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Excitons in type-II quantum-well systems:
Binding of the spatially separated electron and hole
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Excitons in type-II quantum-well systems, i.e., in the configuration of the spatially separated elec-

tron and hole, are studied by the variational calculation of binding energies and spatial extensions

with the use of the infinite-potential-barrier model. It is shown that (i) excitonic properties depend

very much on the electron-hole mass ratio and the well widths and that (ii) the dimensional charac-

ter of an exciton (such as two-dimensional 1s and the three-dimensional 2p, character) appears in

some limits of these physical parameters of the system.

I. INTRODUCTION

In recent years there has been great interest in studying
excitonic properties of quantum-well (QW) or superlattice
(SL) systems. Most studies have been performed in the
QW structures where an electron and a hole are confined
spatially in the same well because of the specific
configuration of the conduction- and the valence-band
edges [Fig. 1(a)]. This type of QW is called "type I" and
has been studied extensively in the GaAs-Al Ga, As
system. For the smaller well width L, , an exciton has
quasi-two-dimensional character and has a larger binding
energy and a larger oscillator strength. '

Another type of QW system, where an electron and a
hole are confined in spatially separate wells [Fig. 1(b)], is
called "type II." It is expected that the character of exci-
tons in type-II QW systetns is quite difFerent from that in
type-I QW systems. There have been a few studies of this
problem. Lozovik and Nishanov considered a system
consisting of an electron and a hole which move in
separate planes. Bastard et al. ' studied excitons in the
GaSb-InAs-GaSb double heterostructure [with L&t

——co

in Fig. 1(b)] and obtained a reduction of the binding ener-

gy relative to the value of the two-dimensional exciton.
Duggan and Ralph calculated binding energies of X-
point excitons, which belong to those of the type-II
configuration, in the GaAs-A1As SL structure and found
a large binding energy comparable to the 1s heavy-hole
I -point exciton in the type-I configuration in this system.
So far, all the above-mentioned work treated only the in-
dividual specific cases.

In the present work we consider the problem from a
general point of view. Using an infinite-potential-barrier
model, we perform a variational calculation of excitons in
type-II QW structures: the results of the binding energy
and the spatial extension clarify the nature of exciton
states for various physical parameters such as the masses
of an electron and a hole and well widths.
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Here we omitted the center-of-mass motion in the x-y
plane, whose free motion can be decoupled from the oth-
er motion. The position and momentum operators of the
relative motion are denoted by r=—r, —rt,
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tive layer thicknesses L& and L,&
[Fig. 1(b)]. The z axis is

taken to be perpendicular to the layers. One of the inter-
faces is chosen as the origin of the z coordinate. The ex-
citon consists of an electron [tnass m„position
r, =(x„y„z,), tnomentum p, =(p,„,p,~,p„)] and a hole
[mass mh position rh =(&t yh zt, ) momentum pt,
=(pt,„,pt,r,pt„)]. The Hamiltonian of the system is writ-
ten as

II. CALCULATION AND DISCUSSION
II I I II I II

Let us consider an exciton in type-II quantum-well sys-
tems which consist of two materials I and II with respec-

FIG. 1. Potential profile of (a) type-I and (b) type-II
quantum-well structures.
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FIG. 2. (a) Exciton binding energy E and the spatial extensions (b) in the x and y directions v (x') =+(y') and (c) in the z

direction t/(z') in the case of L» ——cc as a function of the well width L& for various values of the electron-hole mass ratio
o =m, /mz.

p=(p„,p,p, ), respectively. The reduced mass is given
by p =m, ms /( m, +mh ). The Coulomb interaction be-
tween an electron and a hole is described by the fourth
term in the Hamiltonian (I) with e =(et+off)/2, where Ef
and e» are the dielectric constants of the materials I and
II, respectively. The di6'erence of e& and e~~ produces an
image-potential-type term (a dielectric mismatch poten-
tial) b V', which depends on the dielectric mismatch fac-

tor q =(e,—e»)/(e, +e„). In the present work we
neglect the term b V' . The confinement potentials
V "(z, ) and Vh "(zf, ) for an electron and a hole are
given by

0 for n&L —Lr &ze &nlL
Vconf( )

V, for n2L &z, & n2L+Lq)
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and

VI, for n 3L —L, & zI, & n 3L
vconf(

0 for n4L &z~ &n4L+L»,

where L =L, +L» and n, =0,+1,+2, . . . . In the

present work we use the infinite-potential-barrier model,
i.e, V„Vh ~ ~ and then an electron and a hole are per-

fectly confined in the materials I and II, respectively. In
the following we consider two different cases separately:
(A) double-hetero-QW structures [with Lii ——ac in Fig.
1(b)] and (B) superlattice structures [with finite Lii in Fig.
I (b)].

1.5

A. Double-hetero-QW structures (L « ——ao case)

In the present infinite-L» case, if the Coulomb interac-
tion between an electron and a hole is neglected, the elec-
tron motion in the z direction is quantized with the well
width L&, while a hole is in the band state. When the
Coulomb attraction is taken into account, both particles
approach the interface from the opposite directions.
Keeping this situation in mind and considering the
configuration of an electron in —L, & z, & 0 and a hole in

0&z& & ao, we use the following variational wave func-
tion for the lowest exciton:

4„=N„ ('t, (z, )f„(z, )fs(zs )P(x,y, z) . (3)
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FIG. 3. (a) Exciton binding energy E and the spatial extensions (b) in the x, y directions V (x ) =V(y ) and (c) in the z direc-

tion +(z ) in the case of L« ——~ as a function of the electron-hole mass ratio o =m, /mq for various values of the well width L,
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Here, N„ is the normalization constant,

g, (z, ) = + 1/L, sin( m.z, /L, )

is the subband wave function of an electron, and

$(x,y, z}=expI —[a (x +y )+P z ]'~ ]

describes the relative motion. The functions f, (z, )

=exp(P, z, ) and fh(zh ) =z&exp( —Phzz ) represent a
modulation of z-directional motions of an electron and a
hole due to the exciton effect. The four variational pa-
rameters a, P, P„and Pl, are determined from the minim-
ization of the energy E = (4„~H

~
4„). The obtained

exciton energy E,„determines the binding energy of an
exciton from E =E„E,„, w—here E„=n fi /2m, L& is
the electron subband energy.

If we normalize the length by the Bohr radius a&
(=efi~/pe ) and the energy by the Rydberg energy %
( =pe /2e A ), the present system can be characterized
by the electron-hole mass ratio a—= m, /mh and the well
width LI. For various values of these physical parame-
ters, the exciton binding energy E is calculated. We
also calculate spatial extensions of an exciton in the

x,y directions +(x ) =+(y ) and in the z direction
+(z ). The calculated results are shown in Figs. 2
and 3.

Let us discuss exciton states of the present
configuration with L» ——~. As we see below, a nature of
excitons depends strongly on the electron-hole mass ratio
cr and the well width LI. The following two-dimensional
(2D) or three-dimensional (3D}character is expected:

L, ~O, 2D Is type (E =4%) for o &&1

3D 2p, type (E = —,'%) for 0 »1,
L&~ co, 3D 2p, type (E = —,'R)

for o. »1 and cr «1 .

The reasons why we expect the above behavior of exci-
tons are as follows. When the well width L, approaches
zero, the z coordinate of an electron is fixed. Then, for
very large hole mass (o «1), an exciton becomes 2D Is
type, because a hole approaches very close to the inter-
face. On the other hand, for very small hole mass
(o »1) a hole can be away from the interface and then
an exciton becomes 3D 2p, type: the situation is the
same as that of a bound electron in a Coulombic impurity
at the surface, whose ground state is the 3D 2p, type. '

When the well width LI is very large and o. »1, an elec-
tron approaches very close to the interface, while a hole
does not. Then an exciton becomes 3D 2p, type as in the
case of cr » 1 for the L, ~0 limit. A similar 3D 2p, -type
exciton also occurs for large LI and o. «1, where a hole
is very close to the interface. This behavior is realized
only when cr is very small or very large, as seen in Figs. 2
and 3.

The figures also show how the character of excitons in
type-II double-hetero-QW structures depends on the
physical parameters Li and o. , generally. The following
points can be seen. First, when the well width LI be-
comes small, the 2D 1s-type character such as a large
binding energy appears very strongly for small cr and this
character becomes weaker with the increase of o.. For
large o. excitons become 3D 2p, type. Thus, excitons
change their character remarkably according to the
change of cr when L&/as is smaller than 1. Second, when

L, /a~ is larger than 3, the dependence of E on o. is
small and the excitons keep their 3D 2p, -type character
to some extent for any cr

Above we have considered the nonsymmetrical
configuration of an exciton: an electron in the region of
—L, &z, &0 and a hole in the region of 0 &z&. We can
also consider the symmetrical configuration of an elec-
tron in the region of —L, & z, & 0 and a hole in the region
of zh & —L& and 0 &zh, as considered in Ref. 1. For the
symmetrical configuration, we choose the form of f, (z, )

and fh (zh ) in the variational wave function (3) as

L,f(z)=exp b, z+e e

L,
+exp —b, z, + for —LI &z, &0

and

fh(zh ) = zq+
2

L,Lr
2

exp —b, z„+
2

for zz & —L, and z& & 0 .

The calculation for the symmetrical configuration is per-
formed and the results obtained are quite similar to those
for the nonsymmetrical one: the differences of the bind-
ing energies are less than 0.1% and in some parameter re-
gions the symmetrical configuration yields lower energies,
while in other regions it does not. The spatial extensions
for both configurations are also quite similar, though
the values of +(z ) in the symmetrical configuration
are slightly larger than those in the nonsymmetrical one
for large LI and large o. From these results we conclude

that the choice of the configuration does not change the
features of the present results in Figs. 2 and 3.

B. Superlattice structure (finite-L» case)

Now we consider the finite-Lii case, where both an
electron and a hole are in subband states. For the varia-
tional wave function of the lowest exciton, which consists
of an electron ( L, &z, &0) and a ho—le (0&zz &L&&), we
use
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the electron-hole mass ratio o. and the well widths L, and

L» . The calculated results for various values of 0., L &,

and L» are shown in Figs. 4—6.
Now we discuss the results. In some limits, we expect

the following dimensional character for excitons from the
reasons similar to the case (A):

L, and L„O, 2D ls type (E =427)

for any values of o',
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FIG. 5. Exciton binding energy E in the finite L» case as a
function of the well width L& for the various values of the
electron-hole mass ratio o =m, /mz and the fixed values of

Figures 4—6 show the general nature of excitons for vari-
ous values of the physical parameters of the system and
the above character of excitons in some limits is seen. In
the figures we notice the following points. The nature of
excitons depends strongly on the well-width ratio Lii /Li
When L,i/L, is smaller, the 2D ls-type character such as
a large binding energy and a small exciton radius (i.e.,

small +( x ) and +(y ) ) appears very strongly for the
small well width L, and for any electron-hole mass ratio
o. When Lii/L, is larger, we have more or less the 3D

2p, -type character for large L, . When both well widths

L& and L» are smaller, the exciton state depends less on

P(x,y, z) =exp (
—[a (x +y ~ )+P2z2]

'~i
)

describes the relative motion. We choose

and

f, (z, ) =exp(P, z, )

fh (zh ) =e"p( j hzh )

E„=w A /2m, L&+m. fi /2m&L»

is the sum of the subband energies of an electron and a
hole. The spatial extensions of excitons +(X2) =+(y2)
and +(z ) are also calculated. If the Bohr radius as for
the length and the Rydberg energy A for the energy are
used for units as in the case (A), the present system (B)
can be characterized by the three physical parameters:

as modulation functions of the z-directional motions of
an electron and a hole due to the exciton e6'ect. After the
minimization of the energy E = (4ii ~

H
~
4s ) with

respect to four variational parameters a, p, p„and ph,
we obtain the exciton energy E,„and then the exciton
binding energy from E =E„—E,„,where

III. SUMMARY

In the present work, using an infinite-potential-barrier
model, we have performed a variational calculation of ex-
citons in type-II QW structures and have clarified the na-
ture of excitons from a general point of view. It has been
shown that (i) excitons in type-II QW structures are very
different from those in type-I QW structures and depend
very much on the electron-hole mass ratio cr and the well
widths Li and L„and that (ii) a dimensional character of
excitons appears for some limiting values of these physi-
cal parameters.

Finally we discuss the validity of the present result
which has been obtained with the use of the infinite-
potential-barrier model. When the potential barriers are
finite, an exciton wave function is no longer confined in
the well. The amount of the spread of exciton wave func-
tions into the barriers is mainly determined by that of the
subband wave functions of an electron and a hole. It is
well known that the spread of the subband wave func-
tions increases for smaller V,L, (VhL»): for example,
for 2m, V,Li /ir fi (2mh VhLii/ir fi )=1.5 (0.5) the
probabilities for finding an electron (a hole) in the well
part are 0.89 (0.72). Therefore, the result of the present
work is valid when 2m, V, L& /m. A and 2m& V&L»/m A



9836 M. MATSUURA AND Y. SHINOZUKA 38

5.0

L~ /OB = Lg/Og = 0. I

(a) L&/oB = Lz/aB - IO. O (b)

2.0—

5)
O

C4

D
A 2
X

I. O

I.O— I. 0 O. I

5.0
5.0

0
IO IO IO IO

0
IO IO'

IO. 0

Io' IO

o = me/'mh

10

L& /ag Lg/OB I O. 0

6
CV

N

3.0

I.O

O. l

IO IO IO IO

0 = fTI p/ fTlh

FIG. 6. (a) Exciton binding energy E and the spatial extensions (b) in the x,y directions +(x ) =V (y ) and (c) in the z direc-
tion + ( z ) in the finite L„case as a function of the electron-hole mass ratio o =m, /m z for various values of the well width

are larger than —1.5. For small f', L, and VsL», the
spread of the exciton wave funct;ion changes the charac-
ter of excitons. For instance, if the potential barrier
heights are fixed, the spilling of the exciton wave function
into barrier parts becomes important far smaller well
widths beyond a certain value. In this situation, the 3D

1s character of the excitop starts to increase and we lose
character of 2D 1s or 3D 2p, type, for some limits of the
present calculation. A similar change in character (2D ls
type ~3D Is type) also occurs in type-I QW systems. In
general, the fjnite-potential-barrier effect is important and
should be studied as the next step for the present exciton
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problem. Another effect of the finite potential barrier is a
nonzero oscillator strength; this is interesting in connec-
tion with optical properties of type-II systems. For com-
parison with experiments on real physical systems, it will

also be necessary to consider the image-potential-type
term EV' as well as the band complexity, which in-

cludes the anisotropy of the hole mass, nonparabolicity,
and the mixing of the light- and heavy-hole subbands.
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