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Specific heat of silicon in the millitlegree region
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The low lattice specific heat of silicon in the cryogenic regime makes it eminently suitable for par-
ticle bolometry. In fact, the lattice specific heat becomes so low in the millidegree regime that elec-
tronic contributions from 10' cm electrically active impurities can exceed it. Various mecha-
nisms that can produce an electronic specific heat are discussed quantitatively and compared with
the lattice specific heat. It is concluded that with moderate care the electronic effects can be re-
duced to a level that will not interfere with particle bolometry in the millidegree range.

INTRODUCTION

Silicon has a high Debye temperature and a specific
heat that becomes very small at temperatures below 1 K.
Measurements to 50 mK find a specific heat of only
10 ' k per atom of silicon, in good agreement with the
accepted Debye temperature, SD =636 K (k is the
Boltzmann constant). ' The low specific heat makes sil-
icon uniquely suitable for particle bolometry, and the
measurement of the temperature increase of small pieces
of silicon caused by the deposition of energy by a single
charged particle at around 1 K is an established tech-
nique. It has recently been suggested that large masses
of silicon might be used for bolometry in the case of
weakly interacting particles, where a substantial volume
is needed to provide useful probability of an event.
However, the heat capacity of a large volume of silicon
reduces the sensitivity of the technique. Thus, bolometry
with a large volume can only be used at temperatures
much below 1 K, where the lattice heat capacity is again
small compared to the energies of particles of interest.
For example, deposition of 100 MeV of energy by an en-
ergetic particle could raise the temperature of 1 kg of
pure silicon from 5 to 20 mK. Measurement of the tem-
perature increase detects the particle.

However, even the purest silicon contains measurable
amounts of other elements. Donor and acceptor impuri-
ties, those in group V and III, contribute holes and elec-
trons to the silicon and modify the distribution of elec-
tronic states in the vicinity of the energy gap. Large
effects are produced at high concentrations. Thermal ex-
citations among the electronic states can contribute to
the specific heat. ' Although these contributions are
small at low concentrations, they may be significant in
the millidegree regime because of the very low lattice
heat capacity. Here we estimate the magnitude of the
contribution of various electronic excitations to the heat
capacity of silicon at low temperatures and low-impurity
concentrations. Measurable effects of this kind may not
only guide the selection of materials for bolometry, but
also constitute new tools for the investigation of low con-
centrations of electrically active impurities.

Our purpose here is to identify possible effects, and the
differences among the various electrically active impuri-

ties will be ignored and the average values of donor and
acceptor parameters will be used. It should be possible to
use silicon with impurity concentrations less than 10'
cm, and such concentrations will be used in examples.

is a good approximation. The density of states at the Fer-
mi level is therefore

n(g)=(2(K/y )N

and the specific heat per unit volume is

C =(m k T/3)(2)K/y )N .

In Eq. (7) g is to be determined by solving (5).

(6)

I. IMPURITY BANDS

The formation of an impurity band is perhaps the
best-known electronic effect of dilute concentrations of
impurities at low temperatures. Extensive measurements
of impurity conduction were reported by Ray and Fan
and a 1984 review of impurity bands in silicon covers
many recent developments. The electronic states in the
impurity band are localized and their distribution follows
the distribution of the electrostatic potential

F(g)=(e/yn'~ )exp[ —(el(t/y) ] .

Here g is the potential, e is the electronic charge, and y is
defined by

y =0.42(e /a)N' K' (2)

N is the impurity concentration, E is the fraction of im-
purity that is compensated, and ~ is the dielectric con-
stant of the semiconductor. The density of states in
terms of the electronic energy E is

n (E)=(N/ym'~ )exp[ (Eiy ) ] . —

The Fermi level g is determined by the condition that
the compensation is represented by empty states at the
top of the band

K =I (I/ym' )exp[( E/y) ]dE . —

For small compensation

K =(y/2(m'~ )exp[ —(g/y) ]
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II. SCHOTTKY SPECIFIC HEAT

The remaining effects to be treated arise from small
splittings of degenerate energy levels. The specific heat
arising from the excitation of a particle between two en-

ergy levels is known as a Schottky specific heat. If the
difference in energy of the two levels is Q, then the ratio
of the population of the two levels is e . The energy
of the system above the ground state is

Uz ——Q/[1+exp(Q/kT)] . (8a)

The maximum of Uz regarded as a function of Q at fixed
T occurs at Q/kT =1.2785 and is Uz ——0.2785kT. The
specific heat is found by differentiating Eq. (8a):

Cz ——k (Q/kT) exp(Q/kT)/[1+exp(Q/kT)] (8b)

Examples of the specific heat calculated from Eq. (7}
are compared with the lattice specific heat CL in Fig. 1.
It is seen that Cl~ is larger than CL below 15 mK when
N =10'3 cm 3 and below 30 mK when N=10' cm 3 if
K =0.1.

Thus, the impurity band heat capacity appears large
enough to affect bolometry below 100 mK. It is unlikely
that any effects would actually be observed, however.
The excitations in the impurity band that absorb the
thermal energy involve motion from one physical loca-
tion to another. Extrapolations of the resistivities rnea-
sured at concentrations around 10' cm to 1 K yields
values exceeding 10 Qcm. It can be estimated that
such a resistance means that the mean time for a transi-
tion between states is greater than 10 s. Much longer
times would be found at 0.1 K and concentrations of 10'
cm; effects would be unobservable on an experimental
time scale.

The maximum of the specific heat is found at
T=0.417Q/k and is 0.439k. At high temperatures,
Q/kT((1, Us =Q/2.

A. Strained acceptors

The ground state of acceptors in silicon is degenerate
and is split into two levels by strain. ' The magnitude of
splitting is approximately 10 eV times the strain. ' Thus
excitation energies of order 10 K are produced by
strains of 10 . A concentration of two-level centers of
10' crn mith energy separation 10 eV dominates the
lattice specific heat between 1 and 25 mK and adds a heat
capacity of about 2 X 10 MeV/kg K in this range.
Strains of this magnitude might be hard to avoid; the
strain at the bottom of a 1-kg cube of silicon resting on a
Hat surface is about 0.3 &(10 . Apparently this acceptor
heat capacity could be eliminated by applying a stress
large enough to split the energy levels by an amount k
times the maximum temperature of interest, but one
might be concerned about the heat capacity of the ap-
paratus used to apply the stress. It could also be avoided
by insuring an excess of donor impurities. This effect has
previously been discussed and compared with the lattice
specific heat. "

B. Heitler-London states

The wave functions of electrons trapped on donors (or
holes trapped at acceptors) are hydrogenlike in a first ap-
proximation. When the hydrogenic wave functions over-
lap, a splitting of their degeneracy in the way originally
described by Heitler and London (HL) occurs. ' '
Heitler and London calculated the energy levels of a pair
of hydrogen atoms by the variational method with a trial
function of the form

4 =ago(1)ga(2)+PJ'S(2)ga(l) . (9)
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Here P„(1)is, e.g. , the hydrogenic wave function of elec-
tron 1 on donor A. The splitting of the energy levels is a
function of the ratio of the distance between the hydro-
genic centers, R, to the Bohr radius of the hydrogenic
functions a, and can be written in the Heitler-London ap-
proximation as

Q(p)=(e Ka)f(p) . (10)
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FIG. 1. Comparison of the specific heat of the silicon lattice
(dashed line) with the specific heat of an impurity band accord-
ing to the model of Eqs. (1)—(8). %=10"cm ' or 10' cm
and K =0.1 in these examples.

Here p:—R /a.
In the case of dilute concentrations of impurities in

semiconductors, large values of p are of interest. For ex-
ample, the average distance from a donor to its nearest
neighbor is 0.554N ' =55 nm if N =10' crn . A typ-
ical value of a in silicon is 1.9 nm, or R/30. The donor
pairs of interest in the present problem are not the aver-
age pair; however, even for the pairs that contribute to
specific heat at millidegree temperatures R/a ~5. The
function f (p) has been evaluated for p»1 by Herring
and Flicker, ' who showed that

Q(p)=4E C,p ~ e

Here EH is the hydrogen rydberg and C, =0.821.
The probability that the nearest neighbor of a donor

lies between R and R +dR (pa and pa+a dp} is
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P&(p)=4mNa p exp[ —(4m/3)Na3P ] . (12)

The average contribution of a donor pair to the specific
heat is thus

( Q /k T)2e Q IkT
CHL=k P (p) g k dp .

0 ( 1 +e glkT)2 (13)

Q is expressed as a function of p by Eq. (11). Most of the
contribution to CHz comes from the vicinity of the max-
imum of the specific-heat function in the integrand.
Write

dp=dQ I(dQ ld p) =dQ IQ [(5/2p) —2] . (14)

An adequate approximation to CHL is obtained by re-
garding P, (p) and dQ/dp as slowly varying and evaluat-
ing them at p, the value of p that corresponds to the
maximum of the specific-heat function, Q =2.40kT. p
can be determined by solving Eq. (11). Furthermore, the
exponential factor in Eq. (12) is very close to unity at the
low concentrations of interest here. Thus it is found that

C„L=4nN~'p .[2 (5/2p—)](ln2)k . (15)

C. Molecule-ion states

A splitting of the symmetrical and antisymmetrical en-

ergy levels similar to that discussed in the previous sec-
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FIG. 2. Contribution of impurity pairs to the specific heat
according to Eq. (15) (curve A) and Eq. (20) (curve 8) compared
with CL.

Equation (15) is the specific heat per donor pair and must
be multiplied by (N/2) to obtain the specific heat of a
unit volume of silicon.

The value of CHL obtained from Eq. (15) with N = 10'
cm is shown in Fig. 2. It is seen that CH„dominates
CL below 5 mK at a concentration 10' cm . Values

EH ——0.04 eV and a = 1.9 nm were used in this example.

When the distance between the donors is large, the
difference in the energies of the two states is'

Q(p)=(4/e)E„pexp( —p) . (17)

The electric fields arising from the charged impurities
that result from compensation will alter the energies of
the wave functions on impurities A and B in Eq. (16),
however. The small energy difference is only correctly
described by Eq. (17) if P„andPz are nearly degenerate.
To take account of the removal of degeneracy by the elec-
trostatic potential, the contributions to the low-
temperature heat capacity will only be counted when no
other charged impurity is so close to the donor pair in
question that its electric field can cause the energies of
(()„and Pz to differ by more than Q. In other words,
there can be no other charge within a distance X, when X
satisfies

( e /zX )R =Q (p ) . (18)

The probability that there is no charged donor within a
radius X is

Po(p) =exp[ (4m l3)K—NX ]

=expt —(4n/3)KN[e ap/KQ(p)] ~
I . (19)

The average contribution of a singly occupied donor pair
to the specific heat is

CMI IPi (P )Po(P)Cs(P )dP (20)

Here Cz(p) is to be obtained by using the Q(p) of Eq.
(17) in Eq. (8b). Both Po(p) and Cz(p) in Eq. (20) vary
rapidly with p and no simplification of the integral has
been found. An example of CMI obtained by numerical
methods is shown in Fig. 2. CMI is so small that a con-
centration of N =10' cm was chosen for this example.
even at this relatively high concentration CMI is negligi-
ble compared to CL, and it is concluded that CMI is
unimportant.

A question can also be raised about the effects of elec-
tric fields in compensated samples in the neutral donor
molecule case of the preceding section. Electric fields do
not remove the degeneracy of the Heitler-London basis
functions, Eq. (9), but may change the value of the split-
ting from that given by Eq. (11).

D. Magnetic speci6c heat

Kobayashi et al. found that there is a low-
temperature Schottky specific heat in silicon doped with
phosphorus donors in a magnetic field. The energy
difference [Q in Eq. (8b)] is about 2psH and the concen-
tration of specific-heat centers approached the concentra-

tion also occurs in the case of one electron trapped on a
pair of donors, the hydrogen molecule-ion analog. The
existence of such singly occupied pairs at low tempera-
tures depends on compensation. The simplest reasonable
treatment of the problem uses the variational method
with wave functions of the form

(16)
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FIG. 3. The specific heat of 10" cm ' donors in various
magnetic field, based on the results of Kobayashi et al. (Ref. 4).
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tion of donors at low concentrations. For example, at a
donor concentration of 10' cm and magnetic fields less
than 0.05 T this magnetic Schottky specific heat would
exceed the lattice specific heat below T =0.16H, where
H is in tesla and T in K. Examples are presented in Fig.
3. Magnetic splitting of similar magnitude also occurs in
acceptors, where it gives four levels that interact with the
strain splitting of the ground state. '

III. ENERGY

Changes in temperature large compared to the initial
temperature are often useful in bolometry. It is then
more appropriate to think of the total energy U of the
semiconductor, the integral of the specific heat. The re-
sults of the above sections are shown in this form in Fig.
4

IV. OTHER IMPURITIES

The existence of carbon and oxygen atoms in concen-
trations up to 10' cm in silicon is common. However,
not enough is known about the properties of these impur-

FIG. 4. The integral from 0 to T of various specific-heat con-
tributions considered in the text; (a) the lattice energy, (b) the
integrated magnetic specific heat for the case N =10"cm ' and
H =0.01 T. The energy for the case of 10" cm strained ac-
ceptors discussed in Ref. 11 is also closely represented by this
line. (c) The energy of the hydrogen moleculelike pairs,
N =10' cm '. (d) The result for the impurity band with
N =10' cm

ities to attribute any thermal effect to them or to exclude
such effects. Some possibly relevant effects have been ob-
served recently by Kleiman et al. '

CONCLUSION

With ordinary care the electronic effects treated will
not affect particle bolometry at temperatures above 10
mK. The largest effects found are those associated with
the splitting of acceptor states by strain and of impurity
levels by a magnetic field. The former can be avoided by
the use of n-type material, the latter by separation of the
bolometer from sources of strong magnetic fields. As dis-
cussed, the impurity band effects are not expected to be
observable on any reasonable time scale. The H-
molecule-like specific heat may be observable below 10
mK at a concentration of 10' cm
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