
PHYSICAL REVIEW B VOLUME 38, NUMBER 14 15 NOVEMBER 1988-I

Nonlinear optics and transport in laser-excited semiconductors
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The theory of the spectral and kinetic properties of the excited electron-hole plasma and of the
electromagnetic field is developed in the framework of a nonequilibrium many-body theory. Partic-
ular emphasis is given to the effect of the laser-induced energy branches on the transport (intraband
kinetics) and nonlinear-optical properties (interband kinetics) of the system.

I. INTRODUCTION

The aim of this paper is the description of a direct-gap
semiconductor which is excited by an intensive, mono-
chromatic laser in the spectral range of the fundamental
gap. We will treat the excitation of an electron-hole (e h}-
plasma and its kinetics, the nonlinear quantum optics of
the strong, exciting laser light field in the medium, as well
as the linear optical response of the highly excited sys-
tem. Many aspects of this general problem have already
been investigated, particularly the many-body aspects in
a quasiequilibrium description (for reviews see Refs. 1

and 2), but only recently a consistent, unified nonequili-
brium many-body theory begins to emerge. The
reason for the diSculty of a general theory is that the
spectral and kinetic properties of the electrons and pho-
tons influence each other and have to be determined self-
consistently. Many-body aspects as well as nonequilibri-
um aspects, particularly under short-pulse excitation, are
equally important. The mixing of the valence and con-
duction band states by the coherent laser light leads to
phenomena which resemble the optical Stark effect in
atomic systems and in other respects the polariton effect
in exciton systems.

We start with a general nonrelativistic Hamiltonian for
the externally perturbed system of electrons in a semicon-
ductor and of photons,

pansion of the general field operators into Wannier func-
tions. E is the energy gap, m, are the e8'ective masses
of the electrons and holes. A parabolic band edge has
been assumed. The spin is not explicitly treated.

The Hamiltonian of the transverse photons is

Hp = g Acok c„gc„g
v, k

(1.3)

d rjr Art
C

f d r p(r)A (r, t) .
2mc

(1.4)

The Coulomb potential is

V(r)= 1

Col'

eo is the dielectric constant of the unexcited crystal. The
last two terms describe the interaction with the light
field. The vector potential is

Here, v and k describe the polarization and momentum
of the photons, respectively. The interaction Hamiltoni-
an is

H;„,= —,
' g e, et, f d r f d r' g, (r) l&b(

r')
a, b

)& V(
~

r —r'
~

)gb(r')g, (r)

H =H, +H, +H, +H,„,(t) .

H, and H describe the noninteracting electrons and pho-
tons, respectively; HI describes their interactions and
H,„,(t) the coupling to an external, time-dependent per-
turbation.

For simplicity, we treat the semiconductor in a two-
band model

' 1/2

A(r)= g
, k ~~k

e (k)(c„&+c„ i,
)e'"'.

and the current density by

The charge density is given by

p(r)= pe, P, (r)t)'j. (r) (1.6)

H, = g fd rf, (r}
a =e, h

AA
lb. (r),

2m
(1.2) j(r)= fd3r[j,„(r r')p, (r)p&(r')—+H. c.], (1.7)

where g, (r), g, (r) are the field operators of the electrons
and holes, respectively, which are obtained from an ex-

where j,„(r) is the nonlocal interband-current-density
matrix element.
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The external perturbations are written in form of exter-

nally controlled charges p,„,(r, t) and currents j,„,(r, t),

p,„,(r', t) A (r')
2mc

The scalar potential 4(r) is the solution of the Poisson
equation with the total charge density p, =p+p,„„

4(r) =Id r' V(
~

r —r'
~ )p, (r') . (1.9)

Physically, the external charges and currents belong to
the exciting laser. However, they will not be specified
further, but will be used formally to develop the equa-
tions for the nonequilibrium Green's function by the
functional derivative technique.

In Sec. II the basic equations of motion for the expec-
tation values of the field operators as well as for all neces-
sary Green's functions will be given. The approxima-
tions, which will be used for the material functions in
these equations, will be discussed. We will assume, that
the vector potential A has due to the laser action a finite
expectation value,

( A(r)) = A+(r, t)e ' ' +c.c. , (1.10)

where kp and cop are the wave number and frequency of
the coherent, monochromatic laser beam, respectively.
The amplitude A+ will be treated as a slowly varying
function.

In Sec. III we develop the nonequilibrium description
of an electron-hole plasma. In addition to the many-body
effects, which are already present in a quasiequilibrium
description, ' such as gap shrinkage and excitonic
enhancement, there is a renormalization brought about

by the j A interband coupling. The renormalization of
the electron and hole dispersion due to this coherent opti-
cal coupling is proportional to the local intensity A of
the laser light beam. ' ' The kinetic equations for the
Wigner distribution of the quasiparticles with this renor-
malized dispersion are derived. Here, all four branches,
which reduce for ( A) ~0 to e„et„and ficoo eh, and-
%cop —F are taken into account. By symmetry argu-
ments, one can show that only two branches are indepen-
dent, but the existence of these additional laser induced
bands inAuences the physical properties of the system.
For example, there arise transitions between all four
branches. The electron-hole pair amplitude resembles
the anomalous propagators of a superconductor. In the
static screening approximation for the interband
Coulomb self-energy, a closed equation for the one-time

e-h propagator can be obtained, which contains, howev-
er, in addition to earlier formulations ' the high-field re-
normalization effects. In analogy with superconductivity
one obtains an integral equation for the gap function,
which describes the strength of the interband mixing. '
In contrast to superconductivity, the gap equation has an
inhomogeneity given by A,o=j,„(A+); the solution of
the gap equation can thus be interpreted in terms of a

II. FUNCTIONAL DERIVATIVE TECHNIQUE
FOR NONEQUILIBRIUM SYSTEMS

A. Expectation values and the double time contour

For a systematic investigation of our system described
by the Hamiltonian (1.1)—(1.9), we follow closely the
techniques of Refs. 5 and 9—13, and introduce the follow-
ing formal definition of an expectation value of an arbi-
trary field operator:

(O(1)),= tr {p( —oo ) Tc[Sc0(1)] ]

tr[p( —oo )Sc ]
(2.1)

where the underlined argument 1 = r, t, is defined on the
double-time contour C: —oo ~+ oo ~ —oo. p( —oo )

=pp is the statistical equilibrium operator. T& is the
contour-time ordering operator and S& is the time evolu-
tion operator

vertex renormalization of the interband dipole matrix ele-
ment. In the limit ( A)~0, the gap equation degen-
erates and has to be understood as an eigenvalue problem
for the now-undetermined frequency cop, which serves in

the quasiequilibrium as chemical potential for the in-
coherently excited plasma. ' Another interesting prob-
lem in this context is the question whether or not in the
framework of a many-body theory does the inset of laser
action in the semiconductor lead to a spontaneous sym-
metry breaking, i.e., to ( A)&0 for the lasing mode
(compare Refs. 19 and 20).

In order to investigate the propagation of the laser
beam in the medium, it turns out to be simpler to intro-
duce the terms (j) (A) and (j) (E), instead of the
e-h propagator, which determines the interband polariza-
tion. In Sec. IV, these quantities are introduced and re-
lated to the electron-hole kinetics. Particularly, the ener-

gy dissipation rate ( j ) (E) of the laser light is shown to
be given by that portion of the Boltzmann collision in-

tegrals for the carriers which contain laser-induced tran-
sitions. Furthermore, the Green's functions for the lon-
gitudinal (plasmons) and transverse ("incoherent" pho-
tons) Bose excitations are investigated. The scattering of
these excitations determines the e-h kinetics and the
propagation and degree of coherence of the light beam.
In this paper we dispense with the dynamical treatment
of the plasmons and treat them as a bath. However, the
dynamical treatment of the photons is crucial. Accord-
ing to their definition, the Green's functions describe only
the Auctuations of the light field. Thus they contain just
the linear optical properties of the laser-excited semicon-
ductors. For the e-h kinetics and the light beam propaga-
tion it is often appropriate to neglect the finite photon
population and to consider only the spontaneous emission
into a photon vacuum. In this approximation one
neglects the feedback of the scattered light on the excita-
tion processes. Nevertheless, a kinetic equation for the
photons is needed for the determination of the light scat-
tered out of the coherent beam. The resulting photon
distribution shows interesting features at the resonance
frequency cop.
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Sc= Tc exp ——f d r H,„,( v).
C

(2.2)
is included.

The inverse of the free-particle GF is

for the external perturbation. The tilde indicates the in-
teraction representation. The functions p,„,(1}and j,„,(1)
contained in H,„, will also be defined on C. In the physi-
cal limit, the functions on the positive ( —~ ~ ~ ) and
negative branch are equal to each other, e.g.,
p,„,(r, t+ )=p,„,(r, t ). In this limit Sc——1, so that (2.1)
reduces to the usual expectation value. In the following
we will derive all equation of motion by functional
derivatives. At the end, the physical limit is taken, i.e.,
& O(1) &c~ & O(1) &. The averaged potentials obey in the
Coulomb gauge the following equations:

G,& (1,2) = i@ —h, (1) 5,&(1,2)
a

+ —j,&(1,2). A,s&2)
1.
C

h, (1)=+ E
2

$2 A,s(1)
b, , +e, 4/1)+

2P? g 2p7lC

with the one-particle Schrodinger operator

(2.8)

(2.9)

b, , & e(1) & = —477& p(1) &

& A(1) &c
1 8

c Bt

& j(1)& +4 & p(1) A(1) &

C

(2.3)

(2.4)

@,s(l) =@,„,(1)+& @(1)&

A,a&1)= & A(1) &

and J„=g&I,——0, as well as

j,&(1-2)=j.,(ri —.2}5( 1 2 }

(2.10)

(2.11)

where the last two terms combine to give the proper
current expectation value in the presence of a vector po-
tential. The last term will be neglected in the following.

B. Green's functions

The one-particle Green's function (GF) for an
electron-hole plasma is defined by

6,& (1,2) = ——
& lP, (1)q&(2) & c, (2.5)

where p, =(p„g& ) for a =(e,h). Thus the matrix struc-
ture of (2.5) with respect to the particle index is

& Q, (1)Q,(2) & & g, (1)g„(2)&

~ «'&(l)q,'(Z}&, &q'„(I)y„(Z}&,

In the physical limit, each GF is a 2&&2 matrix, depend-
ing whether t, and t z lie on the positive or negative
branch of the contour, "

6(1+,2+ ) 6(1+,2 )

6(1,2 ) G(1,2 )

The self-energies are given by the following functional
equation:

56,&
'(1 ', 2)

X,&(1,2) = 4ni tie—,G„(1,1 ') d(3, )
e

5Gd& '(1 ', 2)——j„Gd(1 1')
& &

D(3 1}
C

2

[& A (1)&
—

& A(1) & ]5,&5(1-2) .
2mc

(2.12)

In the following we will use Eq. (2.12) in the random-
phase approximation (RPA) with 6,&

' -G,&'.

The longitudinal and transverse photon GF's in (2.11)
are given by

54, 1)
d(1,2)=—

4~ 5p,„,(2)

4~
V(1-2)

6(1,2) G '(1,2)

6 ~(1,2) G(1,2)
(2.6)

+ [&+(1)@(2)&, —&@(I)&, &+(2) &,],
(2.13)

where G and G are the time- and antitime-ordered GF's,
respectively. Similarly, G ~ and G ~ are the particle and
hole propagators.

In notation of Refs. 11 and 12, one has a Dyson equa-
tion in the form of

5A;, 1)
D;„(1,2) =-

4m. 5j„,„,(2 )

[& A;(1)Ak(2) &c —
& A, (1)&c& Ak(2) &c],

[G,, '(1, 1')—X„(1,1')]G,&(1'2)=5,&(1,2) . (2.7) (2.14)

The summation convention is used for all repeated in-
dices and variables, which appear only on one side of the
equation, i.e., on the left-hand side (lhs) an integration
over

fd r', f dt',

where

V(1-2)= 5(t, t, ) . —1

r] —rz

Equations (2.13) and (2.14) describe the fluctuations in
the electromagnetic field, i.e., its incoherent part.
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[do '(1 1')—p(1, 1')]d(1'2)=5(1-2),

[D 0 '(1, 1 ') —P(l, I') ]D(1 ', 2)=5r(1-2),

where 5z.(1-2) is the transverse 5 function:

(2.15)

(2.16)

[G,, '(1, 1')—X,",(1,1')]G„(1',2) =X „(1,1')G;, (1',2),
(3.4a)

G„ (1,1')[G,, '(1',2)—X;,(I', 2)]=G,",(1, 1')X„(1',2),
(3.4b)

5z(1, 2)= V, Vz +15(r,—rz) 5(t, —t z) .

(2. 17)

(2. 18)

(2.19)

The expectation values of the charge and current densi-
ties can be expressed by particle Green's functions:

(p(1)&= R.G..(1,2+)
~ ..

(j(1)& =2fi Imj„(1-2)G„,(1,2+) ~,

(2.20)

(2.21)

With these expressions we find for the polarization func-
tions:

5Gb, '(3, 4)
p (1,2) =4irifie, G,b(1, 3) G„(4,1),5, 2)

5G.b'(4 5)
P(1,2) = — j,„(0)Gi„(1,4) Gi„(5, 1)

C e

(2.22)

The photon self-energies, called the polarization func-
tions, are defined by

p (1,2) = 4n- .
e

5(j(1)&

c 5 A/2)

(3.5)

contains in addition to the original diagonal self-energy

X„a laser-induced part, which stems from the elimina-

tion of G,i, . The function Gi, (1,2) is defined by the rela-

tion

Gl, (1, 1 ')Gii, '(1', 2) =5(1-2) . (3.6)

In order to treat Eqs. (3.4) and (3.45) further, we intro-
duce the "local" variables r=(r, +rz)/2 and r =(t,
+ tz )I2, while we introduce Fourier transforms with

respect to the relative variables r& —r2, t, —t2, respective-
ly. We call k, co the spectral variables. All functions de-

pend now on the variables g=(K;R), where we use the
four-dimensional vectors K=(k, iso/c) and R=(r, ict)
In a homogeneous, stationary situation the dependence
on the local variables vanishes. Generally, we assume
that the dependence on the local variables is so weak,
that linear gradient expansions can be used. For a de-
tailed derivation of spectral and kinetic equations we
refer to Refs. 5, 6, and 21. In the following we will use
some of the results of these derivations.

and corresponding equations for the holes (e~h). The
self-energy

X„(1,2) =X„(1,2 ) +G,i,
'( 1, 1

'
)Gi, ( 1', 2 '

)G,i, ( 2', 2 )

—C. C. (2.23)
B. The quasiparticle spectrum

These expressions will again be used in the RPA. With
this approximation Eqs. (2.3), (2.4), (2.7), (2.15), and
(2.16) form a closed system of equations for the deter-
mination of ( 4 &, ( A &, G,i„d, and D, in which the
material functions (p&, ( j &, X,b, p, and P have to be
determined self-consistently due to Eqs. (2.20), (2.21),
(2.12), (2.22) and (2.23).

The poles of the retarded GF determine the quasiparti-
cle spectra. From Eq. (3.3) we get in the g representation
(compare also Refs. 5, 6, and 13)

e, , z(k, R) = —,
'

[ E, (k, R)+ [A'coo —sh(ko —k, R)] I

+-,'( [ e, (k, R) —[ficoo —e„(ko—k, R)]I'

III. NONEQUILIBRIUM ELECTRON-HOLE PLASMA
+~z(k, R))'",

Eg i z(k, R) =ficoo —Eei z(kp —k, R) .

(3.7)

A. Reformulation of the Dyson equation

In order to investigate the intraband Green's functions
G„and 6&z, we eliminate according to Ref. 5 in their
Dyson equations the interband Green's functions G,h.
Introducing instead of the time- and antitime-ordered
Green's functions, the retarded and advanced Green's
functions by

fico —s, (k) —X,', (g) =G,", '(j)=0, (3.8)

where c,, (k) are according to (1.2) the free-particle ener-
gies of electrons and holes:

The energies e, (k, R) contain already the renormaliza-
tion due to the intraband self-energies, i.e., they are the
complex solutions of the equations

G "(1,2) =G (1,2)—G '(1,2) =G (1,2) —G(1,2), (3.1)

G'(1,2)=G(1,2)—G (1,2)=G (1,2)—G(1,2) . (3.2)
e, (k)= Ak

2 277l g

(3.9)

we find the equations

[6,, '(1, 1')—X,";(I, 1')]G;,'(1',2) =5(1-2),

X,", does not contain interband coupling. The parameter
A, in Eq. (3.7) represents the laser-induced interband cou-
pling
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A(k, R)=j,„(k)( A(R)) —X;i, (k, R) . (3.10)

X,"h is the RPA Coulomb interband self-energy which we
take in the nonretarded approximation

X,"i, (1,2) = X,"i, (r, , rz, t, )5(t, —ti ),
X,"„(g)=X,"i, (k, R) .

(3.11)

E,(k„,R) =ficoo —ei, (k„,R), (3.12)

The effective interband coupling causes a resonance in-
teraction between the states with the energies e, (k, R)
and the laser-induced states with ficoo —e& ( ko —k, R )

(a&b). Disregarding the small photon wave number ko
in (3.7), and the damping of the valence- and
conduction-band electrons, i.e., Im[e, (k, R)+ei, (k, R)]
=0, one gets at the resonance wave number k„,

e, (k, R)= '

E,z(k, R) for k (k„. (3.14)

With (3.14) the retarded GF's have the following struc-
ture:

a(k, R) b(k, R)
%co —z, (k, R) i'(co —coo)+Ei, (k, R)

(3.15)
a(k, R) b(k, R)

fico+ E„(k,R) fi(co+ coo) —'E, (k, R)

tions with polaritons, we have an exact pairwise symme-
try between the four dispersions. Thus we will limit our-
selves in the following to those branches of (3.7) which
approach for X~O the particle dispersions (3.8). These
"physical" dispersions are given for a =e, h by

E, &(k, R) for k)k„,

a laser-induced gap of the size
i

A.(k„,R)
i

. Away from
the resonance at k„ the dispersions have the following
asymmetric behavior (see Fig. 1):

For k ~k„,
~el e & e2 ~~0 ~h

(3.13a)

where the weight coefficients are given by

a(k, R)+b(k, R)=1,

b(k, R)=
+ Ch —%COP E, +Zh —i6COP

(3.16)

For k (k„,
~h2 &0 —~& ~

~el ~0 h & ~e2 ~e

&0 —e
(3.13b)

The original particle states and the laser-induced states
have the weights a and b, respectively. In the approxima-
tion (3.10) a and b are real, and with the exception of the
resonance region one has a = 1, b =0.

C. Kinetic equations for electrons and poles
Each of the four dispersions (3.7) thus changes its charac-
ter at the resonance k„. If it corresponds to states with
the particle energies e, (k, R) on one side, it corresponds
to laser-induced states with iiicoo —Eb(k, R) on the other
side (a&b). This feature is well known from, e.g., the po-
lariton effect in semiconductors. In contrast to the situa-

The intraband kinetics, e.g. , of the electrons in the re-
normalized bands, can be obtained from Eqs. (3.4), which
have the usual form for a single-band problem, but con-
tain a redefined self-energy. From the difference of Eqs.
(3.4a) and (3.4b) one obtains by standard methods the
quantum Boltzmann equation ' '

a
l +

kV„ 6 =X G —X G +i ReIX",6

and

+i IX (,ReG "I, (3.17)

Ba BbI' ~=
ax, are,

Ba Bb

M; c)R;

is the Poisson bracket written in terms of the Minkowski
vectors R=r, ict, and K=k, icoIc

The lhs can also be written as a Poisson bracket

a aG ' a
Gl +

Bco "dt c)k, Br,

. aG'-' aG=l
Bc@ Bt

~

I 60-1 6 (
~

aG'-' aG
af,

where G '=co —ek. Neglecting the Poisson bracket be-
tween X ( and ReG" in (3.17), this equation can now be
rewritten as

FIG. 1. Schematic band structure. Laser-induced bands,
dashed lines; physical bands, solid lines. i GI"', 6 (I X G( —X G' . (3.18)
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A frequency integration over particle and hole propoaga-
tors G„yields the Wigner distributions of the electrons
and holes,

dc' )——.f G)'h( —k)=f) (k R»
I 277

(3.19)

where A„(g) is the spectral function

A„(g)= —21mG,",(g) . (3.21)

It should be noted that the distribution function f, (g)
does not have to be an equilibrium distribution because
(3.21) is merely a definition of the still unknown function

f, . For the spectral function we use the quasiparticle ap-
proximation, so that

G„(g)=2iri[a5(A'co —E, (k, R })

where —g=( —k, —co, R).
The quantum Boltzmann equation (3.18) allows one,

however, not to derive a closed system of equations for
the signer distribution. Therefore, we will make the an-
satz

(3.20)

f, is the distribution of the physical branch, and g, is

that of the laser-induced branch. Correspondingly, one
finds for the holes

f&(k R)=fh(&)
~ r =i„(),R)

„(k,R) =fh(k) I g =a i (),a) .
(3.24)

Inserting the ansatz (3.22) into the quantum Boltzmann
equation (3.18), one gets by integrating the frequency
over the vicinity of the various poles four equations for
the distribution functions f„g„f)„gh. Within our ap-
proximations one finds

(3.25)

a b+
)))co —E, (k, R) ))1(co—coo)+Zh(k, R)

Thus one has only two independent kinetic equations for
f, and ft, . Following Refs. 5 and 6, the lhs of the equa-
tion, e.g. , the electron distribution, can be obtained in-
serting the ansatz (3.22) together with

+b5())i(co —coo)+s), (k, R))]f,(g) . (3.22)

Equation (3.22) shows that f, (g) is given by two
frequency-independent distributions

a [A(co —coo)+eh(k, R)]+b[A'co —Z, (k, R)]
[)rico —e, (k, R)][)ri(co—co())+e), (k, R)]

(3.26)

(3.23)
into (3.18). Making use of the properties
I F ( A ), Af I

= [F( A ),f I A one gets after, a frequency in-
tegration around Z„

[)rico —Z, (k, R)][))'i(co—co())+e), (k, R)]
ci [R(co

coo�)

—+s„(k, R ) ]+b [))ico e, (k—, R ) ]
ck Q cR

at ar, ak, +ak, ar,
(3.27}

where F„(1,2)=G,), '(l, l ') Gt, (1',2 ')Gt„ '(2', 2) .

BE, Bf,(co) Bf(co)
— +

Bt Bt Bco + ' Bt

(i [X,~ ())ico =Z, )f, —X „())ico=Z, )( 1 f, ) ] . —

From (3.5) one sees that X„has the structure

&ee =&ee +Fee

where

(3.28)

has been used. The weight function a cancels exactly,
and the renormalized energies appear in the drift term.

Next we turn to the evaluation of the rhs of the kinetic
equation. The frequency integration yields

F,~ is obtained by taking the +, —matrix element with
respect to the time-ordering index

F~(1,2)=G '++(l, l')G)~(1', 2')6 ' (2', 2),
(3.29)

where we have assumed again that the screened
Coulomb potential is nonretarded,

X,„(1,2) =[j,„(1-2)A(1)

+d, (1-2)G,/, (1,2)]5(t i
—t, ) .

In order to find Gt, in (3.29) we take again the +, —ma-
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trix element of the definition (3.6) of Gh and get

Gh~(1, 2)= —Gh (1, 1')Ghh ' ~(1',2')Gh (2', 2),
and because G&1,

' ——0

Gh' ( 1,2 ) = —Gh ( 1, 1' }X~~q ( 1', 2' }Gh ( 2', 2 ) . (3.30)

Taking into account that A as well as the driven G,z
+iKO.R

vary with e ', we find in the rotating wave approxi-
mation

F„(g)=
~
G,h'"(K, R)Gh(K —KO, R)

~
Xhh(K —KO, R) .

(3.31)

where the scattering rates are defined by (a&b )

X, (k, R) =a X„(iiico=e, )+bXhh(fico= c, —. ftcoo) .

(3.35)

The self-energies X„ follow from Eq. (2.12) in the RPA
as

X„(g)= g J dco' e G„(g')d (g —g)
k'

~ 2+,Gh'h(("» '(0—0')

(3.36)

From (3.28) one sees that F,~ has to be evaluated at the
frequency iiico=Z, . With G,h

'"(k,'E„R)=A, [see (3.10)]
we get

F„= A,
i ~

Gh(k, Z, —ficoo, R)
~

Xhh(k, e, —ficoo, R),
(3.32)

The interpretation of the rates proportional to the weight
coefficient b is that due to the coherent band mixing the
scattering in band b contributes to a certain extent to the
scattering in band a.

where

A=a, +c.I, —%coo

so that

I Ghh(&e &~O}—
I

'= 4

[g+(g +4[/[ )' ]
The weight coefficients a and b [(3.17)] are given by

1a= —1+
(5 +4~A,

~

)'

i.e., the scattering rate Xhh is weighted with

~
Ghh('E, —A'coo)

~

. According to the last section, the re-
tarded GF is given by

Ghh ( s, fico()) =— 1
hh e 0 i [~+(~p 4

~

g
~

i)iy2)

D. The e-h pair amplitude

In Sec. III C the interband GF G,& has been eliminated
and led to a laser-induced correction term in the intra-
band self-energies. Here we will investigated G,& directly
because of its connection with the optical polarization of
the system and with excitonic properties. A full inclusion
of the exciton kinetics would require the treatment of an
electron-hole pair GF, i.e., of a four-point GF, which is
beyond the scope of this paper. We limit ourselves here
to the treatment of the laser driven polarization wave

G,&, and disregard the incoherent, relaxed part of the e-h

pairs. This procedure is justified in the plasma limit; the
pure excitonic limit has been treated in Refs. 22-25.

From the Dyson equation (2.7) for a =e and b =h one
gets with Eqs. (2.6), (3.1), and (3.2) & AM

1 b,b= —1+
2 (g +4~&~ )'cz

so that

G,, '"( l, l')G,"h(1',2)+ G,h
'"(1,1')Ghh(1', 2)=0,

G,, '"(l, l')G, h(1', 2)+6,, ' (l, l'}G;h(l', 2)

(3.37a)

b 4ik, i'
a [Q+(Q +4

~

g
~

z)'~z]

Therefore we get finally

bF„=—Xh'h(k, Z, —iiicoo, R)

and

+G„„'"(1,1')G„'„(1',2)

+G„h
' (1, 1')Ghh (1',2) =0 . (3.37b)

For all interband functions we will make in the g repre-
sentation an ansatz analogous to (1.10},

G,"h(g)=g+(g)e ' +g" (g)e

X,~(k, R)=aX,~(ftco=e, )+bXhh(iitco=Z, fico()) . —

(3.33)

Thus the resulting rate equations for the renormalized
bands have the simple form

G,„(g)=g+ (g)e ' +g (g)e

G;, '"(g)=a+(g)e ' +& (g)e

X,"„(g)=o (g)e ' +o (g)e

(3.38)

B—+(V„e,)V„—(V„e, )Vh f,
BE

[X,~f, —X, (1 f, )], (3.34)—
iA

where we used again the four-dimensional notation
Ko=(ko, icoolc) and R=(r, ict) and g'=(K, R). Taking
the Fourier transform with respect to the relative vari-
ables of, e.g. , Eq. (3.36), one has to evaluate Fourier
transforms of products according to the general rule
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1
exp (—VR, Vrc, V—R, VK, )

XF(K,, R, )G(K2, R2)
I K =K =K; R, =R =R (3.39)

The total equation (3.36) yields

Ko Ko
g+(g) = A—+(f)G,", K+,R Gf g K+,R

(3.41)
For the second term, e.g. , in (3.36), one gets with this for-
mula

l
exp —(Va Vx Va 'Vx' ) l~(K„R, )

2 1 2 2

+iKO.Rl
Ilh 2~ 2 I K~ ——Kp ——K R =Rp ——R

(3.40)

For the derivation of the spectral equation for the
electron-hole particle propagator we use in addition to
(3.37) the related equation, which stems from GG '=1,

G,",(I, I')G,g
' ~ (I', 2)+ G,~ ( I, I')G,„"(I', 2)

+G,"I, (1,1')Gqq'~(1', 2)+G,i, (1, 1')Gqq "(1',2)=0 .

(3.42)

For the gradient expansion we disregard the slow varia-
tion of k+ and Ghh, but take the rapidly oscillating terms
exactly into account,

Ko
=A+(K, R)Giq K+,R

2
'

The difference of (3.37) and (3.42} yields

6 '"6 —6 6 "=6 6 "—6 '"6 +6'6ee eh eh hh ee eh eh hh ee eh

—6 h'~Ghh+O' 6eh hh eh

—G '~6'
ee eh

Using the definitions (3.38) and (3.41) one gets

[%coo—e, (k, R)—eh(k, R)]g+ (g)

Ko Ko
=A,+(g} G,~ K+,R —Gq~i, K+,R

X,~ K+,R —Xh~h K+,R2' 2'

G,, '" K+,R Gi~'" K+,R — A(g')
I

Ko , „ Ko

(3.43)

The coupling parameter A.+(K,R) depends because of
(3.36) via X",, (g) on g+~ (g),

Neglecting the self-energy contributions X,~„which van-
ish for a statically screened Coulomb potential, we get

&+(g)=j,„(k) A+(R) —o(g'),

o+(g)=4~ie 'fi g f den'g+~ (g')d "(g f ) . —
k'

(3.44)

(3.45)

[Rcuo E—(k,R) , eq—( kR) ],P+ ( kR),
=2vri j,„(k) A+(R)

d'(g)=d, "(k,R)= f

deed�

"(g) . (3.46)

For this approximation, we can introduce the frequency-
independent polarization function

P+(k, R)= f drag+~ (g) .

Equation (3.43) is thus an integral equation for the
electron-hole pair propagator G,h or g+, respectively.
The physical reason for this structure is the excitonic na-
ture of the pair function. It obeys in k space an integral
equation with the attractive screened Coulomb potential
as integral kernel. A solution of this equation with a
dynamically screened Coulomb potential has been
developed in the framework of a Shindo approximation
in the low-field limit by Refs. 26 and 4. For a statically
screened Coulomb potential the plasmon propagator is
approximated by

4~itic'g P+—(k', R)d, (k' —k, R)
k'

X [o(k', R)—b(k', R)][1—f, (k', R)—f~(k', R)]

(3.47)

In the low-field limit a = 1, b =0, Eq.(3.47) reduces to the
polarization equation derived in Ref. 3. There it has been
shown that the corresponding susceptibility function
obeys the Bethe-Salpeter equation which describes the ex-
citon ionization with increasing laser excitation as has
been shown by numerical solutions in Ref. 1. The polar-
ization equation (3.47) is in fact identical with the result
Eq. (2.4) of Ref. 7 if the relations (2.16) and (2.17) of Ref.
7 are inserted in their general form, i.e., without the spe-
cialization for zero temperature. Without screening this
polarization equation has been used ' to describe the
recently observed optical Stark shift of excitons and
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spectral hole burning. Furthermore, it has been shown
in Ref. 7 that the real-space formulation of (3.47) in

which the polarization is a two-point function, (3.47}
reduces —at least for weak excitations —to the coherent
band-edge equation of Ref. 8.

d, (k —k, R) represents the (statically) screened

Coulomb potential, 1 f—, f—z is the blocking factor due
to the Pauli principle. Only states which are not yet oc-
cupied can be used to form the excitonic state.

For the coupling parameter X+ one also obtains an in-

tegral equation using (3.44) with the approximation (3.46)
in (3.45) and (3.43):

A+(k, R)=j,„(k} A+(R)+8Me g [1—f, (k', R) f&(—k', R)]
k'

A+(k', R)[a (k', R) —b (k', R) ]d, (k —k', R)
e, (k', R) Ez(k', R) —A'coo

(3.48)

I,+(k, R)=j,„(k,R) A+(R), (3.49)

where j,'„ is a renormalized interband matrix element. In
the limit of vanishing laser amplitude & A}~0, Eq.
(3.48) degenerates to a homogeneous integral equation.
The energy %~0 loses its meaning as an externally deter-
mined laser frequency. A'coo then becomes the eigenvalue
of (3.48), which determines the frequency at which spon-
taneously a macroscopic electromagnetic field amplitude
can build up by laser action.

IV. ELECTROMAGNETIC FIELD

A. The coherent electromagnetic field

The coherent part of the electromagnetic field is given
by the average of the vector potential & A(R)). We as-
sume that the scalar potential has a zero expectation
value.

In the slowly varying amplitude approximation
(SVAA) we get for

Equation (3.48) determines the size of the laser-induced

gap for the resonant excitation and thus corresponds to
the gap equation in the theory of superconductivity.
Such inhomogeneous laser-influenced gap equations have
been discussed previously in Refs. 15 and 3. An inspec-
tion [e.g., by iteration of (3.48)] shows that the solution
can be written in the form

W(R) = & j(R) } & E(R) ) . (4.4)

with

+j:.(1-2)GA(1 2'}]
I „+ „

j (R)c IK'R+ j (R)e —/K'R

(4.5)

(4.6)

j (R)= iAQ j,—„(k)f dco6,(„(gec)=j+(R),
k

(4.7)

where (4.6) corresponds to a rotating wave approxima-
tion.

In order to treat the optical quantities W(R) and

& j ) & A ) on the same footing as the plasma kinetics, we

use again the Dyson equation (2.7). For the matrix ele-

ments a =b =e and 1=1+,2=2 —we use the g repre-
sentation and neglect all derivatives of the slowly varying
amplitudes with respect to the local variables R. A
momentum and frequency integration yields

j (R) A (R)= i A Q 0 —(k, R)q+ (k, R)
k

i' g fdes[6,",(g—)G,, ' (g')
k

The rhs in Eq. (4.3) is the eff'ect of this absorption on the
dispersion. The interband current density is given by

& j(1)) = —i&[j,„(1-2}G&',(2+, 1)

& A(R) ) =ez&I(R)e'~' (4. 1) +G;, (g)G,, "(g)] . (4.8)

—+c V I(R)= — W(R),a c
ko

(4.2)

c'
& A(R)). &j(R)&

Bt k "
co 4I(R)

The derivative

from (2.4) for the intensity I(R) and the phase ((}(R) the
equations

0 is the amplitude of the retarded interband self-energy
(3.38). With the approximations of a static screening, see
(3.45)—(3.47), we get

o (k, R)=4nike gp (k', R)d, (k —k', R) .
k'

(4.9)

The amplitude q+ (k, R) is defined in analogy with p+ for
e~h.

k d—+c .V =—
(jt ko

" dt

is just the total time derivative, c is the light velocity in
the medium. On the rhs they'e appears the energy dissipa-
tion rate

and

GI((f}(k,R)=f+((k, R)e ' +f ((k, R}e

q+(k, R)= f d~ f+ (g) .

(4.10)

(4.11)
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Thus the first term on the rhs of Eq. (4.8) can be written
as

—ih go (k, R)q+(k, R)
k

4vrf—ie g q+(k', R)d, (k —k', R)q+(k, R) .
k, k'

~(R)=(j(R)).(E(R) )

2cop
Im[j+(R). A (R)]

C

=2 g fdco[X„(g)G„'(g)—X„(g)G„(g}],
C k

(4.13)

The dissipation rate is now obtained as

(4.12) the difference between the momentum- and frequency-
integrated scattering rates out and into the state g. Simi-
larly, we get the corresponding dispersive effects as

( j(R) ) ( A(R) ) =2 Re[j+(R) A (R)]
= —4M e g q+(k, R)d, (k —k', R)q+(k', R)

k, k'

2ific g—f dcoI Re[G,, '"(g)]G„(g)—X„(g)Re[6;,(g)] .
k

(4.14)

In contrast to the kinetic equation (3.34), only the part
g„ofX„enters in the optical functions (4.13) and (4. 14).
Furthermore, the interband Coulomb self-energy
influences (4.14), while it drops out of the dissipation rate
(4.13).

B. The incoherent electromagnetic field

f de P'(g') P'(g')—
2 trl co —co +t e

where f'=k', to', r, t
The photon distribution fp(g) is introduced by

D '(g) =fp(g) &p(j),

(4.16)

(4.17)

1. Photons

The Dyson equation (2.15) for the tensor function D of
the photons will be simplified by assuming "transverse
isotropy, " i.e., the quantities D and P can be written as
products of scalar times the transverse unit tensor 5T.
For the coupling we write correspondingly j„(3)j,„
=j 6T. Following Refs. 5 and 6, the poles of the retard-
ed GF D "(g) determine the locally defined spectrum of
the photons

k P "(g)——
A~= cD(k, R)

=0. (4.15)

The retarded polarization function, or photon self-
energy, is given by

The GF of the transverse and longitudinal components
of the electromagnetic field, D and d, respectively, which
represent the incoherent functions of the electromagnetic
field, can be treated in correspondence with the particle
GF's G,b. In the framework of the corresponding ap-
proximations, namely, RPA, SVAA, quasiparticle ap-
proximation, and nonretarded static screening, one finds
the spectrum and the distribution of the quasiparticles,
i.e., of the photons and plasmons. The determination of
the boson GF's is formally completely analogous to that
of the fermion GF's, ' " and is even simpler due to the ab-
sence of nondiagonal GF's. However, due to their
different physical contents, the derivations for the bosons
are quite distinct from that for the fermions.

where AD is the spectral function of the photons,

&p(g) =D '(g) —D '(g) =D'(g) —D'(g), (4.18)

which is peaked strongly at the poles of Eq. (4.15). Due
to this fact, we introduce a frequency independent photon
Wigner distribution

fp(k) l Rco=c, (Q, R) fp(k R} (4.19)

From Eq. (2.15) we get then the following kinetic equa-
tion for the photons:

a
at
—+(Vl, ep) Vtt —(V~ E)pVt, fp(k, R}

d 2 P D —P D

(4.20)

In the RPA we get from (2. 17)
~ 2

P (g')= 4vrifi, g f dc—o'G„„(g')G„(g'—g)
C Ic

+(e~h I . (4.21)

By inserting the particle propagators (3.22) —(3.24) into
(4.21), one sees that the collision integral in (4.20) de-
scribes the creation and annihilation of photons due to
electronic transitions between the renormalized bands c,,
and c.I„as it is expected on the basis of Fermi s golden
rule. However, in addition one also finds contributions
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& (g)=&o (g)+q(R)5(co —coo)
Ac

The function q(R) is given by

(4.22)

due to transitions between the laser-induced branches
%coo—c, and %coo—Ez, which can be interpreted due to
the symmetry (3.7) and (3.25) as transitions between ei,
and c., with different weight coefficients. Furthermore,
one finds transitions between the physical branches and
the laser-induced ones, which give rise to a singular prop-
erty of P+. For co & 0 one gets altogether

q(R)= g j'(k)a(k, R)b(k, R)
k

—fh(k, R)[1—fh(k, R)]I, (4.23)

which describe direct conversions from coherent into in-
coherent excitations.

The explicit form of the kinetic photon equation is ob-
tained by carrying out the frequency integration using
(4.22) —(4.24) together with (3.20) —(3.23},

a
at
—+(VkeD) Va —(V„eD) Vic fD

16
q(R)5(eicos —sD)+ g Ici'5(Ze'+Xi, —eD)[f e'f t, (1+fD)—(1 f, )(1 f—'t, )fD—]

fi c' k'

+b 5(2~coo ~e ~ h eD }[(1 f e }(1—f h }(1+—fD } f ef h—fD]I

(4.24)

Here, the dashed quantities depend on k', R while the
others depend on k, R. The k' sum on the rhs of Eq.
(4.24) vanishes for k=kD. Under this resonance condi-
tion (4.24) describes just the free drift of photons with the
source term q(R). Conversely, for k&kD, the source
term does not contribute and (4.24) describes the develop-
ment of the photon distribution due to the rates of emis-
sion [ cc to (1+fD )] and of absorption ( cc fD } of photons
between the physical branches (cca ) and the laser-
induced branches ( ~ bi ).

2. Plasmons

The longitudinal excitations of the electromagnetic
field are described by the GF d (1, 1 '). These longitudinal
excitations are directly connected with the screening of
the long-range Coulomb potential. As mentioned before,
we will limit ourselves in this paper to the static screen-
ing, the dynamical aspect of screening has been persued,
e.g. , in Refs. 1, 4, and 6. Instead of treating plasmon dy-
namics and kinetics explicitly, we will simply consider
them as a reservoir. Following Ref. 6 we use for the par-
ticle propagator for the plasmons

d (g) = —imari}q(k, R) [5(fico+ ed(k, R))[1+fd(k, R}]
+5((rico+Ed(k, R))fd(k, R)] .

(4.25)

Here, gd are the spectral weight functions, cd the ener-
gies given by the plasmon poles of d", and fd is the
Wigner distribution of the plasmons.

Finally, we mention that the phonons which have not
been treated explicitly in this paper can be treated for-
mally in complete analogy with the phonons. The in-
clusion of phonons becomes important if one wants to
study, e.g., the cooling of a hot electron-hole plasma on a
longer time scale after a short pulse excitation.
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