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Surface structure and long-range order of the Ge(111)-c (2 X 8) reconstruction
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We have performed an x-ray diffraction study of the Ge(111)-c(2 < 8) surface. From the analysis
of 43 in-plane, symmetry-inequivalent structure factors, a simple adatom model with subsurface re-
laxation is deduced. The relaxations around the adatoms are similar to those observed in the ada-
tom complexes on Si(111)-(7x 7) and Sn/Ge(111-(V3x V/3), -(5% 5), and -(7X 7), suggesting that the
adatoms are located in threefold sites above the second-layer atoms (T, sites). Significant distor-
tions around the rest atoms are seen due to rehybridization of the dangling bonds. The diffraction
peaks from the eighth-order reflections are displaced away from their nominal positions. This is ex-
plained by a model where the long-range order of the ¢ (2 X 8) structure is disturbed by faults due to

rows of 2 X 2 unit cells.

I. INTRODUCTION

Normally the equilibrium reconstruction of the (111)
surfaces of group-IV elemental semiconductors is either
5% 5 [Ge,Si,_,Si(111) (Refs. 1-3) or Sn/Ge(111) (Ref. 4)]
or 7x7 [Si(111),> Ge,Si, ,Si(111),'~3 Sn/Ge(111),* or
Ge(111) under lateral compressive strain®]. All these sur-
faces can be described in terms of the dimer-adatom-
stacking fault (DAS) model derived by Takayanagi et al.
for Si(111)-(7x7)."® This has initiated a great interest in
the universal behavior of the (111) surfaces in order to re-
veal the driving mechanism behind the 5X5 or 7X7
reconstructions.®® There is one exception from the gen-
eral picture, namely the clean, unstrained Ge(111) surface
which has a ¢(2x 8) structure. '~ Any unified descrip-
tion of the (111) surfaces must be able to include the
Ge(111)-c(2x8) surface and explain its deviation from
the DAS model. It is therefore of great importance to
determine the atomic geometry of this structure.

Scanning tunneling microscopy (STM) images have
shown that the structure has adatoms which are arranged
such that each ¢ (2 8) unit cell consists of one 2X2 and
one c¢(4x2) subunit.'>'* Recently two models incor-
porating this adatom pattern have been proposed. Using
adatom clusters as building blocks for the DAS model,
Takayanagi et al. constructed a model which explains
both 5X 5, 7X 7, and c (2 X 8) reconstructions.® The ada-
tom cluster consisted of one adatom bonded to three un-
derlying atoms and could be placed in regions with either
regular or reversed stacking. The walls between the two
types of stacking were chains of dimers. The model is
called the dimer-chain model® and has the same adatom
arrangement as that observed with STM. *

Based on total-energy considerations, Vanderbilt could
explain the overall behavior of the (111) surfaces of Si and
Ge with the assumption that the ¢ (2 8) structure only
consists of the decoration with adatoms as seen with
STM (Ref. 14) with no major rearrangement of the sub-
strate atoms.’ This simple adatom model has also been
proposed by Mareé et al. using medium-energy ion
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scattering!® and is shown in Fig. 1(a). Their experimental
data is controversial since it shows considerably less dis-
tortion for the Ge(111)-c(2x8) surface than for Si(111)-
(7 7) which disagrees with previous ion-scattering stud-
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FIG. 1. (a) The primitive cell of the c(2X8) structure with
adatoms in T4 sites and subsurface relaxations. The indepen-
dent atoms in the analysis are labeled 1-8. The third-layer sub-
strate atoms are situated directly below the second-layer atoms
and therefore not shown. The displacements derived from the
least-squares analysis are multiplied by five and shown as ar-
rows. The triangle enclosed by a mirror line and the cell edges
is the irreducible unit for the Patterson function shown in (b).
The estimated uncertainty, multiplied by five, is indicated. It
applied radially and transverse to the displacements for all
atoms, except those on the mirror lines where it only applied ra-
dially. The scale is given by the length of the (1,0) vector which
is ay/V2=4.0 A. (b) The contour plot of the Patterson func-
tion. Only positive levels are shown. Projections of bulk intera-
tomic vectors onto the surface plane are shown as solid circles.
The scale is the same as in (a).
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ies.!® We present here a surface x-ray diffraction study
which demonstrates the validity of the simple adatom
model provided subsurface relaxations over at least three
atomic layers are included. Furthermore, we show that
the long-range order of the c(2X8) adatom pattern is
destroyed by faults in the form of rows of 2 X 2 unit cells.

II. EXPERIMENTAL

The Ge(111) surface was cleaned by 500-eV Ar*-ion
bombardement and subsequent annealing to 750°C. This
procedure was repeated until the low-energy electron
diffraction (LEED) pattern had sharp c (2 X 8) diffraction
spots and angle-integrated photoemission spectra showed
no traces of impurities. The sample was then transferred
to a small portable UHYV cell for x-ray diffraction, which
was mounted on the vertical scattering diffractometer at
the 32-pole wiggler-beamline W1 at Hamburg Synchro-
tron Radiation Laboratory (HASYLAB). Two flat
Ge(111) crystals in conjunction with a toroidal Au-plated
mirror were used to monochromatize the x-ray beam to a
wavelength of 1.345 A. The diffractometer was aligned
so that the x-ray beam has a fixed glancing angle to the
sample surface of 0.274°, which is the critical angle for to-
tal external reflection. This gives a penetration depth of
intensity into the surface of 190 A. A 1-mm slit placed
just before the sample and a 2-mm slit mounted on the
detector arm just after the sample defined the active area
of the surface. The in-plane acceptance of the detector
was 0.7°. A total of 64 integrated intensities from in-
plane fractional-order reflections were measured of which
43 were non-symmetry-equivalent half- and eighth-order
reflections and four quarter-order reflections.

III. DATA ANALYSIS

Due to the low symmetry of the ¢ (2 X 8) unit cell, three
120° rotational-equivalent domains exist on the surface
with no overlap of fractional-order reflections. The in-
tensity ratio of symmetry-equivalent reflections from
each domain was 1.3:1.0:0.7, presumably due to a slight
miscut of the surface which induces a preferred orienta-
tion of the domains. The integrated intensities were ad-
justed for this effect and corrected for Lorentz factor
{[sin(20)]1"!'} and variations in active sample area
{[sin(26)]'} in order to give the structure factor inten-
sities shown in Fig. 2. There is some uncertainty in the
intensities due to disorder in the ¢ (2X8) structure illus-
trated in Fig. 3. All eighth-order reflections are
broadened and displayed away from their nominal posi-
tions and there is a tail of scattering between the half-
and eighth-order reflections. The overlap between the
reflections means that true integrated intensities cannot
be recorded and the errors may be larger than the uncer-
tainties from counting statistics and reproducibility be-
tween symmetry-equivalent reflections. We will therefore
give all structure factors equal weight in the structural
analysis by using an R (“reliability”) factor given by
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FIG. 2. The structure factor pattern of a single c(2X8)
domain, showing the agreement between the experimental data
and the model in Fig. 1(a). The radii of the half-circles are pro-
portional to the structure factor amplitudes, the area to the in-
tensities. The four measured quarter-order reflections are indi-
cated by hexagons.

to quantify the agreement between model and experi-
ment. F, and F, are the observed and calculated struc-
ture factors, respectively.

The intensities of the four quarter-order reflections
measured were all zero within uncertainties estimated to
~2% of the intensity of the largest half-order reflections.
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FIG. 3. A scan in the (10) direction through the (— £+ 1), (01)
and (%%) reflections, showing the displacements of the eighth-
order peaks. The width of the (0%) peak is given by a domain
size of ~600 A. The solid curve shows the intensity distribu-
tion given by Eq. (5) with 2X2 unit cells with a probability
p =0.15. The curve is scaled such that it has the same peak
heights as the experimental data. The dashed curve has
p =0.40. The (01) reflection belongs to a different domain than

the (— %%) and (%%) reflections and is therefore not included in
the theoretical curves.
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This is in agreement with recent LEED observations
where it was possible to detect very weak quarter-order
reflections.!” We therefore conclude that within our ex-
perimental accuracy all quarter-order reflections are
missing. This means that the atoms in the ¢ (2X 8) unit
cell can be grouped in pairs.!""!> The two atoms in a pair
are interconnected by a (2,1) or (2,2) vector (see Fig. 1),
which assures a vanishing structure factor for quarter-
order reflections from each pair. This is not in agreement
with the dimer-chain model.'® In fact, we have to ex-
clude the dimer-chain model on the basis of the four
missing quarter-order reflections alone.

A contour plot of the Patterson or pair correlation
function, the Fourier inversion of the structure-factor in-
tensities, is shown in Fig. 1(b). This gives a map of in-
teratomic vectors occurring within the c¢(2X8) unit
cell.'® The plot shows one clear nonorigin vector, namely
(2,1). The simplest possible model with this interatomic
vector is the simple adatom model (without subsurface
relaxation) as shown in Fig. 1(a). The structure factors
for this model, apart from atomic form and Debye-
Waller factors, are

_ |2 for half-order reflections
hk 1+i for eighth-order reflections .

(2)

Clearly, the diffraction pattern in Fig. 2 shows
significantly more variation than this, so two atoms per
unit cell are insufficient to describe the full structure.
The R factor is R =0.44. The Fourier sum used to calcu-
late the Patterson function did not include integer-order
reflections and hence only shows the layers with ¢ (2 8)
symmetry. One consequence is that the contour plot in
Fig. 1(b) is distorted around bulk interatomic vectors
and additional atoms with nearly 1X 1 symmetry will not
be clearly exposed in the plot.!® Relaxed 1 1 structures
with ¢ (2 8) symmetry will show up as small peaks near
bulk interatomic vectors with heights to first order pro-
portional to the square of the displacement away from
bulk lattice sites and positions shifted away from the in-
teratomic vectors. This is what we see in Fig. 1(b). All
remaining nonorigin peaks are weak and close to intera-
tomic vectors from the bulk, and we must consider possi-
ble subsurface relaxations in order to complete the struc-
ture.

The structure factors measured with nearly zero
momentum transfer in the direction normal to the sur-
face yield information about the projection of the struc-
ture onto the surface plane. Hence, effectively only the
first, second, and fourth layer from the bulk are visible as
shown in Fig. 1(a). The adatoms are assumed to sit in
symmetry sites on top of one of the layers. The subsur-
face atoms are relaxed according to the mirror lines com-
ing from the 3m symmetry of the bulk and are connected
in pairs as required by the forbidden quarter-order
reflections. The independent atoms in the analysis are la-
beled in 1-8 in Fig. 1(a). The five atoms on the mirror
lines are allowed to displace along the (2,1) direction
whereas the three atoms off the mirror lines are allowed
to displace in two directions: one radially towards the
nearest adatom or rest atom and the other in the trans-
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verse direction. The adatoms and the atoms directly
below them are fixed at (0,0) and (2,1). This gives, in to-
tal, eleven structural parameters and one scale factor to
vary. The Debye- Waller B factor is kept fixed at the bulk
value of 0.586 A2 for all atoms.?’ A least-squares
analysis reduces the R factor to R =0.21. The uncertain-
ties on the displacements are relatively large, on average
estimated to be 0.08 A. The displacements are therefore
given in graphical form in Fig. 1(a). Due to the projec-
tion, the displacements shown are effective sums of dis-
placements of the top atoms and the atoms directly
below, and including more layers in the analysis cannot
improve the agreement. However, the strain in the
deeper layers is expected to be small and we will consider
the displacements as arising from layer one, two, and four
alone. The R factor is higher than expected from count-
ing statistics and reproducibility between symmetry-
equivalent reflections (R =0.05) and is due to the
difficulty in obtaining correct integrated intensities as ex-
plained above.

IV. DISCUSSION

One of the significant features in Fig. 1(a) is the dis-
placement pattern around the adatoms. Of the six atoms
surrounding an adatom, three are pulled towards it while
the other three are expelled. This is very similar to the
pattern observed for Sn adatoms on the Ge(111) sur-
face.?! =22 Here the Sn atoms are situated in T, sites, on
top of second-layer Ge atoms and pull the three sur-
rounding first-layer Ge atoms towards it, and also push
the second-layer atom below it down which, via elastic
strain, displaces the fourth-layer atoms away from the
adatom (in projection). This suggests the assignment of
the layers shown in Fig. 1(a) with the adatoms in T, sites,
but measurements at a final momentum transfer in the
direction normal to the surface are required for a final
determination. Another important feature of Fig. 1(a) is
the relaxation around the rest atom. This cannot be ex-
plained by elastic strain from the adatoms because that is
expected to decay exponentially with distance. Instead it
must be due to charge transfer from the dangling bonds
on the adatoms to the dangling bonds on the rest
atoms.?® The charge transfer results in rehybridization
and a displacement of the rest atom away from the sur-
face,?* thereby pulling in the surrounding atoms which in
projection produces displacements towards the rest atom.
The raising of the rest atom has also been observed in
total-energy calculations on Si(111)-(7x7) (Ref. 25) and
2x 2 adatom clusters.?® One might speculate on the im-
portance of the rest atoms. In the ¢ (2% 8) structure the
the adatoms saturate 75% of the dangling bonds, whereas
a 100% saturation can be obtained with the rest atom
free V'3 V'3 structure. Therefore, by taking part in the
charge transfer the rest atom must play an important role
in minimizing the total energy of the system.

The pairing of the atoms as assumed in the analysis
does not hold in reality since it leads to frustration for the
subsurface atoms labeled 2 and 3 in Fig. 1(a) and was only
introduced to reduce the number of free parameters.
Changing the assignments of the pairs does not alter the
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displacement pattern significantly within the uncertain-
ties. We have calculated the subsurface displacements by
minimizing the elastic strain using a Keating model.?’
Although some deviation from the above-mentioned pair-
ing was observed, the calculated intensities for the
quarter-order reflections were always zero. Qualitative
agreement with the displacements around the adatoms
was obtained, but due to the charge transfer the Keating
model fails to describe the rest atoms.

V. ANALYSIS OF THE DISORDER

We now turn to the disorder and the displacement of
the eighth-order reflections. As seen in Fig. 3, only the
eighth-order reflections are affected; the half-order
reflections remain sharp. When the scan direction is or-
thogonal to the direction shown in Fig. 3, both eighth-
and half-order peaks are sharp and unperturbed.

For a single domain this gives the alternating displace-
ment pattern shown in Fig. 4(a). The peaks are displaced
+0.005 in reciprocal lattice units, but measurements on
other Ge(111) samples indicate that the absolute value
depends on the preparation procedure of the surface. It
shall be noted that neither the broadening and displace-
ments of the peaks nor the tailing in Fig. 3 could be ob-
served in the corresponding LEED pattern. However,
during sample preparation the surfaces initially showed
streaky ¢(2X8) LEED patterns which became sharper
after repeated sputtering-annealing cycles. The streaks

2x 2 fault

cLx2 fault

(a) Possible faults in the long-range order
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were in the same directions as the broadening and tailing
in Fig. 3 and must arise from the same kind of disorder.

Because only the eighth-order reflections are affected
by the disorder, its origin must be found in different occu-
pancies between sites which are all in-phase for half-order
reflections. In the unit cell in Fig. 1(a) likely candidates
are the sites at (2,1) and (2,2) which are related by inver-
sion symmetry. Thus, if the next-nearest adatom interac-
tion is sufficiently weak we would expect disorder in the
occupancy of these two sites. The saturation of dangling
bonds from three underlying substrate atoms by the ada-
tom and the requirement of rest atoms means that there
is a minimum distance between adatom, so shifting one
adatom from site (2,1) to (2,2) implies shifting a full row
of adatoms. This leaves only the two types of disorder
shown in Fig. 4(a). Note that the ¢ (2 8) primitive cell
consists of one 2X2 and one c¢(4X2) unit cell and that
the disorder can be described as faults in the long-range
order of the ¢ (2X 8) unit cells. The reciprocal lattices of
the 22 and c(4X?2) structures are shown in Fig. 4(b).
Since the eighth-order reflections are shifted towards the
2 X2 lattice points we would intuitively expect the faults
to be 2 X 2 unit cells.

We will now quantify the displacements of the eighth-
order reflections by a simplified disorder model. A simi-
lar model has been derived for the missing row structure
of Au(110)2x 1.2 A more general treatment is given by
Lent and Cohen.? Consider the lines shown in Fig. 4(b)
along the (2,1) direction and denote the rows of adatoms
normal to this direction by index m. Let P, =1 if row m

| O+0<0O B O+0<+O B O+0<«O 8

[ J [ J [
00 10
0-c2x8 @-2x2 @ -cbx2

@ common for c2x8,2x2,.clx2

(b) The reciprocal lattice, single domain

FIG. 4. (a) The two possible faults in the long-range order of ¢ (2 8) cells. The top shows rows of 2 X2 cells as faults, the bottom
shows rows of ¢(4x2). The solid lines shown are used for indexing P,,, see the text. (b) The displacement pattern of the eighth-
order reflections. Note that the reflections are displaced towards the 2 X 2 reciprocal-lattice positions, not the c (4 X 2) positions.
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has an adatom on the line and let P,, =0 if not. The se-
quence of P,, would then be 1100110011 for a regular
c(2Xx8) structure. 2Xx2 faults give sequences like
110010011 (or equivalently 001101100) and ¢ (4 X 2) faults
11001110011 (or 00110001100) sequences. We neglect for
simplicity the subsurface relaxations and make the
Fourier sum over the adatoms by first summing over each
row in the (0,1) direction. Because there are no faults in
that direction, this ensures that for a (h,k) reflection at
least k remains unchanged. The sum in the (2,1) direc-
tion is then

J

1-Q,, _,+p(Q, ,—0Q, ) for 2X2 faults

Qn= 1—p—0Q,, »,+p(Q, +0Q,, _,) forc(4x2)

Note that if p =1, Q,, follows the sequences 101010 or
11111 which corresponds to fault-free 2 X2 or c(4x2)
structures, respectively.

Because formula (4) is recursive, the summation in (3)
is straightforward with P, substituted by Q,,, and with
the assumption that Q,, is symmetric we obtain

1+Ce2m'(2h +k)

G = lipeZm'(Zh +kl+(1_p)e41ri(2h +k) ?
c= (1—p) (5)
2—p
where “ +* corresponds to 22 faults and — corre-

sponds to ¢ (4X2) faults. Because Q,, is the pair correla-
tion of P, and because the sum in (3) has to be extended
to include the terms m = — o to m = —1, the intensity
distribution is given by I,, <2 Re(G,;)—1. The solid
curve in Fig. 3 shows the intensity distribution for 2 %2
faults with p =0.15, the dashed curve has p =0.4.
c(4x2) faults shift the peaks in the other direction. As
seen, Eq. (5) can explain the displacement of the peaks
but not fully the broadening or the tailing. This could be
due to interaction between the faults giving larger areas
with 2X2 cells, but could also arise from regions with
different values for p within the surface area sampled in
the diffraction experiment. The observation that only
2X2 unit cells occur as faults means that we can set up
the inequality E_ ;. 5, < E7'; < E. (34, for the total ener-
gies of the different unit cells, but since small clusters of
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th: 2 [Pm+(l_Pm )e217ik]e2mm12h+k) . (3)

m=0

For a half-order reflection k is an integer and the bracket
in Eq. (3) is 1, so half-order reflections are unaffected.
For eighth-order reflections the bracket is 2P,, — 1.

Let us assume that the faults are randomly distributed
and described by a probability p for having a fault after a
¢(2x8) unit cell when going in the (2,1) direction. Let
Q,, be the probability for P, =1 given that P,, _,=1. It
is simple to derive a recursive formula for Q,,, and we get

faults . (4)

I
both 2 X2 and ¢ (4X2) unit cells have been observed with
STM, ' all three energies must be nearly equal. The rows
of 2 X2 cells as faults in the ¢ (2 X 8) structure has also re-
cently been observed in STM images, where it was shown
that they originate at one boundary between two 120°
orientationally related ¢(2X8) domains and extend all
the way through the ¢ (2X8) domain to the next bound-
ary.®® The disorder is different from that observed by
LEED at higher temperatures where a model with hexag-
onal domains of 2 X2 cells and walls of ¢ (4 x2) cells was
proposed. !’

VI. SUMMARY

In summary, with surface x-ray diffraction we have
confirmed the simple adatom model recently proposed for
Ge(111)-c (2 8) and shown that the long-range order of
the ¢ (2 X 8) structure is disturbed by extra rows of 2 X2
unit cells.
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