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Charge- and spin-density fluctuation spectra, as they appear in electron scattering and optical ex-

periments, have been calculated for accumulation layers at n-type GaAs interfaces. Starting with a
self-consistent ground state, we employ the random-phase approximation to evaluate the nonlocal

susceptibility of the anisotropic electron system. Temperature effects and excitations to the contin-
uum of states are also included in the theory. Profiles of the complex induced potential inside the
quasi-two-dimensional (2D) electron gas reveal the internal structure of the collective modes. We
find substantial deviations of the 2D plasmon dispersion from strictly two-dimensional theories.
Both nonlocality and coupling between the subbands play a role. Also the dispersion of the inter-

subband resonance has been calculated over a wide range of wave vectors
q~~

and for various elec-
tron densities. The well-known depolarization shift at small

q~~
is strongly influenced by the spectral

proximity of the continuum of states.

I. INTRODUCTION

Much interest recently has been devoted to the dynam-
ics of quasifree electrons in semiconductor interface lay-
ers, both experimentally and theoretically. Especially the
plasmons, the collective eigenmodes of the system, clearly
reflect efFects of dimensionality and nonlocality. They
hence are key features in many investigations.

There are two distinct types of model systems: de-
pletion layers, where the electron concentration only
slowly reaches its bulk value, and accumulation layers, in
which the carrier concentration considerably exceeds
that deeper inside the crystal. The case of a carrier de-
pletion is that most commonly found on free semiconduc-
tor surfaces, where electrons localized in surface states
(dangling bonds, defects, etc.) repel their counterparts in
the conduction band of the crystal. The dynamics of
such depletion layers thus can be probed by means of
high resolution inelastic electron scattering (HRELS) as
has been proved by the pioneering experiments of Luth
and his co-workers. '

The opposite case of accumulation layers so far has
been studied almost exclusively by optical means, mainly
Raman scattering or infrared absorption. ' The reason
is their larger experimental probing depth, and such lay-
ers easily can be formed by applying an external electric
potential in metal-oxide-semiconductor-like structures or
in heterostructures, where the band offset between two
materials (e.g. , GaAs-AlAs) naturally requires the build-
up of accumulation layers

These kinds of inhomogeneous electron gases have one
property in common: There is a long-range correlation
between electronic excitations at different points of the
structure, on the same length scale as the band bending
itself. The dynamic response becomes strongly nonlocal.

In a previous publication we presented a theoretical
description of the dynamics in such systems. The numer-

ical part of that work concentrated on surface plasmons
on GaAs at room temperature, the parameter regime cor-
responding to most existing HRELS data. In this paper
we now want to focus on accumulation layers at lower
temperatures. With temperatures decreasing from 300 K
to a few kelvin there should be a continuous transition
from an inhomogeneous, but semi-infinite electron gas to
a quasi-two-dimensional system, due to the freeze out of
free carriers in the bulk. The initial interface plasmon
will develop to a truly quasi-two-dimensional mode, with
its amplitude localized just as the electrons in the two-
dimensional subbands are. Also the Landau damping is
expected to change drastically.

In the field of two-dimensional electron gases there has
been a lot of theoretical work on systems, where only one
or a small number of subbands play a role. These
theoretical models are applicable at most to inversion lay-
ers, where the occupied subbands are far below the
conduction-band edge of the bulk. For accumulation lay-
ers, however, there is a continuum of states energetically
close to the subbands, and this will be shown to be of con-
siderable importance. Its influence is most apparent in
the well-known depolarization shift of the intersubband
resonances.

The emphasis of this paper will be on wave-vector
transfers beyond the better known long-wavelength limit.
In this regime the nonlocal coupling mechanisms between
different excitation modes should become important.
The present formulation allows us to take into account
intersubband transitions and two-dimensional plasmons
on the same footing, based on a self-consistent ground
state. We then calculate both spin-density and charge-
density fluctuation spectra, with full information on oscil-
lator strength and line shapes. Additionally, dynamic po-
tential profiles reveal some new insight in excitations of
two-dimensional systems.

The outline of this paper is as follows: In Sec. II we re-
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view the theoretical approach and summarize the
relevant quantities. The numerical results for a wide
range of accumulation electron densities and wave-vector
transfers then will be discussed in Sec. III, and we sum-
marize our conclusions in Sec. IV.

in the dipole scattering regime of electron energy-loss
spectroscopy' (HRELS) and in electronic Raman
scattering with parallel polarization. ' It also dominates
the absorption in infrared spectroscopy. ' '

In HRELS the differential scattering efficiency may be
written as '

II. THEORETICAL MODEL
dS(co)
d %co

2 2
2

1dqg q, Pq, (2.2}

=2[1+N(co)] ImX(qi co,z,z'), (2.1)

where ( }denotes the statistical average of the ensemble
at temperature T,

N(co) = [exp(fico/kit T ) 1]—
the Bose-Einstein function, and the susceptibility 7 is the
Fourier transform of the retarded Green's function of the
density operator. We will calculate X(q), zco, z') within
the random-phase approximation (RPA). Local-field
corrections could of course be included in this self-
consistent-field scheme employing the local-density ap-
proximation of the density-functional approach, but for
strongly inhomogeneous systems its reliability is still un-
clear. This remains true even when temperature' '" and
frequency dependence' are taken into account. Also
local-field effects can be estimated to yield only a modest
correction, in the 5% range for GaAs, ' ' and calculat-
ing the response within the RPA allows us to compare
certain features directly with simpler theories.

Corresponding to the RPA for the susceptibility, the
ground-state envelope wave functions that enter the
theory are calculated from a self-consistent Hartree po-
tential. A major ingredient of our scheme is the use of a
parametrization' that yields analytic expressions for all
wave functions and one-particle Green's functions needed
in the theory. Details of the formalism and also on the
numerical procedures can be found in previous publica-
tions. ' '

The charge-density fluctuations 5p are directly probed

As in our previous publication we will present the re-
sults by calculating a microscopic structure factor which
directly determines experimental spectra. The basic con-
cept and definitions needed in this work will be given
briefly.

We apply a semi-infinite geometry with the interface at
z =0 and the electron gas of interest in the upper half-
space (z &0}. The crystal is assumed to be sufficiently
thick so that bulk behavior is realized for large z. For
heterostructures this requires the total layer thickness to
be larger than the extent of the accumulation and that of
the dynamic potential associated with any of its excita-
tions considered. Further, the model system is transla-
tionary invariant parallel to the interface plane, and
hence all quantities are characterized by their (parallel)
wave vector qll.

We are now interested in the collective excitations of
the quasi-free electrons. They are part of the spectrum of
the charge-density fluctuations 5p(q i p, t ), given by

dt

where ez is the background dielectric constant of the
medium the quasifree electrons are embedded in, and e„
is the one on the other side of the interface (z &0), e.g.,
vacuum or GaA1As.

It is worth mentioning that a similar weighting of the
bilocal fluctuation spectrum occurs in the Raman cross
section for primary photon energies above the absorption
edge, and also for the main contribution to infrared ab-
sorption. Thus we chose the structure factor P to be
the key quantity in our numerical analysis.

Only in the long-wavelength limit qll~0 and under
certain additional assumptions P(q~~, co) can be shown to
reduce to the well-known "surface" loss function of mac-
roscopic dielectric theory,

lim P(qi, co) = [1+N(co)]Im
2qll —1

qll
~0 7T ~r+&~

(2.4)

with er =eti —cop/co and co~ =4irn( ao )e /m, the plasma
frequency in the bulk. This limit does not remain valid
for strong accumulation layers at sufficiently low ternper-
atures, where subband binding energies exceed fico',

(Note that cot, of course is zero for a truly quasi-to-
dimensional electron gas. ) Exactly such accumulation
layers are of interest in the present work and even for
small qll employing the fully microscopic and nonlocal
susceptibility is essential.

III. RESULTS AND DISCUSSION

All numerical results of this work refer to n-type galli-
um arsenide, which not only is one of the experimentally
best studied semiconductors, but also shows only small
effects of nonparabolicity of the conduction band. In our
model calculations we therefore employed the parabolic
approximation. Then the only crystal parameters that
enter the theory are the effective mass m=0.069m, and

where the kinematic factor g ( q ~~,
co ) is the Fourier trans-

form of the Coulomb potential 1/
l
vt

~

of the scattered
electron with velocity v. The boundaries of the integra-
tion over qll are determined by the acceptance angle of
the analyzer. P(ql, co) is the "structure factor" of the sys-
tem. Employing Eq. (2.1) it can be written as

8e
P(ql, co) =

I e~+~a

dz dz'ef qll
z+z')

0 0

X [1+N(co)]ImX(ql, co,z, z'),
(2.3)
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the background dielectric constant Eg =E = 10.9. For
the adjacent medium we chose —if not otherwise
stated —e~ =1 of the vacuum. The contribution fiom
the optical phonons of GaAs and their coupling to the
electronic excitations are omitted for clarity. At this
stage our interest lies in the microscopic response of the
unperturbed electron system. We have demonstrated in a
previous publication, however, how to fully incorporate
the longwavelength optical phonons into the theory.

Fgrther, in the numerical work the doping concentra-
tion is taken to be 1.3&&10' cm, independent of tem-
perature. This corresponds to a bulk carrier concentra-
tion of 1.0X10' cm at T=300 K and 1.6)&10' at 5
I(. We then can study temperature effects similar to
those that would appear in an experiment. This is
demonstrated in Fig. 1, where we plot P(ni) (solid line)
for constant accumulation charge and constant wave vec-
tor q~~, but varying temperature.

q~~
——0.005 A '=5X10

cm —' is a value typical for electron energy-loss spectros-
copy, but slightly larger than values attainable in Raman
or ir spectroscopy. With decreasing temperature the
main feature of the spectrum sharpens considerably and
moves to lower frequencies. At the same time a clearly
resolvable second peak emerges at its high-frequency
shoulder. It is due to collective intersubband transitions,
often labeled as intersubband plasmon. They will be dis-
cussed in more detail below.

At T= 300 K the system is constituted by a half-bound
electron gas, with an inhomogeneity due to the accumula-
tion close to the interface. Hence at small

q~~
the spectral

feature may be labeled as interface plasmon, only with its
intensity and frequency enlarged by the accumulation
charge. Also the plasmon is broadened by the strong
Landau damping. This kind of excitation has been exten-
sively studied in our earlier work. With decreasing tem-
perature the Landau damping reduces and the quasifree
carriers in the bulk are freezed out. There is a continu-

ous transition to a quasi-two-dimensional (2D) plasmon
in the accumulation layer.

The dotted curves in Fig. 1 are the corresponding
spin-density fluctuation spectra as they can be observed
experimentally in Raman scattering with crossed polar-
ization. ' In the spirit of the RPA they here age calculat-
ed by setting the Coulomb potential between charge-
density fluctuations identical to zero. The susceptibility

X(q~~, co,z, z') is replaced by the pure irreducible electron-
hole propagator Xo(q~~, ro, z,z'). The curves thus reveal
the excitation spectra of single electron-hole pairs (sp).

At 300 K there is a broad continuum characteristic of
an almost classical Boltzmann gas, which with decreasing
temperature changes to the spectrum of degenerate two-
dimensional system. The sharp cutoff occurs at

triro=tri (2kF, q((+q )(
)/2m,

when kF, is the Fermi wave vector of the electrons in the
lowest subband. At even higher frequencies there are the
intersubband transitions. Compared to their broad sp
spectrum, that of the (screened) charge-density fluctua-
tions between the subbands is much sharper. This spec-
tral sharpness of course is a characteristic of any well-
defined collective mode.

Differences between charge- and spin-density spectra,
as they are shown in Fig. 1, had been observed in many
Raman experiments. It should also be mentioned, how-
ever, that even the line shape and intensity of the inter-
subband resonance relative to the 2D plasmon is very
similar to those found in grating induced infrared absorp-
tion. This supports the fact that in ir spectroscopy the
longitudinal susceptibility 7 is dominating. Also the ex-
perimental weightening of the nonlocal response function
in the structure factor P [Eq. (2.3)] is an appropriate
description for ir absorption at least in the grating
coupler geometry.

In Fig. 2 the temperature dependence of some of the
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FIG. 1. For three different temperatures we plot the structure factor P(co) [Eq. (2.3)] in units of 2me /A' for charge-density fluc-

tuations ( ) and spin-density fluctuations ( ~ . . ). We consider GaAs with the doping concentration nD ——1.3)&10"cm ' and
the accumulation density and wave vector indicated. The solid curves show the plasmon (main feature) and at higher frequencies the
less intense intersubband resonance.
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FIG. 2. Temperature dependence of some characteristic en-

ergies in GaAs accumulation layers. The doping again is
1.3)& 10"cm '. We show collective modes ( ) as obtained
from the maxima of P(~), —EF, and the subband binding ener-

gies (relative to the bulk conduction-band edge) for the accumu-
lation N& indicated.

relevant energies is summarized for the accumulation
charge Ns indicated: those of the (interface) plasmon and
the collective intersubband transition (fico, z), the binding
energies E„Ez,and E3 of the subbands and the distance
of the Fermi energy from the bulk conduction-band edge
(E=0). For T &200 K the accumulation layer becomes
so narrow that only two subbands survive, and at even
lower temperature E, , Ez, and %co,z follow the slope of
EF. The plasmon characterized by its density fluctuation
parallel to the interface instead monotonically moves to
lower frequencies, indicating the continuous transition to
the 2D plasmon. For T 25 K the electron density in
the accumulation layer exceeds that in the bulk by more
than 2 orders of magnitude gnd standard criteria for two
dimensionality are fulfilled. In what follows we therefore
restrict our numerical calculations to that temperature.

In Fig. 3 again the structure factor P(co) is plotted,
showing the charge-density fluctuation spectra (solid line)
and those of the spin density (dotted line), now for two
accumulation densities Nz and three wave vectors q~~.

The frequency of the 2D plasmon increases both with Nz
and q~~, as expected. However, different from the inter-
face plasmon at 300 K, it does not show increasing Lan-
dau damping. In contrast it even gains intensity at larger

qt~ as can be understood from an analysis of the f sum
rule: ' For localized (2D) systems the effective number
of electrons decreases less than proportional to 1/q~~, and

XX(q~~, co,z', z")

XPii"'(q
~~,

co,z"), (3.1)

with P~"'=P'"'/e~ the screened external potential and v

the Coulomb potential. The external potential is chosen
Coulomb-like, so that its Fogrier coefficient is exponen-
tially decaying inside the layer: $'"'-exp( —

q~~z ). This is
shown in the inset of Fig. 5 together with the static densi-
ty profile of the system and its contribution from the

for a dispersion less than proportional to
q~~

the intensity
should increase. The length scale of the screening
Coulomb interaction better fits the extent of the accumu-
lation layer at larger q~~, and hence the buildup of the col-
lective mode is more efficie.

The absence of noticeable Landau damping can be un-
derstood by direct comparison with the pair excitation
spectra. Even for

q~~
——0.01 A ' the intrasubband sp exci-

tations still lie energetically below the plasmon and there-
fore do not constitute a "decay channel. "

This is different for the collective intersubband reso-
nance. It not only shows strong dispersion, but also
strong damping. The energetic overlap with the intersub-
band sp spectrum increases with q~~, and for

q~~
——0.01

0
A the collective mode can be seen only as a broad
shoulder of the 2D plasmon. Again, such large wave-
vector transfers are not directly achievable in optical
spectroscopy. Similar systematic broadening has only
been observed with increasing impurity scattering in res-
onant Raman spectroscopy.

In the spin-density fluctuation spectra there are consid-
erable differences for the two accumulation densities.
For Nz ——1.4)&10' cm there is additional structure in
both the low-energy intrasubband excitations and in the
intersubband features. In the intrasubband spectrum
there now are two peaks corresponding to the cutoffs of
the independent electron gases in the two subbands. For
this large accumulation also the second subband is
sufficiently populated. Its Fermi wave vector kF&
amounts to almost one-third of that of the lowest sub-
band.

Also the intersubband excitations now show two maxi-
ma. They correspond to excitations where the wave vec-
tor of the final electron state is parallel or antiparallel to
q~~, respectively. The spectrum splits due to the popula-
tion of the upper subband. As is illustrated in Fig. 4, in
one dimension there would be an excitation gap which in
two dimensions survives in the density of states. The
maxima should occur at E,z+R (kF, +kzz)qi /2m. In the
complete spectra, however, they appear at slightly larger
frequencies. This is due to the superimposed transitions
into the continuum of states above the mobility edge.
Double structures which clearly reveal information on
the population of the upper subband have not yet been
reported from experiments.

In the following two figures we show spatial profiles of
the induced electric potentials P',

&
(z) at various excita-

tion frequencies. P,'", is the potential generated by the
charge fluctuations of the electron system, given by

P, ) (q((, co,z ) = —f dz' f dz "v(qi, co,z,z')
0 0
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FIG. 3. The sPectral function P(~) as in Fig. 1, but now for constant low temperature and different accumulation densities X and
wave vectors q~~. Again we plot charge-density ( ) and spin-density-fluctuation spectra ( ). The main peak in solid curves
( ) is due to the 2D plasmon, and the less intense feature at higher frequencies reflects the intersubband resonance.
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FIG. 4. Pair excitation spectrum for intersubband transitions
in an one-dimensional electron gas (k~ =0). E» is the dim'erence

of the subband binding energies and kFl and kF2 are their Fermi
wave vectors. We also show the corresponding intrasubband
excitations with E»=0, kF& ——kF2 (cross hatched) ~ Within the
figure energies are given in units of A /2m.

second subband. For
q~~

——0.005 A we have p'"~-(l
—

q~~z) inside the accumulation layer, and the external
electric field almost constant. It is a long-wavelength ex-
citation on this length scale.

In the main part of Fig. 5 we then plot the absolute
value of P',

&
(z)/Ps"'(z), which can be interpreted as

effective quasilocal response (Er —es ' )ps"' of
the electron system, eT =as/(l —vX) being the total non-
local dielectric function in the RPA.

At the plasmon resonance (Rco2D ——29 meV) of course
also the corresponding potential becomes very large, and
we thus show profiles only well below and above this fre-
quency. For any frequency below the intersubband reso-
nance fico, 2

——53 meV the response has its maximum deep
inside the crystal, considerably deeper than the static (see
inset) and also induced densities. The shape of the profile
then changes drastically at this intersubband resonance
frequency, with the induced potential now being largest
close to the interface.

Deep inside the crystal the absolute value of the in-
duced potential shows oscillations, whose period de-
creases with increasing frequency. Qualitatively they are
independent of

q~~
and unchanged also in the absence of
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2 2n.e (2+a,n'1I
~~

)

~2D = &s(e~~ )
m jef + effq

(3.2)

with e,ff——ez, and a,ff then is the effective Bohr radius.
Equation (3.2) reduces to the better known result by
Stern for small q~~.

There are considerable differences between the frequen-
cies according to Eq. (3.2) and those found here in the full
spectra. First e,ff is strongly dependent on

q~~
due to the

finite extent of the accumulation and image charge
effects, ' ' and second the formula [Eq. (3.2)] neglects
any intersubband transitions and their coupling to the
plasmon.

For small
q~~

the deviations are mainly due to our
choice E tr=e's in Eq. (3.2). Asymptotically it should be
e s(g~~ 0)=(ez +as )/2, and 1}leo should lie above the
dashed line by almost a factor of &2. For finite q~~, how-
ever, the values agree much better, thus reflecting the lo-

We now focus on the dispersion of the collective modes
as they are found from the maxima in the charge-
density-fluctuation spectra. In Fig. 7 the frequencies of
the intrasubband and intersubband plasmons are plotted
as a function of the parallel wave vector

q~~
and for three

accumulation densities. The dotted lines indicate the
upper edges of the sp spectra at T=O K. That of in-
trasubband excitations is shown for Nz ——9.4)& 10" cm
only. The dashed lines are the dispersion curves of the
2D plasmon given by the approximate RPA formula by
Chaplik, 29

~ ~12(q~~ O) E12( 1+2~12)

with the relative depolarization shift

le( tj Ng Vjtj~/Ejg

(3.3a)

(3.3b)

calization of the plasmon inside the accumulation layer.
The dielectric constant e~ is dominating.

0
For

q~~
~0.006 A ' the maxima of the structure factor

lie even below the dashed curves, and this deviation has
to be ascribed to the repelling coupling to the intersub-
band resonance. When the calculation is repeated for
e„=e(AIAs) = 8.16, image charge effects are much small-
er and the bare repulsion proves to be even larger than
directly seen in the figure.

For the largest wave vectors considered here the
plasmon just merges into the sp spectrum and only here
strong Landau damping becomes possible. The line
shape becomes very asymmetric similar to the interface
plasmon of the half-bound electron gas. On the contrary
the intersubband plasmon is damped already for

q~~
as

small as 0.005 A ', where the dispersion curves intersect
the upper edge of the sp spectra. For very large

q~~
the

mode looses its collective character.
For

q~~
~0 the intersubband plasmon shows a quadra-

tic dispersion and the well-known depolarization shift.
Its energy Ace&2 lies considerably above the subband spac-
ing E&2, which is the onset of the dotted curves in Fig. 7.
Ignoring so called nondiagonal coupling' and transitions
to other than the second subband the resonance frequen-
cy should be given by'

80—
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0.94
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FIG. 7. For three accumulation densities we plot dispersion
curves of the intrasubband and intersubband plasmons as ob-
tained from the maxima of P(qj~~co), and co» according to Eq.
(3.2) ( ———). The dotted lines show the upper edges of the
corresponding pair excitation spectra (see text).

Nz'J' is the difference of the electron densities in the two
subbands i and j, and U again is the Coulomb potential.
The matrix elements V,2&2 when calculated explicitly for

q~~
——0 can be interpreted as dipole length of the intersub-

band transition.
For comparison with the full model employed in this

work some of the parameters are listed in Table I. From
its last two lines we see that Eq. (3.3a) gives a depolariza-
tion shift almost twice as large as that found from the full
density-fluctuation spectrum (fi@,2). For a more detailed
understanding we hence also calculated V„„and 6„,
the parameters as given by Eq. (3.3), but with j—=c now
being the continuum of conduction-band states with
E &0, instead of the second discrete subband. The quan-
tities thus are integrated values. V„„gets its biggest
contribution from a state with F. = + 7.5 meV (for
Xs ——9.4X10" cm ), but the effective conduction-band
energy as it can be extracted from the ratio V„„/5&, lies
considerably higher.

It should be mentioned that we are able to calculate
the matrix elements to the continuum quite efficiently,
since with the ground-state parametrization employed
(see Sec. II) we have all envelope functions f at hand
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Ns (10' cm ) 0.94 1.17 1.40

TABLE I. For three accumulation densities we list its contri-
butions Ns' from the lowest subband, its binding energy and

distance to the second subband, the Coulomb matrix elements V

and relative depolarization shifts 5 (see text), and the model res-
onance frequency co» according to Eq. (3.3). For comparison
we also show the frequency co&2 derived from the maxima of the
full function P(co).
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FIG. 8. Energies of the parallel plasmon and the intersub-
band resonance as a function of accumulation density. We also
plot co» from Eq. (3.2) ( ———) and the subband binding ener-
gies ( ———)
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analytically. Also exactly the same functions are used in
the calculation of the full X.

A„and also b z, are not quantities of the simple two-
band model employed in Eq. (3.3), but they should yield
some qualitative estimate of the relevance of the continu-
um. V„„ is much larger than V, 2&2, both decreasing
with increasing energetic distance of the electronic states,
but the 5's remain balanced and comparable in size. It
hence may be concluded, that in accumulation layers,
where the second subband is not too far from the mobili-
ty edge, there does not exist a distinct mode for collective
transitions between the two subbands only. Instead all
transitions from the lowest subband are coupled and
screen each other. They together determine the depolari-
zation shift. There also is only one intersubband reso-
nance in the charge-density spectrum, since even for
q~~~0 the spectrum of transitions to the continuum is
broad. Allen et al. performed a model calculation with
a third relaxationlike broadened subband. They also
found only one resonance with a lowered depolarization
shift.

Finally in Fig. 8 we plot the frequencies of intersub-
band resonance and 2D plasmon as a function of accumu-
lation density N&. Also shown is co2D according to Eq.
(3.2) and the subband binding energies.

For Nz ~ 3)&10"crn the plasmon frequencies as de-
rived from the structure factor P(co) follow that of the
simple 2D theory quite well. The degree of agreement of
the absolute values varies strongly with q( (see Fig. 7},
but the QNs dependence is remarkable. It indicates,
that the 2D plasmon is a collective charge-density oscilla-
tion in all occupied states. This remains true even for
large Nz, where a considerable contribution comes from
the second subband. In that sense the nomenclature
commonly applied, namely that of an intrasubband

plasrnon, is slightly misleading. The strong coupling be-
tween the subbands again leads to the buildup of a single
mode.

The deviation from Eq. (3.2} at small densities Ns is
due to the finite bulk density at 25 K and its correspond-
ing quasiaccumulation. ' The plasmon there can be de-
scribed as an interface mode which, however, vanishes
for large Nz. At fixed wave vector

q~~
——5)&10 crn ' the

frequencies of the 2D plasmon and the collective inter-
subband mode come close for N& &5&10" cm . The
resulting coupling, however, is not very apparent. It
cannot be studied in detail from an analysis of P(co) be-
cause of the comparatively small oscillator strength of
the intersubband mode.

Finally, the parallel slope of the intersubband reso-
nance co&2 and the binding energy E, of the lowest sub-
band should be commented on. Opposed to Eq. (3.3) co&2

is not proportional to
~
E, E,

~

(compar—e also Fig. 2).
At finite q~ the strong coupling into the continuum leads
to a resonance between —E, and an effective upper state,
which does not depend on Nz or E2. For

q~~
~0, howev-

er, the second subband dominates and %co&2 is clearly
smaller than the binding energy E, (Table I). The reso-
nance hence ought to be labeled intersubband.

IV. CONCLUSION

For accumulation layers and wave vectors beyond the
better known long-wavelength limit we have calculated
charge-density and spin-density fluctuation spectra as
they appear in scattering and absorption experiments. A
detailed analysis of line shapes, eigenfrequencies, and
dynamical potential profiles within the layer reveals some
new insight into nonlocal coupling rnechanisrns.

With decreasing temperature there is a continuous
transition from an interface plasrnon of the half-bound
electron gas to a quasi-two-dimensional plasmon. At
sufficiently low temperature we then studied effects of
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nonlocality on the dispersion of both the plasmon and the
collective mode of intersubband transitions. The well-

known depolarization shift of this intersubband reso-
nance at small

q~~
is shown to be strongly influenced by

the spectral proximity of the continuum of states. The
shift is only half of the value predicted by simple two-
band models. At large wave-vector transfers the coupling
between the two collective modes increases considerably.

So far there is no detailed experimental study of the dy-
namics of accumulation layers in the parameter regime,
where 1/q1 reaches the thickness of the inhomogeneity.

We thus want to encourage high resolution inelastic elec-
tron scattering experiments (HRELS) on such quasi-two-

dimensional systems. In addition to ZnO, another suit-

able candidate for accumulations at the free surfaces re-

quired in HRELS might be indium arsenide.
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