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Line shape of an atom-crystal bond
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The spectral profile for the absorption of infrared laser light by a vibrational bond between a phy-
sisorbed atom and a harmonic crystal is calculated. We obtained an analytical expression for the
line shape, which includes the finite-memory-time efects in the interaction between atomic motion
and bulk-atom vibrations. Both the memory in the time regression of the dipole correlation func-
tion and the initial correlations are taken into account. It is shown that absorption from a laser
with a frequency which is larger than the cutofF frequency ~& of the dispersion relation of the crys-
tal can only occur due to a memory in the relaxation process, provided that multiphonon transitions
are negligible. We predict a resonancelike line at coo+co& (with coo the unperturbed resonance) for
atom-surface bonds with a permanent dipole moment.

I. INTRODUCTION

If a crystal is exposed to an atomic vapor, then many
atoms will stick to its surface due to the van der Waals
interaction. Every atom in the vicinity of the solid ex-
periences an attractive potential, which supports continu-
um (desorbing} states and bound (adsorbing) states.
Transitions from bound to continuum states can be in-
duced by thermal coupling of the vibrational bond with
the phonon reservoir of the crystal, or by illumination
with a strong infrared laser. With the first mechanism a
large desorption rate can be achieved by a sufficient heat-
ing of the substrate, whereas in the second process the
transition to the continuum is brought about by photon
absorption. For these processes the interaction between
adsorbate and crystal can be accounted for by relaxation
terms in a master equation for the populations of the vi-
brational levels, where the rate constants are given by the
Golden Rule. Dynamical properties of the system are
determined by the relative values of these rate constants
and by the level structure of the potential. Then the
desorption rate as a function of time contains information
on the atom-crystal interaction, e.g., the rate constants.
Several authors' applied this technique to evaluate the
photodesorption yield as a function of the laser frequen-
cy. A far more sensitive method to obtain insight into
the details of the dynamical features of adsorbates is by
measuring the steady-state low-intensity absorption
profile I(to) as a function of the probe (laser} frequency
co. Then the absorption spectrum will reveal the de-
tails of dynamical atom-lattice bonds, surface-modified
internal molecular modes, or properties of the interac-
tion between two adspecies. We shall consider a single
atom which is adsorbed on a harmonic-lattice crystal,
and bounded to the surface by a potential V(z). We
neglect lateral motion and indicate the normal to the sur-
face by the z axis. Then the induced dipole moment Is(t),
where t denotes the Heisenberg picture, of the atom-
crystal bond must be in the z direction, and hence we can
write Is(t)=is(t }e, with is(t) a scalar operator. An in-

frared laser with intensity IL (energy per unit of time
which passes a unit surface area, perpendicular to the
direction of propagation) and polarization eL is incident
on the atomic bond. Since the wavelength of the radia-
tion is much larger than the atom-surface separation, we
can adopt the dipole approximation for the interaction
between the bond and the external field. Then a general
expression for the absorbed energy per unit of time, the
absorption profile, reads'0

IL Ie. eL I'
Eo

XRe ljm gTrppi(m —L)~ p p f . 1.2
gazoo Q

Here, the limit t ~ ao only pertains to the density opera-
tor p(t}, and obviously p(t = ao ) represents the thermal-
equilibrium state of the system. If we write o. for an arbi-
trary density operator, as we shall do throughout the pa-
per, then the Liouvillian L in the exponential in Eq. (1.2)
is related to the Hamiltonian H by

Lo =A '[H, o ] . (1.3)

From Eq. (1.2) we notice that the frequency dependence
of I(to) is governed by the Fourier-Laplace parameter to
in the transformation of exp( iL~), and conseq—uently

I()=IL
I e. eL I'

eo

XRe lim I dec'"'Trp(t)[Is(t+w), Is(t)], (1.1)
f~oo 0

where p( t) is the density operator for the atom, the entire
crystal, and the interaction. The appearance of the com-
mutator reflects that the net absorption is a balance be-
tween stimulated absorption [the term p(t+r)p(t)] and
stimulated emission [the term p(t)p(t+r)] of photons
from and into the laser field.

Transformation of Eq. (1.1) to the Schrodinger picture
yields the equivalent expression
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the resonance lines in the profile are situated at the eigen-
values of L. Then we recall that the equation of motion
for the density operator is

i =Lp,
dt

(1.4}

and therefore the dynamical properties of the system will
be displayed in the co dependence of I(co), even though
the system is in a stationary state [for which p(t) becomes
independent af time]. It is not the direct time evolution
of p(t} which is probed by the laser, but the time-
regression operator exp( iLr—) of the dipole correlation
functions, as they appear in Eq. (1.1). The significance of
a measurement of I(co) then relies on the fact that L
represents the entire system, rather than only the vibra-
tional bond.

III. RESERVOIR CORRELATION FUNCTION

p =[Tr exp( H—/k&T)] 'exp( H —/k&T), (3.1)

with kz Boltzmann's constant, and where Tr indicates a
trace over the states of the phonon field only. Then the
idea is that the large crystal can be regarded as a thermal
reservoir, and that its state p~ is not affected by the pres-
ence of the single atom on the surface. The central quan-
tity in standard relaxation theory' is the reservoir corre-
lation function

Due to the many degrees of freedom of the phonon
field a direct diagonalization of the Hamiltonian is in-
tractable, so that we have to resort to an approximation.
The thermal-equilibrium density operator of the crystal
at temperature T is

II. HAMILTONIAN

A harmonic crystal can be represented by the Hamil-
tonian H~ for its phonon field"

H~ =g irico, (k )a it a&, (2.1)
k, s

in terms of the annihilation (a&) and creation (a&)
operators for phonons in the mode ks. Here, k and s
denate the wave vectors and polarizations, respectively,
and co, (k) is the dispersion relation. The Hamiltonian for
the bounded atom includes a.kinetic energy and a poten-
tial

(3.3)

co, (k) =c'kH(coD —c'k ), (3.4)

in terms of the Debye frequency con, the speed of sound
c', and the unit step function H. Furthermore, we recall
the relation

f(v)=R Tr [(u.e, )e ' (p u.e, )], (3.2)

with Lzcr =[Hz, cr]/A Relax. ation constants are then ex-
pressed in the Fourier-l. aplace transform aff(r),

N= 78 7
0

We shall adopt a Debye model for the dispersion relation,
which implies

2

H, =— + V(z},
2tii dz~

(2.2)
C ND

(3.5}

with m the mass of the atom. Eigenstates and eigenval-
ues of H, can be found easily for a variety of potentials
V(z). An important example is the Morse potential,
which models the atom-crystal binding quite accurately.
Kinetic caupling between the atomic mation and the
phonon field is assumed to be dominated by single-
phonon interactions, for which the Hamiltonian reads

H, = —(ue, )
V

(2.3)

with V and U the volumes of the crystal and a ynit cell, re-
spectively, M the mass of a crystal atom, and e~ the unit
polarization vector of a phonon in the mode ks. The to-
tal Hamiltonian then becomes

The operator u is the displacement of the crystal atom
which is closest to the adsorbate. Explicitly"

' 1/2

(ai„+a i )ei, (2.4)
2MVco, (k)

j(co)=gg(co/co& ),
where the overall factor is given by

3K

2irtM con

(3.6)

(3.7)

The dimensianless function g(co/con) which represents
the co dependence ofj(co) is found to be

g(z)=zH(z)H(1 —z) ——1+z ln 1 ——1

7T z

+ H(1 —~z~ )~y)zl

expressing that the cutoff frequency coD appears as a
cansequence of the finiteness of the volume v of a unit
cell. Then it is an easy matter to compute f(co},and we
obtain

H =Hp+H, +H,p, (2.5)
+ pf dx

1 2zx

e —1 z —xfX 2 2 7 (3.8)

which determines the I.iouvillian L according to Eq.
(1.3). Then the density operator p(t) of the system fol-
lows after solution of Eq. (1.4), and the spectral profile is
obtained in evaluating expression (1.2).

%Cud
(3.9)

which depends par ametrically on the temperature
through
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It will appear that the function g(z) incorporates the
refinements of an absorption line in comparison with the
standard Lorentzian. A plot of g(z) can be found in Ref.
13.

Two important properties of g (z}, which can be de-
duced from Eq. (3.8), are

Reg(z) =0 for
I
z

I
& 1,

g( —z)=[g(z)]' for T~ ~ .

(3.10)

(3.11)

p, (t)=Tr~p(t) . (3.12)

If only a master equation for the populations of the vibra-
tional states is of interest (as for instance in the desorp-
tion problem), then the finite time width of f(r}does not
have much significance, but for the evaluation of an ab-
sorption profile it is of paramount importance that the
details of f(co) are taken into consideration, as we shall
show below.

IV. DENSITY OPERATOR

Finite-memory-time reservoir theory is a complicated
mathematical tool, which can be applied to solve Eq. (1.4)
for p, (t) and to evaluate steady-state quantum correla-
tion functions, as they appear in Eq. (1.1). Recently we
developed the general theory, ' and in this paper we ap-
ply the formalism to the computation of line shapes of
adsorbates.

If we would be able to prepare the adsorbate at time
zero in state p, (0), then its state for t & 0 is given by

p. (a))= . p, (0)
co L+ fr(co)— (4.1)

in the Fourier-Laplace domain. As usual, L, denotes the
commutator with H„divided by A. Coupling to the
reservoir is embodied in the relaxation operator r(co},
defined by

I (co)o, =Tr~ L,~ L,~(a', p~)'p co —L —La p

(4.2)

where o, is an arbitrary adsorbate density operator, and

L,zp=[H, ,p)/A. The operator inversion on the right-
hand side of Eq. (4.2) might seem awkward, but in Ref.
15 we have shown how to evaluate explicitly the matrix
elements of I (co).

For the steady-state line profile we only need the long-
time solution of p, (t), which can be found from its
Fourier-Laplace transform according to

p = lim p, (t}=lim[ icoP, (co)] . —
t~ oo co~0

(4.3}

With Eq. (4.1) we then see that p, is the solution of

Furthermore, g(z) goes to zero very fast for Iz I
&1.

This implies, in view of Eq. (3.3}, that f(~) has a time
width of the order of 1/coD. In a previous paper' we

pointed out that this feature prohibits the application of
the Markov approximation in the derivation of an equa-
tion for the reduced adsorbate density operator p, (t),
defined by

[L.—i.r(0)]p. =o, (4.4)

and of course the restrictions p, =p„Tr,p, =1 should
be imposed.

In the Markov or zero memory-time approximation,
the relaxation operator r(co) acquires a frequency-
independent value. It is the co dependence of I (co) which
reflects the memory in the atom-crystal interaction. In
the long-time limit the density operator is determined by
r(co) at co=0, but this operator is not equal to its Marko-
vian equivalent, as shown elsewhere. '

V. ABSORPTION PROFILE

From Eq. (1.1) we notice that the absorption profile in-
volves quantities as Trp(t)p(t+r)p(t), which depend on
two times, and their evaluation is correspondingly more
complicated. In this section we derive a formal expres-
sion for I(co).

First we introduce a two-time operator

D(r, t)=e ' '[p„p(t)]
and its Fourier-Laplace transform

D(co, t)= J d~e'"'D(r, t),
0

(5.1)

(5.2)

I(~)=II.
I e. eL, I' Re lim Tr[pD(co, t)] .

E'O'RC t ~ oo
(5.3)

From the fact that the dipole operator p, acts only on ad-
sorbate states, it follows that

Tr[pD(co, t))=Tr, [pD, (co, t )], (5.4}

with D, (co, t ) =Tr D(co, t), the reduced adsorbate opera-
tor.

Then we notice that D ( r, t ) obeys

i D(r, r)=LD(~, t), ~&0d
d7. (5.5)

as is evident from its definition (5.1). Hence the r depen-
dence of D(~, t } is governed by the same equation as the
one which determines the time evolution of the density
operator p(t), Eq. (1.4). An important difference is that
the initial value for Eq. (5.5) reads

D(o, r) =[@,p(r}], (5.6)

in contrast to the equation for p(t}, where p(0) can be
chosen arbitrarily. The time regression of D(r, t ) on the
interval 0 & ~ & ~ is identical to the time evolution of p(t)
on 0& t & 00, and therefore it should be possible to ex-
press D(co, t) in I (co). Additionally, the initial value
D(o, t) depends explicitly on t, via p(t), and in a finite-
memory-time theory this quantity will carry a memory to
the time evolution ofp(t) in the recent past (times smaller
than t). Contributions to the line profile which arise due
to this mechanism will be referred to as initial correla-

where the frequency dependence only refers to the first
argument of D(r, t ). We remark that D(r, t ) is an opera-
tor in the entire atom plus crystal Hilbert space. Com-
parison of Eqs. (5.1) and (5.2) with Eq. (1.2) shows that
the expression for I(co) can be cast in the form
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tions. It might seem that in the limit t~~ we can re-

place p(t) by p,p, which would eliminate initial correla-
tions. We shall show that this is not correct in general.
In Ref. 1S we have developed a general method for the
evaluation of quantities of the form D, (co, t ~~ ). If we

apply that theory to the present situation, we find the for-
mal expression for the absorption profile

I(co)=It
I e, et I

GoffC

and due to the neglect of lateral motion the eigenvalues
fico are nondegenerate. For realistic adsorbate systems
there are approximately 25 bound states Ip). In this
section we expand the various Liouvillians onto the set

I I p ) I of adsorbate bound states.
Without coupling to the reservoir [I (t0}=0,Y(co}=0]

the time regression operator is determined by the inverse
of co L„—and with Eq. (6.1}we readily find

&p I I(a) L, )—tran Iq)=(to 4~—}&p Icr Iq), (6.2)

)(Re Tr, Lz [L„iY—(t0)]P,
col Lz +—i I co

in terms of the level separations

~w=~t ~e . (6.3)

(5.7)

where the Liouvillians Lx and Lz,

Lxo'a=9&a ~

Lro, = [p, t7, ],
(5.8}

(5.9)

are introduced in order to simplify the notation. Equa-
tion (5.7) is the most condensed and general expression
for the absorption profile of an atomic bond on a crystal.
We recognize the time regression operator i I[&0 L, —
+i I'(c0)], which is the same indeed as in Eq. (4.1). Initial
correlations are accounted for by the frequency-
dependent operator Y(co), which is explicitly

dV
dz

(6.4}

Matrix elements of this Hermitian operator will be denot-
ed by

Equation (6.2) relates the matrix elements of (co L, }o—to
the matrix elements of cr for any adsorbate density opera-
tor cr, and thus Eq. (6.2} implies the matrix representa-
tion of the Liouvillian co —L, .

The coupling between the crystal-atom motion and the
adsorbate motion is established by the Hamiltonian H,z
of Eq. (2.3), which has the adbond part

S =&p IS Iq)=S' (6.5)

Y(to)o, =Tr~ L,~'P a) —L —La p

XLr L,z(o,p~) . (5.10)
1

i0+ —L, —L

Furthermore, we notice that the series of Liouvillians un-
der the trace in Eq. (5.7) act on the steady-state density
operator p, of the adsorbate, which can be obtained by
salving Eq. (4.4).

Simiiarly we denote the matrix elements of p by

pzq
——& p I p, I q ) =

@zan. In case of a Morse potential expli-
cit expressions for Spq and ppq can be derived, with an in-

tegral due to Rosen. ' Furthermore, we remark that for
any potential V(z) the diagonal matrix elements of its
derivative vanish with respect to the eigenstates ofI„
eg 17

(6.6}

VI. MATRIX ELEMENTS OF I (ru) AND T(co )

H. I p & =fico,
I p &, (6.1)

Eigenvalues and eigenstates of the atomic-bond Hamil-
tonian H, from Eq. (2.2) are defined by

The permanent dipole moments p~~ of level
I p ), howev-

er, are finite in general.
With the methods of Ref. 15 we can evaluate the ma-

trix elements of I (to), as defined in Eq. (4.2},with respect
to the basis set I I p ) ) . The result is

&p I [1(~}~1Iq&=&If(~,.+~)s,.s., &b
I
~

I
q&+I'(4 co)s', s; &p—I

o
I
b&

a, b

[J(&b +co)s,st„+j '(—&„—a))S,',S.', ]&a (6.7)

in terms of the matrix elements of S and the reservoir correlation function f(co) from Sec. III. It appears that the fre-
quency dependence of I (co) enters as a shift of the level separations 5 in the arguments of the correlation functian.

The initial correlation operator Y(to}from Eq. (5.10}involves the inversion of two Liouvillians. After laborious com-
putations we obtain
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(p
I

tY(co)o I I q &= g ' I[f(a„)f—(a„+co}]s„s,.&a
I

cr
I q &

a, b, c cb +

[f—'(b, } f—'(5b —co)]S S, &c
I

cr la &

+[f(b,, )—f(b,„+co)]s„s&a Icr I
b&

—[f '(& ) —f '(& — )]s„s„&pI

I [f(b,„)f(h,—~+co)]s,qs, &(b I
o

I
a &

a, b, c ~cp+

[f '(—b,„}f (5——co)]S, S (c
I

O'
I

b & I

[[f(b, }—f(lh, , +co)]S S„(c
I

cr
I
b&

a, b, c qb+~

(6.g)

Again, the frequency dependence enters as a shift of the arguments in f(h,b), but in addition overall factors
(6,&+co) ' appear. Furthermore, we see that Y(co) depends on the matrix elements of the dipole operator.

VII. TWO STATES

With the matrix representations of the various Liouvillians it is straightforward to evaluate I(co} from Eq. (5.7) for
any configuration of levels, or, for any potential V(z). The profile I(co) will exhibit many overlapping lines at the adsor-
bate resonances 6,b. In order to disentangle the contributions to I(co) from the different transitions, and to elucidate
the significance of initial correlations, we elaborate on the situation where the potential supports only two bound states.
Let us denote these states by I

2&,
I

1&, with the convention that coo ——co& —co»0. From Eq. (6.5) it follows that
S» ——Szz ——0, and therefore the only nonvanishing matrix element of d V/dz is

s, =&1 ls I2&, (7.1)

which will be assumed to be real (as for a Morse potential).
From Eqs. (6.2) and (6.7) we find the matrix representation of co L, +iI {co) —On the b.asis

I
2&(2 I, I

1&(1 I,
I

2& (1 I, I
1 &(2

I
this becomes

co+ip(co} iq(co }—
ip(co) co+—iq(co}

co L, +i I (co—) =

0 0

co coo+ t rt( co—)
i ri(co)—

0
0

i rt(co)—
co +coo+ i r/( co )

(7.2)

in terms of the parameter functions

p(co) =So[f(coo+co}+f '(coo —co)],

q(co) =So[f( coo+co}+f '( —co—o—co)],

ri(co)=SO[f(co)+f '( —co)] .

(7.3)

(7.4)

(7.5)

Inversion of the matrix {7.2} then yields the resolvent for
P, (co), Eq. (4.1), and a Fourier-Laplace inverse of the re-
sult gives p, (t). Recalling the complicated frequency
dependence of f(co), Sec. III, shows that an evaluation of
p, (t) in the transient regime 0 & t & oo is evidently impos-
sible, unless numerical methods are applied.

po= 12&n2&2I+ I 1&&i&1 I

The steady-state level populations are

q(0) p (0)
p(0)+q(0) ' ' p(0)+q(0) '

(7.6)

(7.7)

and Eq. (7.6) expresses that the coherence (1 I p, I
2&

vanishes, as usual in thermal equilibrium. From the

Fortunately, the absorption profile depends only on the
steady-state density operator p, (t = oo ), which obeys Eq.
(4.4). With the matrix representation {7.2} this equation
is easily solved, with the result
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Reg ( —cop/coD )

Re[g(P1p/~D )+g( —~p/n) 1
'

Reg(cop/co~ )

Re[g(cop/coD )+g( a)p—/~n )]
'

(7.8)

(7.9)

which contain anly the real parts of the correlation func-
tions. Then it follaws from Eq. (3.10) that for cop&coD
the level populations are undetermined. This is a conse-
quence of the fact that we restricted the atom-crystal in-
teraction ta single-phonon couplings.

definitions of p(0) and q(0) in Eqs. (7.3) and (7.4) we see
that the factor Sp drops out, and hence the populations
are completely determined by the reservoir correlation
function f(co), at the resonance co=cop. With Eq. (3.6) we
then find that the dependence on g also disappears, sa
that nz and n, are determined by g(z), which has only
the temperature as parameter. Explicitly,

VIII. INITIAL CORRELATION OPERATOR

Y(p1)p, =

x(P))
—x{ro)
y(co)
—y(~)

(8 1)

with

For a two-state system the initial correlation operator
Y(co } is a 4X4 matrix, but its general representation, as it
follows from Eq. (6.8), is still cumbersome. For the eval-
uation of the spectrum I{co),however, we only need to
know the result of its action on p„ascan be seen from
Eq. (5.7). Since p, has only two nonvanishing matrix ele-
ments, rather than four, this simplifies the situation. On
the same basis as the representatian (7.2), we then find

2

(1u» —p22)(n2[f(~p) f(p+~) f (~p)+f (~p —~)]
So 0

+n1[f( —P1p) f( —Cup+) —f ( —Cop)+f ( p —)]—} {8.2}

2SO
y(P1)=, ,P2](n2 1 [f(~p)—f(CO)](COp+P1)+[f '(COp) —f '( —rd)](CO —COp) }

COO
—CO

+n1}[f( cop) f(—co)]{~—p co)+[f—'( P1) f '( —cop)—](—co+cop) }) . (8.3)

The rightmost factor in Eq. (5.7) is [Lr iY(co)]p„—
and therefore the relative significance of the initial corre-
lations follows from a comparison of Y(co)P, with L„p,.
With Eq. (5.9) we find

I(P1)=I(P1)[~p(&p«} '
I
ez'&I. I P21] (9.1}

in order to suppress irrelevant overall factors. Then we
write I(oo) as a sum of two contributians

I(P1 )=I(~o)„s+I(P1);„, (9.2)

0
LYP P21(nl n2) (8.4)

where I(co)„scomes from the term Lrp, (regression part)
and I(co);„represents the initial-correlation contribution.
It appears that I{co)can be expressed entirely in the pa-
rameters

The most impartant diff'erence is that LrP, only depends
on the transition dipole matrix element pz„whereas
Y(co) acquires a contribution from the permanent dipale
moments of the two levels [terms proportional to x(co)].
Furthermore, Y(co) is proportional to Spz (the strength of
the interaction between the vibrating atom and the crys-
tal}, whereas L„p,is independent of this parameter.

IX. LINE SHAPE

& =P'p2

F22 —
P& i

P2&

(9.3}

(9.4)

Here, a equals the half-width at half maximum if the line
would be approximated by a Lorentzian, and in the case
T =0, coo ———,'co&, and m measures the relative importance
of the permanent dipole moments in comparison with the
transition dipole moment. We finally obtain

An absorption profile for a two-state system is called a
line shape, because it singles out a specific transition of
the vibrational bond. With the matrix representations of
the previous sections we are now able to construct the
line shape I(co) by simple matrix operations. First we
define the dimensionless line shape I(co) by

I(ce)„s=2p1cop(n, nz }Re-
D p1 coh

I{co};„=2a)p)pR e P( p) )— g(co }
D Cd ~h D 61 ~&

(9.5)

(9.6)
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in terms of the auxiliary functions

D ( co )~oh
——co —coo+ 2l co7J( co ),

D(co) =coI co+ i[p(co)+q(co)] I,
(9.7)

(9.8)

4(n, —n2)cooco Reg(co)I(co)„=
[coo —co +2co Immi(co)] +4co [Reg(co)]2

(9.11}

$(co)= —2ia n2
g(coo) —g(co') g'( —co') —g'(coo)

+
COp —CO CO+ Q)p

From the definition (7.5) of g(co) and the property (3.10)
of the reservoir correlation function, it follows that
Reg(co) =0 for co & coD, and consequently

+n&
g( —coo) —g(co )

@Op+ N

g '( —coo) —g '( —co')

COp —CO

(9.9)

I(co)«s 0 ——for co & coD . (9.12)

Therefore, absorption for co& co& can only be a result of
nonvanishing initial correlations.

y(co) = Inz[g(coQ) —g(coo+co )
2COp

—g '(coo)+g '(coo —co')]

+n, [g( —coo}—g( —coo+co')

—g ( —coo)+g'( —coo —co')]J, (9.10)

with co'=co/coD the frequency in units of con. The two
D(co) functions are the determinants of the two subma-
trices in Eq. (7.2), and the subscripts coh and pop refer to
the subspaces of coherences (

~
2 }( 1 (, ~

1)( 2
~

) and pop-
ulations ( (

2)(2 [, (
1)(1 [ ), respectively. The above se-

quence of formulas determines the shape of a single ab-
sorption line, where coo, a, y, and m are the only arbitrary
parameters (if we take con as the frequency unit}. For a
specified potential V(z) we can express coo, a, and m in
properties of this potential, and y is simply the tempera-
ture of the crystal.

Substitution of D(co) h into Eq. (9.5) and removal of
the real part yields

X. APPROXIMATIONS

Before we discuss the relevance of the finite-memory
time in the time regression of dipole correlation functions
and the importance of the inclusion of initial correlations,
we summarize the results from earlier theories. A most
obvious approximation would be the factorization

litn D(O, t) =[@,p, ]p~I~ ao
(10.1)

of the initial condition for the time-regression equation
(5.5}. It can be shown' that this implies Y(co)=0, and
consequently I(co);„=0,so that I(co} is approximated by
I(co)„s.

A more rigorous simplification is the Markov approxi-
mation, in which any memory effect is discarded. First
this implies the factorization (10.1), where a memory of
p(t) to its recent past is neglected. Secondly, we adopt a
memoryless description of the time regression, which
yields a frequency-independent relaxation operator I'
The Markovian equivalent of the matrix (7.2) reads's

co—L, +iI ~=

co+ip(0} iq (0)—
ip (0) co+—iq(0)
0 0 co —coo+ t YJ(coo)

i'(coo)—

—i g'(coo)

co+ coo+ t 'g (coo)

(10.2)

In the left-top submatrix, the parameter functions p(co)
and q(co} are replaced by their values at co=0. Since the
steady-state level populations n, and n2 are determined
by I (0), we conclude that n, and n2 are unaffected by
this approximation. In the right-bottom submatrix the
functions g(co) are now evaluated at the resonance fre-
quency cop, rather than at the laser frequency co, and
furthermore, the functions g(coo} in the fourth column
are now complex conjugated. In this approximation the
line shape is found to be

4(n, n2 )cooco Reg(coo—)
I(co)m 2 2 2

[coo—co +2coolmq(coo}] +4co [Reg(coo)]
(10.3}

which greatly resembles I(co)„sfrom Eq. (9.11). The
most important difference is that we now find Reg(coo) in
the numerator, rather than Reg(co), which implies that
I(co} is finite for co & con.

In the most simple theory of relaxation (which leads to
a master equation for the time evolution of the popula-
tions), we furthermore neglect any coupling between
coherences and populations, and between coherences
which evolve with a different frequency in a free evolu-
tion (no coupling to the reservoir). This approximation is
usually called the secular approximation, and it is
equivalent to the neglect of terms which oscillate fast on
a time scale 1/a [Eq. (9.3)]. Then we replace the off-
diagonal matrix elements i g(coo} and i g—(coo) in E—q.
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FIG. 1. Secular (curve a), Markov (curve b) and regression
(curve c) approximations of I(cu) as a function of co'=co/co&,
and for ~o——0.65Xco~ (dotted line), a=0.4X~~, y=10 (low

temperature), and m =0. Curve a is a Lorentzian around

uo+ Imp(coo), but fpr the present parameters the line shift is
negligible [Imp(coo)= —0.011]. As predicted in Eq. (10.5), the

value of I(coo) is the same for the three curves. The secular ap-
proximation gives a finite absorption for ~-0, whereas the im-

proved results, curves b and c, give a vanishing absorption for
co~0. In the blue wing, however, curves a and b remain finite,

but the most refined theory gives I(co)=0 for co & coa.

(10.2} by zero, which gives for the line shape (s denotes
secular)

l
I(co) =cop(nt n2)Re

. co —cop+ l 7){cop)
(10.4}

XI. RESULTS

The line shape I(co) is composed of two contributions,
which are drawn separately in Fig. 2 for a specific set of
parameters. We notice that the initial correlation part is
not small, and that it takes on both positive and negative
values. A considerable increase of the absorption is
found in the line center and the red wing, whereas the
blue wing is only slightly modified, both in comparison

We obtain the standard Lorentzian, which has its max-
imum at co=cop+ 1m'(cop), and has a half-width at half
maximum equal to Rer)(cop).

It is easy to verify that the three approximations yield
the same value for I(co} at the resonance frequency cop,

e.g.,

1
I(cop)« I(cop) =——I(cop), =cop(n, n2 )Re-reg m s

v](cop)

(10.5)

Conversely, this implies that the successive refinements
will have a major significance in the line wings only,
which is illustrated in Fig. 1.

FIG. 2. Curves a and b are I(co)„~and I(co);„,respectively,
for the same parameters as in Fig. 1. Their sum, curve c, is

I(co), which is calculated with the present theory. Comparison
of curves a and c shows the significance of the improvement.
Note also the considerable red shift of the line with respect to
the resonance frequency coo.

with the line shape I(co)„(thebest approximation so
far). Due to the neglect of permanent dipole moments in
this case (m =0), we find a sharp edge at co=con, and a
vanishing absorption for co & co&. Of course, multiphonon
processes would also give rise to absorption at co&coD,
but these contributions are assumed to be small. The
cutoff can be understood from the fact that a photon ab-
sorption from the laser gives rise to a transition

~
1)~

~
2) of the adsorbate. Energy conservation then

implies that this process must be followed by a single-
phonon emission into the crystal, under a decay
~2)~

~
1) of the adsorbate bond. In a Debye model

there are no phonon modes available for co&con, and
therefore this process cannot occur.

A remarkable profile arises if we allow the atomic bond
to have a permanent dipole moment (m+0), which is il-
lustrated in Fig. 3. For co & coD the value of m has hardly
any significance, but above the cuto8' frequency we now
find a finite absorption if m+0. We observe a peak at
co=cop+cogp a smooth background for coD Q co (cop+cogp.
How can this understood? First we remember that a
low-intensity profile is a balance between the stimulated
absorption and emission rates for single-photon transi-
tions. Hence the phenomenon cannot be attributed to
multiphoton processes. Then we recall that we restricted
ourselves to a model of single-phonon interactions, which
rules out multiphonon processes. Third, a positive I(co)
corresponds to a photon absorption. A positive I(co) in
the range ~&m& &coo can then only be found from the
following energy-conserving process. Initially the adsor-
bate is in its lower state

~
1). Absorption of a photon

then excites the system to a virtual level with energy Ace

above the energy of state
~
1),and subsequently this state

decays to
~
2 ), accompanied by the emission of a phonon
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0
0

FIG. 3. Curve a is the same as curve c from Fig. 2 (m =0),
and for curve b we took the dipole-moment parameter m equal
to 0.7. The nonzero value of m appears to have no importance
at all for co & co&, but for co & cop only the pro61e b remains finite.
As pointed out in the text, the absorption for co & co~ is entirely
due to the initial correlations.

with frequency to —coo. The second transition can only
occur if ro —too&ton, or to&too+ton. This explains why
I(co) vanishes identically for ro&too+ron, and can be
finite for ron (to (top+ ron.

XII. CONCLUSIONS

We performed very detailed calculations on the optical
spectral profile and line shapes of physisorbed atoms on
the surface of a harmonic crystal. Coupling of the atomic

motion to the phonon field of the crystal provides the re-
laxation mechanism for the evolution of the adsorbate vi-
brational states towards thermal equilibrium. Since the
amplitude correlation function of a substrate atom has a
finite decay time, the time evolution of the reduced adsor-
bate density operator exhibits a memory efFect. The ab-
sorption profile is determined by dipole correlation func-
tions, depending on two times. %e identified two
difFerent aspects of the memory, which were called re-
gression and initial correlation. A general finite
memory-time reservoir theory was applied far the evalua-
tion of the line shape.

It appeared that the properties of the reservoir could
be accounted for by a single dimensionless function g(z),
which has only the dimensionless temperature y as pa-
rameter (apart from a scaling factor g}. The other param-
eters of the line shape are the resonance frequency too of
the uncoupled adsorbate, the interaction-strength param-
eter a (frequency, related to linewidth), and the
permanent-dipole parameter m (dimensionless). From
our analytical expression for the line shape we showed
that any absarption above the Debye frequency can only
be a cansequence of nonvanishing initial correlations (in
the single-phonon approximation). It was exemplified
(Fig. 3) that I(to} is finite indeed for ro&roD, provided
that the transition has a permanent dipole moment (as is
the case far a Morse potential).
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