,
yields a single-exponential relaxation in time, and hence a
single DLTS peak. It is interesting to note, however, that
the system discussed above will have a nonlinear Ar-
rhenius plot. Although all the transients may be single
exponentials, the emission rate is determined by several
emission probabilities, and each probability will have a
different activation energy. This presents some difficulty
when attempting to determine an activation energy by
plotting the emission rate as a function of 1/T. In order
to find the defect activation energy ET, all parameters
describing the various bands must be known accurately
and used to fit the data to the above equation.

The conduction-band minima in the indirect-band-gap
semiconductors represent truly independent bands with
well-defined density of states and carrier effective masses.
In the zero-stress limit these minima are degenerate and
the carrier emission occurs to each equivalent minimum
with equal probability. Under the application of uniaxial
stress, the degeneracy is lifted and the minima become
inequivalent. The emission process in this case is deter-
mined simply by extending Eq. (10) to include the correct
number of minima and their respective energy shifts.
The effective masses are not altered (to first order) by the
application of stress.

The thermal emission of holes to the valence band, on
the other hand, cannot be defined rigorously in terms of
emission to multiple, independent bands. This is espe-
cially true for the zero- and low-stress cases. The
difficulty originates from the spin-orbit interaction and
the complicated structure it imposes on the top of the
valence band (described in Sec. III). This structure can-
not be described exactly by two independent bands at
zero or low stress because the two bands mix. Further-
more, it is impossible to uniquely define an effective-mass
tensor for the valence band. These features make it
difficult to apply Eq. (10) to the thermal emission of car-
riers to the valence band. In this situation, the detailed
balance equation (5) can be made more precise by replac-
ing it with

and n is the unit vector pointing along the direction of
the k vector. The term dSE is a monoenergetic surface
element in k space. The thermal emission rate is there-
fore

—(ET —E)/k~ T
eo ——oo(iriy) ' f (n ViE)s +(E,r)e dE

=oo(4iiiy7r )
' f fde e e dE . (17)

Though this expression has the advantage of being
rigorous, it must be evaluated numerically.

The problem can be simplified considerably by devel-
oping an independent-band model for the valence band.
This model approximates the valence band as two in-
dependent bands that displace rigidly with changing
stress. When this approximation is extended to the case
of nonzero stress, Eq. (17) reduces to the previous equa-
tion, (10), after substitution of appropriate effective
masses and energy splittings for the top of the valence
band under uniaxial stress. In Sec. V the energy split-
tings of the valence band are described in detail and the
application of the independent-band approximation is
discussed.

V. THE VAI.ENCE BAND UNDER STRESS

A. Energy splittings under stress

There are three deformation potentials describing the
strain couplings of a I 8 state. These are a, the hydrostat-
ic; b, the normal; and d, the shear deformation potentials.
The splittings in the limit of small stresses are given by

[bE(r)] =(b /2)[(e„„—c, ) +(e„„—c,„)+(c. —c,„) ]

(18)

The deformation potentials are" b = —2.1 eV and
d = —5.1 eV at 77 K. The splittings described by Eq. (18)
are only valid in the limit of small stresses such that the
valence-band splitting is negligible compared to the spin-
orbit splitting 6, . For stresses greater than 0.1 GPa,
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however, the coupling of the top of the valence band with
the split-off band is strong enough to produce significant
corrections to the shifts described in Eq. (18). The cou-
pling of the top of the valence band to the split-off band
under uniaxial deformation can be calculated directly for
all stress directions and magnitudes by extending the
stress Hamiltonian of Pikus and Bir to include the
split-off band. This Hamiltonian represents the valence
bands according to the j=—,

' and —,
' angular momenta.

The eigenvalues of the full 6&(6 Hamiltonian matrix
reduce to three values with double (Kramers) degeneracy,
because stress does not break time-reversal symmetry.
For stresses along either the ( 100 ) or ( 111) directions,
the z component of the angular-momentum quantum
numbers m J remain good quantum numbers, and if the
stress direction is taken as the quantization axis, then
there are no matrix elements of the stress Hamiltonian
between states with mj and —mJ. The Hamiltonian for
[001] stress reduces to a 1X1 matrix for the mz ——+3/2
and a 2&2 matrix for the mJ ——+—,'. The 2)&2 matrix has
the following eigenvalues:

'2
Eioo1+9

S.O.

1/2E ioo

+
2 2

E]ooE=
4

(19) B. Effective masses under stress

The effective mass of a band extremum is inversely pro-
portional to the curvature of the electron energy as a
function of the k vector. Bands described by spherical
energy surfaces have a unique effective mass, while bands
described by elliptical or spheroidal energy surfaces can

where Etoo ——2b(s» —st2) T. For the case of stress in the
[111]direction, the quantization axis can be rotated to
coincide with the stress axis to obtain similar eigenvalues.
For the case of arbitrary stress direction the mJ are no
longer good quantum numbers and the Hamiltonian
reduces to a 3)&3 matrix which yields three eigenvalues.
The energy shifts for stress parallel to [100] are shown in
Fig. 4 compared to the shifts described by Eq. (18) in the
absence of coupling to the split-off band. Under [100]
compression the I 8 degenerate valence band splits into
X6 and X7 Kramers-doublet representations with the X7
band moving into the band gap. This Xz band couples

zero spin-orbit
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FIG. 5. Splitting of the valence band under 1-GPa compres-
sive uniaxial stress. The dotted line is for the case of no spin-
orbit interaction, the thin solid line is for the case of infinite
spin-orbit coupling, and the bold solid line is the actual
valence-band shift under 1 GPa.

Stress (GPa)

FIG. 4. Energy splitting and shifts of the top of the valence
band and the split-off band for compressive stress along [100].
The parameters used in Eq. (19) are b = —2.1 eV and 5, , =44
meV.

with the X7 split-off band, producing nonlinear shifts for
the top of the valence band. The interaction under 1 GPa
produces nearly a 50% correction to the value predicted
by Eq. (18). The angular dependence of the energy shifts
for 1 GPa is shown in Fig. 5 in comparison with the split-
tings of the I 5 state in the absence of spin-orbit splitting.
One of the remarkable features of the valence band under
stress is the fact that the energy shifts are isotropic within
10%.

The energy splittings defined by Eq. (18) are valid only
for the valence-band extrema at the I point for zero k
vector. Points on the dispersion curve for finite k vector
will shift by different amounts, depending on the magni-
tude as well as direction of the k vector. In other words,
the bands are not rigidly displaced in energy, but are
warped by the application of stress. Yet, the energy split-
tings of Eq. (18) are convenient to use in the
independent-band approximation as the energies by
which two independent bands are rigidly displaced. The
effect of the additional warping under stress of the origi-
nally fluted energy surfaces must therefore be included as
changes in the effective masses describing the density of
states and the thermal velocities. The appropriate
effective masses which enter the independent-band ap-
proximation are discussed next.



38 THERMAL EMISSION OF HOLES FROM DEFECTS IN ~ ~ ~ 9863

be described uniquely by effective-mass tensors. The
density-of-states effective mass m Dos is defined in Eq. (12)
as the cube root of the product of the principal values of
the mass tensor. The energy surfaces of the valence band
at zero stress, however, are not elliptical or spheroidal,
but are described by fluted or warped spheres. This
makes it impossible to uniquely define an effective-mass
tensor, as stated before.

The structure of the valence band becomes much
simpler for high stresses applied along the ( 100) or
( 1 1 1 ) directions. For large stresses in these directions
(strain energy » ks T), the energy surfaces are described
by prolate and oblate spheroids which do have well-
defined effective-mass tensors. The principal values of
the effective masses for these stress directions are given
in Table I where N =3(B +C ).

The function

defines the valence band as two rigidly displacing para-
bolic bands and finds the appropriate density-of-states
effective masses for these bands. Both of these methods
begin with the Bir-Pikus strain Hamiltonian describing
the energy shifts under stress of the electron-energy
dispersion curves.

In the absence of coupling to the split-off band, the
hole Hamiltonian including stress and k vector is

E(k)= Ak +ah+(Ek, +E,k+E 2)'

E„i B~k——+Ci(k, k +k„k, +kyk, ),
(22)

E i ———,'b'[(e„, —e }'+(c.„„—e„)'+(eye —e„) ]

E,k
——Bb[3(k„e„„+ke. „+k,e„)—k b, ]

Z(x)= —,'[1+(1—9x )(1—2x+9x~) '/2] (20) +2Dd(k„k e„'+k„k,e;+k k, e;),
describes the effect of coupling to the split-off band on the
principal values of the effective-mass tensor, where the
quantity x =LE(~)/b, , ,

The function Z(x ) = 1 in the absence of coupling to the
split-off band. For 1 GPa, the value for silicon is
Z(x =0.4)= —0.6, which dramatically alters the princi-
pal values of the effective-mass tensor, and has important
consequences in ESR.' The density-of-states mass, how-
ever, remains surprisingly unaffected ( & 5% at 1 Gpa)
and therefore this extra mixing of the effective mass can
be neglected in stressed DLTS. It is interesting to point
out that these high-stress effective masses have the prop-
erty that the average thermal inverse effective mass is ex-
actly

1 /m „'h
———,

' g ( 1 /m; ) = A (21)

TABLE I ~ Principal values of effective masses for listed stress
directions.

independent of the strength of the coupling to the split-
off band. The valence band under large stress is accu-
rately described by two rigidly displacing, independent
bands with well-defined effective masses; no approxima-
tions are required.

The situation for small stress (strain energy «ks T) is
substantially more complicated than the case of large
stress because of the strong mixing of the originally de-
generate bands. Again, as in the zero-stress case, there is
no unique method to define an effective density-of-states
mass. Two methods are described next to define average
stress-dependent density-of-states effective masses. The
first method defines the effective masses through the cur-
vature of the energy dispersion. The second method

where b = (si i +2s, z
)V' is the dilatation (5' is the stress

and is negative for compressive strain). The spherical ap-
proximation of the valence band can be extended to in-
clude stress by deriving the appropriate irreducible-
spherical-tensor operator that represents the strain field
caused by applied uniaxial stress. Stress-dependent
effective masses can also be obtained through numerical
calculations by finding the curvature in the two
branches of Eq. (22). Qualitatively similar results are
obtained by replacing 8, C, and D, respectively, in the
above equation by

C'=0,
D'=~3B' .

(23)

I Density of state. s

The new Hamiltonian gives (by definition) the correct
effective masses of zero stress. For finite strain the
effective masses are found by calculating the curvature of
the two branches of Eq. (22) for directions parallel and
perpendicular to the applied stress direction and applying
Eq. (12). Thermal averages are taken by weighting the
curvature with the Boltzmann factor. The effective
masses are therefore functions of both stress and temper-
ature. The results for the density-of-states effective
masses at 77 and 20 K are given in Fig. 6. The light and
heavy holes mix quickly with increasing stress, and satu-
rate to constant values defined by Eq. (21) for high stress.
The mixing rate is faster for lower temperature because
the effective mass is dominated by the curvature at small-
er k vector and the high-stress limit is approached more
quickly.

(1OO&

m I/2. II
1 /[ A +BZ ( x ) ]

m f/2 J 1/[ A —'BZ(x)]—
m 3/2 J[

—1 /( A —B) =0.28

m3/2 j 1 /( A + 2
B)=0.22

m, /, II

——1 /[ A + —,
' NZ ( x ) ]

m, /, , = 1/[ A —,'NZ(x)]—
m 3/2

~~

——1 /( A ——'X ) =0.75

m3/2, l ——1/( A + 6N)=0. 18

The second approach for defining the stress-dependent
effective masses (in the independent-band model) obtains
the stress and energy-dependent density of states of the
valence band. This density of states is used with the ener-
gies given by Eq. (18} to fit the effective masses for the
rigid, independent bands. The density of states of a band
is defined by the e1ectron-energy dispersion equation
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FIG. 6. Mixing of the effective masses calculated from the

spherical approximation under compressive stress along [100].

E(k, v) through the integral

N(E, r)= J o(E —E(k, r))dk . (24)

This integration was carried out numerically for the case
of compressive stress applied along the [100] and [111]
axes. By symmetry, for [100] stress, only —,', of the Bril-
louin zone is considered. For [111]stress only —,', of the
Brillouin zone is sampled. Furthermore, it is only neces-
sary to consider the density of states within several k& T
of the band extremum, which limits the magnitudes of
the k vector to only —,', of the value of at the Brillouin-
zone boundary. Therefore, the volume of k space sam-
pled in the integration was approximately —,

' of the
volume of the Brillouin zone. Within this volume, 50000
points were sampled. The results of the integration for
[100]stress are shown as the data points in Figs. 7(a)—7(c)
for ~=0.0, 0.3, and 0.6 GPA, respectively. Results for
[111]-oriented stress are quantitatively similar. Coupling
to the split-off band was neglected in this effective-mass
analysis. The solid curves are the result of the
independent-band model. This model predicts density of
states that vary as the square root of energy, with a mul-
tiplicative prefactor that depends on the effective mass of
the respective band raised to the —,

' power [from Eq. (8)].
The model fits the numerical data well for zero stress, but
there are deviations from the independent-band model for
finite stress. The deviations occur within the region of
energy in which the two bands are strongly mixed. This
interaction modifies the curvature of the energy disper-
sion relation through avoided crossings, which directly
affects the density of states.

The dependence of the thermal-emission probability on
the density of states is weighted exponentially towards
the band edge. Therefore, to compare the results of Fig.
6 with the results of the numerical calculation of N(E, r),
it is convenient to define a thermal density of states by

JV= JN(E, r)exp( E/ksT)dE/N(E, —O) . (25)

The inverse of this quantity as a function of stress is plot-
ted in Fig. 8 for the numerical calculations. In the
independent-band model, Eq. (25) is equivalent to

0.0 GPa

-20 0 20
Energy {meV)

FIG. 7. Density of states of the valence band for (a) 0 GPa,
(b) 0.3 GPa, and (c) 0.6 GPa of compressive uniaxial stress ap-

plied along [100]. The best fit of two independent parabolic

bands is included as the solid line.
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FIG. 8. Inverse thermal density of states defined by Eq. (25)

as a function of compressive stress at T=77 K. The curve la-

beled Spherical Approximation uses the effective masses from

Fig. 6. The curve labeled Numerical is the exact result using

the accurate density of states from Eq. (24). Compare these

curves with the Fe-Al data in Fig. 15.
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[m&(r)] exp(E, lk+T)+[mt( r)] ~ exp( E—, /ks T)

[m, (0)]'~ +[mi, (0)]'~
(26)

where m&(r) and mt, (r) are the stress-dependent effective
light- and heavy-hole masses, and E, is the energy shift of
the respective band edge defined in Eq. (18). The result of
Eq. (26), using the effective masses from the spherical ap-
proximation, is compared in Fig. 8 to the exact numerical
result from Eq. (25). This function is proportional to the
fractional change in the emission time from a defect that
is insensitive to stress. The result of the spherical ap-
proxirnation clearly disagrees with the exact numerical
calculation for low stresses. The spherical approximation
would predict an increase of the emission time for small
stresses. For low stresses the emission would still be
predominantly to the heavy-hole band, which is moving
away from the defect energy (although the thermal emis-
sion is weighted by a Boltzmann factor), because the
heavy-hole band has the larger effective density of states.
This produces the initial increase in the emission time
constant. With increasing stress, however, the
Boltzmann factor increasingly favors emission to the
light-hole band, which is approaching the defect energy,
and therefore the time constant eventually decreases.
Under the higher stresses, the values of the spherical ap-
proximation approach the exact numerical values. This
demonstrates that the spherical approximation does, in
fact, give the correct density of states in the limit of zero
stress, as well as the correct effective mass for the light
hole in the limit of large stress. However, the predicted
partitioning of the density of states between the two
bands by the spherical approximation is incorrect. The
error has arisen from the (incorrect) use of the effective
masses from the spherical approximation with the band-
edge splittings [Eq. (18)]. The energies and effective
masses cannot be defined separately. Once one of these
quantities is defined, the other quantity is completely
determined. The energy splittings of the band edges are
well established, and therefore it is convenient to retain
these energies and then find the appropriate effective
masses for the density of states. The need to redefine the
effective masses of holes in semiconductors for a given
application is a common problem. Because there is no
unique way to define the hole masses, each application
must use values suited to its own peculiarities. For in-
stance, hole effective masses measured in cyclotron reso-
nance have been shown to be a function of the Fermi lev-
el. The correct effective DOS masses as a function of
stress for thermal emission can be derived by fitting the
masses in Eq. (26) to the numerical results of Eq. (25).
The resulting DOS effective-mass values are shown in
Fig. 9 for 77 K. At zero stress the two masses are nearly
equal, in strong contradiction to the spherical approxi-
mation, yet the total density of states is the same for both
models. At high stresses, the light-hole effective mass ap-
proaches the asymptote 1/A correctly described by Eq.
(21).

The near equality of the DOS light- and heavy-hole
effective masses at low stress has the important conse-

2. Thermal effective masses

The effective mass that is used to define the effective
density of states has a different origin than the effective
mass that describes the thermal velocity of carriers in the
band. Though the thermal and density-of-states masses
are certainly related through the curvature of the energy
dispersion, it remains to establish the connection between
the two masses and find the combined effective mass of
Eq. (11). This is done numerically by integrating Eq. (16)
over k space in analogous fashion to the evaluation lead-
ing to the density of states X(E). The calculated average
velocity as a function of energy is plotted in Figs.
10(a)—10(c) for 0.0, 0.3, and 0.6 GPa of compressive uni-
axial stress oriented along the [100] direction. The best
fit from the independent-band model is included as the
solid line. The independent-band model clearly overesti-
mates the velocity in the region near the strong mixing of
the two bands, just as the model underestimates the den-
sity of states in Fig. 7 in the same energy region. This is a
direct consequence of the interaction of the two bands
which results in avoided crossing (from symmetry con-
siderations). The avoided crossing changes the curva-
tures and slopes of the bands near the crossing point and
therefore alters the density of states and thermal veloci-

0.6

0.5
T = 77 K

0.4

0.3

0.2
Vl
C:
CD

O
0.1

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Stress (GPa)

FIG. 9. Density-of-states effective masses as functions of
stress derived from the exact thermal density of states in Fig. 8

using Eq. (26).

quence that the center of gravity of the splitting valence
bands is approximately conserved as stress is increased.
This fact is reflected by the zero-slope asymptote of the
thermal density of states in Fig. 8 for zero stress. This
would not be the case if the masses from the spherical ap-
proximation were used; in that case the center of gravity
would shift away from the band edge. Shifts in the center
of gravity of electronic states are caused by the trace (or
hydrostatic component) of the strain tensor, which has
already been included by the term a b in Eq. (22).
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ties. The independent-band model therefore has difficulty

modeling the density of states and the energy-dependent
velocities separately near the crossover between the light-
and heavy-hole bands for moderate stresses.

0.6 GPa

3. Thermal emission probability

Thermal emission probabilities do not depend on the
density of states and thermal velocities separately, but de-
pend on the product of these properties [see Eq. (5)].
This product is presented in Fig. 11 for the three stresses
of Figs. 7 and 10. Both the density of states and the ve-
locity depend on the square root of the energy, so the
independent-band model predicts a linear dependence on
energy for the product of the two values. The best fit
from the independent-band model is included as the solid
curves. The independent-band model gives an excellent
fit to the numerical calculations for all values of stress,

0.3 GPa

0.6 GPa

0.0 GPa

0.3 GPa

-20 20 40

~~
V
OI

Energy (meV)

FIG. 11. Product of Figs. 6 and 9 for (a) zero stress, (b) 0.3
GPa, and (c) 0.6 GPa. This product is directly proportional to
the probability for the emission of a carrier to the given energy.
The independent-band model gives a good fit for all stresses.

-20

0.0 GPa

20

Energy (rneV)

40

even in the energy region in which there is strong mixing
of the two bands. This is because the thermal emission is
insensitive to the dynamics of the holes (and hence the
avoided crossing) and only samples the phase space avail-
able to emission through the term ( j de ) in Eq. (17).

To find the appropriate combined effective mass of Eq.
(11), the full thermal-emission-rate equation (17) is evalu-
ated numerically and compared to the normalized
thermal emission rate based on the independent-band
model,

eo(r) m~(r)exp(E, Ikz T )+m& (r)exp( E, Ika T)—
eo(0) m((0)+ mq(0)

(27)

FIG. 10. Average energy-dependent velocity for (a) zero
stress, (b) 0.3 GPa, and (c) 0.6 GPa. The solid curves are the
best fit from the independent-band model.

The resulting values for the combined effective masses are
shown in Fig. 12. From the DOS and combined effective
masses, the thermal effective mass is derived from Eq.
(11). All three eff'ective masses for the light holes are
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given in Fig. 13 for compressive uniaxial stress oriented
along the [100] direction at T=77 K. The heavy-hole
masses are approximately given by mz'(r) =2m&'(0)
—m, '(r).

In this section we have presented the energy shifts and
the effective masses appropriate for the independent-band
model describing the heavy- and light-hole valence bands
under uniaxial stress. The understanding of how these
parameters vary with stress is essential to derive the ener-

gy shifts of a defect under stress from the independent-
band model of Eq. (10). To test the completeness of this
understanding of the valence band, it is useful to observe
the DLTS spectrum of a defect which is insensitive to
stress. This defect level can act as a reference level from
which the properties of the valence band under stress can
be measured. Iron-aluminum pairs in p-type Si are
chosen as stress-insensitive reference levels. Using the
Fe-Al level as a reference, the validity of the
independent-band model is tested by applying the stress-
dependent effective mass shown in Fig. 12.

Stress (GPa)

FIG. 12. Combined effective mass fitted to the numerical re-
sults of Fig. 11 based on the independent-band model of Eq.
(27).

VI. IRON-ALUMINUM PAIRS
AS REFERENCE LEVELS

Representative examples of stress data for the Fe-Al-1
and Fe-Al-2 defects are shown in Fig. 14 for ( 100) stress
and for a constant emission rate. The large shifts in tem-
perature under stress are predominantly from the split-
ting of the top of the valence band. The shifts in the tem-
perature of the defect peak positions for increasing stress
are shown in Figs. 15(a)—15(d) for the two defects under
[100] and [111]stresses. The solid lines are the best fit of
the data to Eq. (10) using the combined effective masses
of Fig. 12. The only free parameter is the shift of the de-
fect energy under stress, which in all cases is small com-
pared to the shift of the valence-band edge. The data fit
the theory well in all cases. It is important to note that
there is no evidence of an increase in the peak tempera-
ture under small stresses as is incorrectly predicted by the
spherical approximation. The fina shear anisotropy of
the Fe-Al defects is presented in Fig. 16. There is a con-
sistent anisotropy of 5 meV/GPa for both defects which
may reAect a relative error between the accepted values
of b and d, or may originate with the defect. The baseline
is shifted for the Fe-Al-1 defect relative to the Fe-Al-2
defect. It is not clear whether this baseline shift is a
property of the defect, or whether it is an artifact of the
fitting analysis. One possibility is that it may be related
to the increase of the effective masses with increasing
temperature. ' This may cause a systematic error in
the absolute emission rates of the defects, but should not
affect the anisotropy.

VII. CONCLUSIONS

The application of uniaxial stress to probe the struc-
ture of deep-level defects in semiconductors has had
strong success when applied to defects in n-type silicon.
Though the applied stress splits the originally degenerate
conduction-band minima, the bands shift rigidly under
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FIG. 13. Density-of-states, thermal, and combined effective
masses for the light-hole band as functions of stress. The corre-
sponding heavy-hole masses are given roughly by mz (~)
=2mi*(0) —mj (~),

Temperature (K)

FIG. 14. Typical DLTS spectrum of the Fe-Al defect pairs
for increasing stress. The data are taken with a constant rate
window. The low- and high-temperature peaks are from Fe-
Al-2 and Fe-A1-1, respectively.
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stress. The deformation potentials are accurately known,
and there is no mixing of the effective masses to first or-
der in the stress. Therefore, the conduction band
presents no fundamental complication to the analysis of
defect shifts and splittings. The treatment of the valence
band in p-type silicon under uniaxial stress, on the other
hand, presents formidable problems to the analysis of en-
ergy shifts of deep hole traps. Although the valence-band
deformation potentials are known accurately, the fluted
energy surfaces make it impossible to define unique
effective masses. The effective masses play a vital role in
determining the probability for the thermal emission of
carriers to the band edge. Without an accurate
knowledge of these effective masses, it is impossible to ac-
curately derive the energy shifts of a hole trap under uni-
axi1 stress from thermal emission experiments.

In this paper we have undertaken to consider all as-
pects of the valence band under uniaxial stress which
enter into the emission of carriers from a deep level. We
found that an independent-band model can accurately de-
scribe the effects of stress on the thermal emission rate.
Two components enter into an independent-band model:
the energy shifts and the effective masses. These quanti-
ties cannot be defined independently. Once one is
defined, the other quantity must be consistent with it.
For the valence band in silicon, the energy shifts are well
known, and therefore we choose the standard values for
the deformation potentials b and d to define the energy
shifts of the rigid bands. The effective masses which must
be used with these deformation potentials are set by the
density of states of the Bir-Pikus Hamiltonian. The
spherical approximation partitions the density of states of
the valence band into two independent parabolic bands,
on@ with large curvature and one with small curvature.
This approximation is sufficient for use in zero-stress
thermal emission rates because it does give the correct

c100%

stress Direction
FIG. 16. Shear energy dependence of the Fe-Al-1 and Fe-

Al-2 defects fitted from the independent-band model and the
data of Fig. 15.

effective density of states. It is also appropriate for use in
the effective-mass approximation for defects with shallow
energy levels because only the curvature of the bands at
the I point enter into the theory, but it fails in the parti-
tioning of the density of states between the two indepen-
dent bands. Through numerical calculations it is found
that the density of states is divided roughly equally be-
tween the two rigidly displacing bands. This partitioning
conserves the center of gravity of the split bands. The
analysis described in this paper for silicon can be easily
generalized to study the stress dependence of hole traps
in any p-type semiconductor with the diamond or zinc-
blende structures.
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