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Quantum-size effects of an electron-hole system confined in microcrystals of semiconductors are
studied theoretically with the spherical-dielectric continuum model. An extensive numerical calcu-
lation for the eigenvalue problem is carried out by Ritz's variational technique. The motional state
of the lowest level is classified into three regimes: the regime of exciton confinement for R /az 4,
the regime of individual particle confinement for R/a& 2, and the intermediate regime for
2 R/az ~4, where R is the radius of the quantum well and az is the exciton Bohr radius. In the
region R/az ~4, the high-energy shift of the lowest exciton state is described by the rigid-sphere
model of the exciton quite well, which takes into account the spatial extension of the relative motion
of the electron and the hole. The oscillator strength of the interband optical transition changes
dramatically across the region 2~R/a& ~4. The metamorphosis of the absorption spectrum is
shown as a function of R /a& and compared with the experimental data.

I. INTRODUCTION

Quantum-size effects of Wannier excitons in semicon-
ductor microcrystals have been a subject of extensive
studies in recent years. A wide variety of materials have
been grown as microcrystals in glasses, ' in alkali-halide
crystals, in liquids, ' ' and also in vacuum. ' ' The
size quantization effect is most directly detected as the
high-energy shift of the interband absorption or lumines-
cence peak in these materials. In addition to the interest
in the basic properties of the quasiparticles confined in
the three-dimensional quantum well, the potential appli-
cability to the ultrafast nonlinear optical devices seems to
have motivated some of the recent investigations. '

From the theoretical point of view, the ground-state
property of an electron and a hole confined in a micro-
crystal poses a fundamental problem of quantum
mechanics: the competition betwe|:n the attractive two-
body force and the one-body force exerted at the well
boundary. As noted by Efros and Efrop, it can be
readily inferred that there are two limiting situations ac-
cording to the ratio of the characteristic length R indicat-
ing the size of the microcrystal to the effective Bohr ra-
dius a& of the exciton in the bulk material. In the limit
R /az ~~1, the character of the exciton as a quasi@article
is conserved well while the translational degrees of free-
dom are confined with little energy increment (the regime
of the exciton confinement}. In the opposite limit
R/a~ &&1, the electron and the hole should occupy pri-
marily the individual lowest eigenstate of the quantum
well with relatively little spatial correlation (the regime of
the individual particle confinement).

According to the wide variation of the dielectric con-
stant and of the effective mass of the electron and the
hole, the exciton Bohr radius in real semiconductors cov-
ers a fairly wide range; from 7 A of CuCl to 100 A of

GaAs, for example. One of the central problems is,
therefore, to make clear how the motional state of the
electron-hole system changes as the ratio R /a~ changes
continuously and to give the energy of the lowest state as
a function of R /az.

The limit of the strong confinement is relatively easy to
handle. Brus derived an expression of the energy of the
lowest eigenstate in this limit. On the other hand, the
analysis of the weak confinement limit is rather a difficult
task because it is not known what to choose as the
zeroth-order approximation for the wave function which
satisfies the boundary condition. Efros and Efros as-
serted that the amount of the energy increment in this
limit is given just by the value corresponding to that of a
single point particle with the mass equal to the total mass
of the exciton. Although it is reported that the observed
high-energy shift of the exciton absorption and lumines-
cence peak of CuCl microcrystals is explained by this
simple picture, further theoretical investigation is re-
quired in this limit.

In a previous paper, the present author carried out a
simple variational calculation of the ground-state energy
of the electron-hole system in a spherical quantum well.
The proposed trial wave function, which contains only
one parameter, bridges the above-mentioned two limiting
cases and naturally covers the whole range of R/az,
where R is the radius of the sphere in this case. It was
pointed out that the transition between the two regimes
occurs at around R/a~ =2-3 continuously but rather
abruptly. However, because of the symmetric form of the
assumed trial function under the exchange of the coordi-
nates of the electron and the hole, the energy depends
only on the reduced mass of the exciton. It was noted
there that, in order to clarify the dependence on the to-
tal mass which is important in the weak confinement re-
gion, the variational funct;ion should be extended to allow
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for the asymmetric combination of the coordinates of the
two particles.

In the present paper, we study the quantum-size effects
of the electron and the hole in a spherical well to the full
extent both analytically and numerically. A new type of
the variational calculation is developed, which, we be-
lieve, gives a very accurate approximation to the exact
eigenenergy of the ground state and of the low-lying ex-
cited states in a wide range of parameter values. It is
proven that the conjecture of Efros and Efros is true in
the sense that it gives the lowest-order term of the asymp-
totic expansion of the high-energy shift in the weak
confinement limit. In practice, however, the ground-state
energy in the weak confinement region is expressed far
better by a formula which takes into account the finite-
ness of the exciton radius. Not only the ground-state en-

ergy but also the level structure of the excited states and
the distribution of the oscillator strength for the optical
transition are investigated. It will be shown that because
of the broken symmetry of the translational degrees of
freedom, the optical absorption spectrum of the weakly
confined exciton has side bands closely lying above the 1s
peak and the whole Rydberg series structure gradually
changes into the series of well-isolated peaks peculiar to
the strong confinement as R /a' becomes small.

In Sec. II the model is presented. Analytical con-
sideration is given in Sec. III, where we present asymp-
totic formulas of he ground-state energy in some limiting
cases. In Sec. IV the variational method is formulated
and the results of the calculation are shown. The discus-
sion is given in Sec. V.

tion. In carrying out the numerical calculation, the cru-
cial step here is to choose the Hylleraas coordinates,

rh =
I rh I

an«, ~ —=
I r, —rI, I

for these vari-
ables. The Euler angles determining the plane on which
r, and rz lie can be chosen as the remaining three vari-
ables. The eigenstates of the Hamiltonian are classified in
accordance with the total angular momentum J, the mag-
netic quantum number M, and the one additional quan-
turn number k for the vector spherical harmonics. In
each subspace of (J,M, k}, the Schrodinger equation can
be explicitly written down. Throughout the present
work, we are solely concerned with the s-like subspace
(J=0) only to which the interband transition is possible
in the direct allowed semiconductors. The Hamiltonian
is then greatly simplified as given by the previous paper.

III. ANALYTICAL CONSIDERATIONS

If one adopts the effective Rydberg energy
ER„——p,e /2K A' for the unit of the energy and the
effective Bohr radius as =K%' /pe for the unit of the
length, the normalized ground-state energy c.=E/ER„
can be written as a function of two independent dimen-
sionless parameters as

e=s(cr,p), (2)

where cr =m&/m, is the mass ratio and p=R /cts. Since
(s1/ap) , s(=crp), we, assume o ) 1 hereafter.

First of all, the following inequality can be easily prov-
en by using Hellmann-Feynman's theorem,

c)s(cr, p)/c)cr &0 for e) 1, (3)

II. MODEL

Let us consider an electron and a hole confined in a mi-
crocrystal of spherical shape with the radius R. The mi-
crocrystal is approximated by an isotropic continuous
medium with the dielectric constant ~. We neglect the
effect of the polarization charge induced at the surface
for simplicity. It is assumed that the electron and the
hole are completely confined in the well by the infinite
potential barrier. Our main concern here is to clarify the
essential features of the problem by a simplified model,
which will serve as a starting point of the analysis in real
materials.

The Hamiltonian is given by

2 2
Pe Ph+

2m 2m(,

where r;, p;, and m; are the coordinate, the momentum,
and the mass for the electron (i =e) and the hole (i =h),
respectively. The total mass M—:m, +mI, and the re-
duced mass p:—1/(rn, '+m„') will also be used hereaf-
ter. The boundary condition is that the wave function +
should vanish at

~
r,

~

=R and at
~

rh
~

=R.
From the standpoint of symmetry, our problem is quite

analogous to that of the helium atom. The rotational
invariance around an arbitrary axis allows us to separate
out three angle variables and we are left with only three
independent variables relevant to the Schrodinger equa-

which means that the ground-state energy is a decreasing
function of the total mass for a fixed value of the reduced
mass and the well radius.

The asymptotically exact solution for s(cr, p) is ob-
tained in the three limiting cases, o.~~, p~~, and

p —+0.

A. The limit of infinite hole mass

Evidently, the hole resides motionless at the center of
the sphere in the limit. Thus the problem reduces to that
of the conPned neutral donor and the Hamiltonian (1) is
replaced by that of the hydrogenic donor electron for a
single variable r, .

By following the usual procedure given in textbooks,
the Schrodinger equation is transformed into the well-
known second-order differential equation which has the
regular solution given by the confluent hypergeometric
function M(v, 2, () where (=2

~

e
~

'~ r, /a sand
v—:1 —

~

s
~

'~ . In the case of a bulk crystal, the energy
e is quantized by the requirement that M(v, 2, $) should
become a polynomial (the associated Laguerre polynomi-
al} of g so that the wave function vanishes in the limit
r, ~oo. In the present case, c is quantized as a function
of p by the requirement that M(v, 2, () should vanish at
/=2

~

s
~

' p. The argument is reversed in the actual cal-
culation. The normalized well radius p is calculated as a
function of c by searching the first zero point of
M(v, 2, g) which is given by the series expansion,
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M( v, 2, $)= 1+—g+
v v(v+1)
2 (2)3 2!

+

Note that the curve e=a(p) passes the points s(2) = ——,',
a(1.9019. . . ) = ——,', . . . . Namely, the 2s, 3s, . . . hydro-

genic states in the bulk crystal become the 1s state in the
quantum well when the well surface coincides with the
nodal surface of the respective wave functions.

The asymptotic form of the high-energy shift
Ae(p):—1 —

~
E(p)

~

in the weak confinement limit p~ ~
is evaluated as follows. Since v~0 in this limit,
M(v, 2, () is approximated by the first-order expansion in
v. From Eq. (4), we find

~

X
~

( & R ). So we replace the original problem by those
in which the boundary conditions for X and r are decou-
pled and evaluate the upper and the lower bounds of the
ground-state energy E.

First, it is evident that E is bounded from below as

2
2

R + (12)

I
X

/
&R and

/

r
[

& ~ . (13)

since the left-hand side of the above inequality is just the
ground-state energy of (1) with the relaxed boundary con-
dition,

M(v, 2,()= I+g(g)v,
where

OD r-n

i
n!(n+1)!

r(e' —1)
d

e~ —1 —g
o t

(5)

(6)

~

X
~

&R —d(R) and
~

r
~
&d(R), (14)

where d (R) is an increasing function of R to be deter-
mined later. Since the condition (14) is more strict than
the original one, we obtain

As for the upper bound of E, we consider a new bound-
ary condition that X and r are confined as

In the limit g~ ~, g (g) behaves asymptotically as

e&
g(g)= (7)

b,e(p)=8p exp( —2p),

or, by recovering the dimension,

(8)

as can be verified by the partial integration of Eq. (6).
From the condition M(v, 2, 2

~

s
~

' p)=0, we find as the
lowest-order correction,

$2 2E&,+E(d),
2M (R d)'

where E(d) is nothing but the energy of the hydrogenic
donor confined in the sphere with the radius d, which is
just given in A. Therefore, in the limit d/as —+ ~, E(d)
tends to —ERy with the exponentially small correction.
Choosing, for example, d =v'R as the functional form of
d (R) and letting R /as ~ ~, we obtain the upper bound,

2
2

m
(16)

hE =8E it„(R /as ) exp( 2R /ai'i ) . — (9)

Physically, the amount of the high-energy shift due to the
confinement becomes exponentially small in the limit
p~ ~ since the hydrogenic 1s wave function decays ex-
ponentially.

B. The limit of weak confinement

In the limit p~ oo with a fixed cr, e(a,p) should be ex-
panded in a power series of descending order of p. One
would expect that, to the lowest order,

s(o,p)= —1+ (10)(I+o )' p

or'

vr
Rp+

2

where the higher-order terms decreases faster than p or
R . However, this is by no means a trivial matter since
the boundary condition is imposed not on the center-of-
mass coordinate but on those of the electron and the
hole. The above asymptotic formula is proven as follows.

If one rewrites Eq. (1) in terms of the coordinate and
the momentum for the center of mass (X,P) and for the
relative motion (r, p), the domain allowed for r to sweep
becomes a complicated function of X for a fixed value of

where the correction term goes to zero faster than R
Equation (11) readily follows from Eqs. (12) and (16).

The effect of the finiteness of the spatial extension of
the exciton, which is neglected in the formula (11), gives
the higher-order terms in the asymptotic expansion with
respect to R '. The numerical calculation given in the
next section shows that it is not negligible in the region of
practical interest and can be included effectively in the re-
normalization of the well radius.

C. The limit of strong confinement

In the limit p~0 with a fixed o, s(o,p) should be ex-
panded in a power series of ascending order of p. The
zeroth-order approximation was given by Brus by the
wave function which is the product of those for the
lowest eigenstate of the individual particle in the spheri-
cal well. The present author noted in the previous pa-
per that there remains a finite contribution to the
ground-state energy from the spatial correlation effect
even in the limit p~O: the exciton effect persists in the
limit of zero dimension because of the divergence of the
Coulomb interaction.

The asymptotic wave function is given by
T

777 ~ GATI h
% (r„rh, r,& ) =jo jo (1—Cr, & ), (17)

R R
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where jo(x) is the zeroth-order spherical Bessel function.
The normalization constant is omitted in this section.
The constant C is determined analytically to minimize
the expectation value of the energy as C=0.498. . . /a&
for which we find25

2

IV. NUMERICAL RESULTS

A variational calculation of Ritz's type is carried out in
order to investigate the whole parameter region. The
eigenstate %(r„rh, r,h ) is expanded in a series of a basis
set as

or

E(o,p }= — — ' —0.248,vr 3.572

p p
(18)

L M N

4(r„rh, r,h)= g g g Cl „P (",}sts„(rh }
1=0 m=1 n=1

X ill(r h ) (25)
r

E=
2p R

2
—1.786 —0.248E R~R

The formula, including up to the second term has been
given by Brus. The third term is the remnant of the ex-
citon effect. A variational calculation using the same
type of wave function as Eq. (17) was done also by
Schmidt and Weller.

As for the first excited state with s-like symmetry,
there are two possible types of the zeroth-order wave
function, namely the (s, s) type 7p, , and the (p,p) type

The (s, s) type corresponds to the state where the
particle with a heavier mass, i.e., the hole, is excited to
the second s orbit while the electron resides in the lowest
state. The wave function is given by

771~ 277fg
+s, s(re&rh&reh } JO R JO (20)

with the expectation value of the energy,

2

E$7$
2me

+
mg

$2 ] 786
R ~R

(21)

The (p,p) type is the state in which both particles occupy
the lowest p orbit with the total angular momentum equal
to zero,

pr, pr„
%pp(r, rh, r h )=j, j, cosy (22}

'2
fi p eE = — —1.884
2p R

'
~R

(23)

The level ordering depends on the mass ratio cr.
Neglecting the small difference in the Coulomb energy,
we find the following inequality:

E )Ep p for 1 .9)o (24)

This has an important consequence in the assignment of
the absorption peaks in the strong confinement region
since 4'p is optical allowed as a final state of the inter-
band transition while %', , is forbidden because of the
orthogonality ofjo(err, /R ) and j o(27rrh /R ).

where j,(x) is the first order spherical Bessel function,
p=4. 493. . . and cosy =(r, +rh r,h )/2r, rh. The —ener-

gy of this state is given by

The basis function ltl (r; ) is chosen as
'2

(r, )= g r;—
I& =1

k—R
m

i=e, h (26)

which is a 2m order polynomial satisfying the boundary
condition. As for gl (r,h ), we assume

Pl(» h } r h e"P( " h /~ } (27)

The expansion coefficients C& „and a are the varia-
tional parameters to be determined. The optimization
process with respect to CI „ for a fixed value of a is
equivalent to the diagonalization of the Hamiltonian ma-
trix defined by the nonorthogonal basis set

(r, )sts„(rh)pl(r, h) and can be easily carried out. Then
a is varied in order to minimize the lowest eigenenergy.
Actually, it is found that the low-lying eigenenergies are
insensitive to the variation of a so far as a is varied in the
range az ~ a ~ 2a~. It is expected that the present
method gives a very accurate approximation to the true
eigenvalue if one include sufficiently large number of
basis functions. In the actual calculation, it is found that
the lowest eigenvalue converges rather rapidly as the
number of basis functions is increased and practically it is
sufficient to include 60-70 bases for the parameter
values R /as 520 and mh/m, ~ 10.

The advantage of our choice of the polynomial basis
(26) is that all the matrix elements are calculated by alge-
braic manipulations without time-consuming multiple
numerical integrations. It should be noted that the
lowest-order basis function its(r;)=r; Rmim—ics the
true one-body eigenfunction j (no.r, R/) fairly well: The
energy expectation value by the former is
(iri /2m;)(10. 5/R ) which is only 6.4% higher than the
exact value (A /2m; )(n/R ) . .

In Fig. 1 the results of the energy shift in the ground
state measured from the value of the bulk exciton are
plotted by the solid lines against the well radius with the
mass ratio 0. =m&/m, as a parameter. The long-dashed
line is the result of the one-parameter theory given in the
previous paper. ' The short-dashed and the dashed-
dotted lines represent the asymptotic formulas (19) and
(11), respectively. The experimental values obtained from
the data of the luminescence of the Z3 exciton in CuC1
microcrystals in NaC1 due to Ito et al. (0 ) and the ab-
sorption in CdS in glasses due to Ekimov et al. (A) are
also plotted. In normalizing the data into the dimension-
less unit, the following values are used: Ez„——213 meV,
az ——7 A, and the exciton energy in the bulk crystal 3.218
eV (T=77 K) for CuC1 (Refs. 31 and 8) and Ea„=29
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FIG. 1. The calculated high-energy shift of the ground state
of the electron-hole system in the spherical quantum well (solid
lines) with 0 —=mz/m, as a fixed parameter. The short-dashed
line and the dashed-dotted lines represent the asymptotic for-
mulas (19) and (11),respectively. The long-dashed line is the re-
sult by the one-parameter theory. The observed values of the
luminescence peak in the CuC1 microcrystal in NaC1 (C) ) and
the absorption peak of CdS microcrystals in the silicate glass
(6 ) are also plotted.

meV, az ——29 A, and the exciton energy 2.553 eV for
CdS. In Table I the numerical values of the normalized
ground-state energy are also tabulated to facilitate the
comparison with the experimental data and with other
theoretical calculations.

As can be seen from the figure, the one-parameter

theory works well for the symmetric case a =1. The be-
havior of the curve 0 = 00 in the region R /as )4 is well
described by the asymptotic formula (9). In the limit
R/a&~0, all lines converge to the universal limit in-
dependent of o which is given by the formula (19}and is
shown by the short-dashed line.

In the limit R /a~ ~~, the calculated lines tend to the
dash-dotted lines representing the formula (11). It is
found, however, that the energy in the weak confinement
region can be described far better by the formula

~2
E = —ER„+ 2M [R —g(o )a~ ]

(28}

than by (11). In the above equation, g(o ) is an increasing
function of o of order of unity. In fact, the formula (28)
reproduces the numerical value of E surprisingly well for
R /as )4 if one chooses g(1)=0.73, g(3)= 1.1,
g(5)=1.4, etc. In order to see this, the numerical result
for o =3 is plotted by the solid curve in Fig. 2 in the en-
larged scale together with those given by the formula (19)
(short-dashed line), by (11) (dashed-dotted line), and by
(28) (long-dashed line). Although the present author
could not find any analytical proof of the formula (28),
nor any simple expression of the functional form of g(o. ),
we can conjecture that Eq. (28) is the true asymptotic
form of E in the weak confinement limit where the
correction term is exponentially small.

Physically, the term g(cr)as corresponds to the so-
called dead layer: The center of mass of the exciton
cannot reach the well surface because it requires a strong
deformation in the relative motion of the electron and the
hole. The fact that g(cr ) is an increasing function of o is
consistent with this picture since, for a fixed value of az,
the spatial extension of the relative motion around the
center of mass increases as the mass ratio becomes larger.
It is noticeable that, as far as the ground state is con-

TABLE I. The calculated ground-state energy of the electron-hole system in the spherical quantum
well. The energy is measured from the band-gap energy in the bulk crystal and normalized by E&„.
The upper limit (L,M, N) of the basis functions included is (3,4,4) for 0 = 1 and 3 and (3,3,6) for 0.=5
and 10.

R /as

0.5
1

1 ' 5

2
2.5
3
3.5
4
5

6
7
8
9

10
15
20

32.03
5.974
1.656
0.3045

—0.2553
—0.5290
—0.6789
—0.7684
—0.8640
—0.9108
—0.9371
—0.9533
—0.9639
—0.9713
—0.9879
—0.9933

32.01
5.950
1.631
0.2795

—0.2797
—0.5522
—0.7004
—0.7880
—0.8797
—0.9231
—0.9469
—0.9612
—0.9704
—0.9767
—0.9926
—0.9948

31.98
5.918
1.599
0.2484

—0.3089
—0.5786
—0.7239
—0.8085
—0.8952
—0.9349
—0.9559
—0.9683
—0.9760
—0.9813
—0.9926
—0.9960

0.=10

31.90
5 ~ 841
1 ~ 529
0.1841

—0.3646
—0.6261
—0.7639
—0.8421
—0.9189
—0.9521
—0.9687
—0.9780
—0.9837
—0.9875
—0.9953
—0.9975
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FIG. 5. The normalized oscillator strength of the ground
(f, ) and the first excited (fz ) states per unit volume. The solid
lines and the dashed lines are the results for cr =5 and o =1, re-
spectively.

FIG. 4. The interband absorption spectrum in the spherical
microcrystal with 0.= 5 as a function of the well radius. The or-
dinate represents the oscillator strength per unit volume nor-
malized by that of the free exciton.
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In Fig. 5 the dependence of f& and fz on R/att is
shown for o =5 (solid lines) and for o =1 (dashed lines).
Although the behavior of f, is very similar for both
cases, that of fz becomes quite different in the region
R/at't S4. Unlike the case for o =5, fz for a =1
diverges as
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in the limit R /att ~0 since this state tends to the (p,p)-
type state given by Eq. (22).

In Fig. 6 the oscillator strength of the ground state for
a microcrystal Vf

~
normalized by att f,„ is given against

R /att in the logarithmic scale. In the region R /a& +4,
the oscillator strength increases proportionally to R as
indicated by the straight line. This is nothing but the
e6'ect of the giant oscillator strength first proposed by
Rashba and Gurgenishvili for the bound exciton. For
R /az ~ 2, the calculated value deviates significantly from
the dashed line and tends to the asymptotic value m indi-
cated by the small arrow in the limit R /az ~0. Here we
see the transition from the exciton confinement regime to
the individual particle confinement regime again.
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FIG. 6. The normalized oscillator strength of the ground
state for a microcrystal in the case o.=5. The dashed line indi-
cates the asymptotic value for R /a *

&& 1 and is proportional to
R3
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V. DISCUSSION

As shown in Fig. 1 the microcrystals of CuCl and of
CdS present typical examples of the weak confinement
and of the strong confinement, respectively. The theoret-
ical curves reproduce the overall size dependence of the
high-energy shift fairly well. Quantitatively, the calculat-
ed values are somewhat larger than those observed.

In the case of CuC1, Ekimov et al. and Itoh et al. '

noted that the experimental values are fitted by the point
particle formula (11). If one fixes as =7 A, one must
take o =15 in order to reproduce the observed value
within the present model, which is too large as compared
with the value cr =3 -4 estimated from the values
p, =0.39mo (Ref. 31) and M =2.0mo (Ref. 37) or
M =2.3mo, where mo is the electron mass in vacuum.

One of the eff'ects which may explain the reduction of
the observed high-energy shift is the incomplete
confinement due to the finiteness of the potential barrier
at the well surface. According to the preliminary result
of a variational calculation, the high-energy shift of the
exciton in CuC1:NaC1 is reduced to about 80% of the
values given by the infinite barrier model in the range
3 ~ R /as 8 10 if one takes into account the finite poten-
tial gap estimated for this material. Details will be pub-
lished elsewhere.

We would like to point out here an alternative and
probably more plausible explanation of the discrepancy.
As can be seen from Fig. 1, the experimental data for
CuC1 are well fitted by the theoretical curve if one tenta-
tively normalizes the data using az ——5.5 A instead of
a& ——7 A. In view of the fact that the lattice constant of
CuCl in the y phase is 5.4 A, the continuum model will
not be fully justified for such a small size of exciton.
However, we suspect that the above-mentioned fact is an
indication that the exciton in CuCl has a more compact
envelope function than has been supposed so far.

As for the case of CdS, the present model predicts the
lowest absorption peak at 2.92, 3.52, and 4.12 eV for the
size of microcrystals R =23, 15, and 12 A, respectively.
The experimental data by Ekimov et al. for the samples
with corresponding averaged sizes of microcrystals show
the lowest peak at around 2.9, 3.2, and 3.5 eV, respective-
ly. The main origin of the deviation from the theoretical
value which becomes salient in the smaller size of micro-
crystals inay be the eff'ect of the incomplete confinement.
Note that the ground-state energy of the confined elec-

tron and hole should actually tend to that of the exciton
of the matrix material in the limit R/as ~0 instead of
increasing infinitely. The second peak observed in the
sample with R =15 A can be assigned as the (p,p)-type
second excited state (see Fig. 4).

It will be worthwhile to detect experimentally the tran-
sition between the exciton confinement regime and the in-
dividual particle confinement regime by covering a suit-
able range of R /az with a single sort of material. As has
been shown in the present paper, this transition is more
clearly exhibited in the change of wave function than in
the shift of the energy. According to Fig. 6, the radiative
lifetime of the exciton in the weak confinement region
should decrease rapidly as the size of the microcrystal in-
creases so far as the coherence of the wave function is
maintained throughout the quantum well. On the other
hand, the lifetime depends only weakly on the size of the
microcrystal in the strong confinement region through
the variation of the transition energy as pointed out by
Brus. Furthermore, Fig. 5 tells us that the absorption
coefficient of the materials containing microcrystals with
a fixed value of doping is nearly constant in the region of
weak confinement but increase sharply as we enter into
the strong confinement region. These features can be
used as experimental landmarks of the transition between
the two regimes.

In the present model, the shape of the microcrystal is
assumed to be a perfect sphere. The deviation from the
spherical shape which must exist in real materials will
lead to the relaxation of the selection rule as well as the
modification of the energy scheme. The shape depen-
dence of the quantum-size effect should be studied
theoretically.

As shown in Fig. 3 the electronic structure of the
valence band and the conduction band is strongly
modified in the small size of microcrystals. In some
cases, this will cause an appreciable change in the dielec-
tric constant. In such cases, ~ itself should be calculated
self-consistently. This is also left for future work.
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