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Hyperfine interactions in cluster models of the Pb defect center
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Hyperfine interactions in the Pb center (denoted schematically as Si3—Si ) at the Si(111)/Si02 in-

terface have been studied with use of spin-polarized self-consistent multiple-scattering Xa calcula-
tions on Si»H»/Si60&8H6 and Si»H» cluster models. Our theoretical hyperfine tensor agrees very
well with experiment when the trivalent atom Si' is relaxed by a value typical of geometries found
for the neutral paramagnetic charge state in semiempirical and ab initio cluster calculations. Spin-
polarization effects are found to be very important for a detailed description of the Pb defect, partic-
ularly with respect to the hyperfine couplings at nuclei close to the defect atom. The largest such
superhyperfine interaction is produced not by the nearest-neighbor atoms as has commonly been as-

sumed, but by three second-nearest neighbors located below Si' in the bulk c-Si. The isotropic and
anisotropic superhyperfine components and the direction of the principal axes predicted by the
present calculations have been confirmed by recent ESR experiments.

I. INTRODUCTION

The performance of metal-oxide-semiconductor (MOS}
devices is degraded by electrically active defects pro-
duced in processing or by exposure to ionizing radiation
or high-electric-field stress. ' Among the most impor-
tant and most thoroughly studied of these is the Pb center
(denoted schematically as Si3

—=Si ), a trivalent-silicon
defect located at the Si/Si02 interface. The Pb center is
amphoteric, with three accessible oxidation levels: the
neutral paramagnetic state, and two charged diamagnetic
states obtained by trapping an electron or a hole at the
unsatisfied Si bond. I'b has recently been shown to be re-
sponsible for most of the fast surface states (N„) at the
semiconductor-oxide interface.

Si/Si02 interface traps such as the Pb center and relat-
ed dangling-bond defects (e.g. , the E', center, 03=Si )

have been studied intensively by a wide range of experi-
mental techniques including C- V measurements, ' '

avalanche injection of electrons or holes, ' deep-level
transient spectroscopy (DLTS}, ' spin-dependent
thermal emission, photoconductive resonance, " and
photothermal deAection. ' ' The most diagnostically
useful information about the nature and structure of
these defects has come from the g tensors and hyperfine
interactions measured by ESR experiments. '

Dangling-bond defects typically occupy one-electron
states situated deep in the band gap between the highest-
energy bonding levels (top of the valence band} and the
lowest-energy antibonding levels (bottom of the conduc-
tion band). They are consequently well localized in
space; the defect wave function resembles a small-
molecule orbital embedded in and interacting with an ex-
tended host matrix. The g tensors and hyperfine tensors
of such defects are sensitive probes of the bonding and
spin-density distribution in the neighborhood of the un-
paired electron. The specific, detailed information they
provide about the local environment of paramagnetic
centers is essential in characterizing defect structure, in-

eluding the degree of localization, orientations with
respect to host crystal axes, and identification of near-
neighbor atoms, bond relaxations, and reconstructions.

Although sophisticated modern magnetic resonance
techniques are being applied to Si/Si02 defects, most
theoretical analyses of the experimental results have been
conducted at a very simplified level. The most widely ap-
plied interpretative tool is the localized hybrid-orbital
picture. ' ' The assumptions and approximations of
this picture are effectively identical to those of ligand-
field theory (LFT), with the dangling hybrid assum-
ing the role played by nonbonding metal d orbitals in
LFT. This picture has been very successful for character-
izing the gross features of defects, e.g. , for associating the
principal axes of g tensors and hyperfine tensors with lo-
cal coordinate axes and identifying large changes in local
bond angles (rehybridizations) at the defect atom. But
for quantitative work, particularly when weak
superhyper- fine interactions are involved, there are a
number of reasons why more sophisticated approaches
should be used.

First, the local-hybrid model ignores spin-polarization
effects by assuming that the net spin density in the system
is identical to the charge density of the singly occupied
defect orbital. Spin polarization can be very important:
for example, it is entirely responsible for the existence of
nonzero isotropic proton hyperfine coupling constants in
organic n. radicals, which can be as large as -20 G.
Intra-atomic spin polarizations can be as significant as in-
teratomic effects. The polarization of atomic cores by
spin density in the valence levels plays a major role in
determining the net hyperfine interaction at nuclei of the
heavier atoms. An equally serious approximation is that
the shapes of the atomic s and p-valence orb-itals [as mea-
sured by their values of

~ g, (0)
~

and (r )~] are con-
sidered to be unperturbed by the host environment so
that values taken directly from atomic Hartree-Fock
wave functions can be used. In fact, both quantities can
be significantly perturbed by valence interactions. As
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commonly used, the local-hybrid model also neglects the
possibility of contributions to the anisotropic hyperfine
tensor involving d-orbital populations on silicon or spin
density located on neighboring atoms. At its best, the lo-
calized hybrid —AO picture (where AO is atomic orbital)
is interpretative rather than predictive. When there is
more than one likely source of a given interaction, the
model is unable to distinguish among the possibilities on
the basis of first principles. It is also subject to the usual
uncertainties of least-squares fitting, so that it becomes a
less useful tool as spectra become more complicated or
broadened, and in cases where weak splittings and shoul-
ders due to superhyperfine interactions with more distant
nuclei are important.

More sophisticated, predictive theoretical approaches
to dangling-bond defects have proceeded along several
routes. In the solid-state community, localized defects
have been treated by Green's functions using the tight-
binding model or density functionals; ' the defect is
embedded in a Bethe lattice ' or supercell ' host.
Fowler et al. have carried out studies of cluster
models for defect centers using the classic self-consistent
semiempirical methods of quantum chemistry [e.g. ,
MINDO/3 (Bingham-Dewar-Lo modified intermediate
neglect of differential overlap method), MOPN (the
open-shell version of MINDO/3), and MNDO
(Dewar-Thiel modified neglect of diatomic overlap
method) ]. A limited number of ab initio cluster studies
have also been done. ' This work has concentrated
heavily on questions such as reconstructions of bonds in
the vicinity of the defect atom, but has given little atten-
tion to the ESR data themselves. In a system containing
atoms no heavier than Si it is possible in principle to cal-
culate the hyperfine tensors directly from the ground-
state wave function. But in practice, none of the methods
above is well suited to such calculations. Green's func-
tion and other solid-state methods typically ignore all
spin-polarization effects. MOPN does account for spin
polarization within the valence shells. However, the ma-
trix elements required for calculating hyperfine interac-
tions are not determined in the parametrization of the
method; and because the atomic basis set is not explicit,
the necessary integrals cannot be calculated directly.
This makes it necessary to introduce additional parame-
ters or to appeal to isolated-atom integrals in order to
correlate theoretical spin populations with experimental
hyperfine couplings. Ab initio methods can certainly be
used to compute hyperfine tensors, but it is expensive and
time consuming to compute large Si clusters in spin-
unrestricted ab initio formalisms so that one is forced to
use small atomic bases or effective core potentials which
severely restrict the ability of the wave function to
respond to spin-polarization effects.

In this paper we report and discuss hyperfine tensor re-
sults from a set of self-consistent, spin-polarized
multiple-scattering (MS) Xa calculations on finite-cluster
models representing the Pb defect at the Si(111)/SiOz in-
terface. The MS Slater-Johnson Xa method ' is par-
ticularly appropriate for such a study. It is very rapid
computationally, so that large model clusters can be ex-
amined: there have been a number of previous applica-

tions of the MS Xa method to large Si-rich systems.
The spatial form of each MS Xa radial function is found
by explicit numerical integration of the one-electron
Schrodinger equation in the self-consistent potential of its
atomic sphere. The flexibility of these functions allows
the atomic basis to respond sensitively to radial polariza-
tion effects, which often make a comparatively small con-
tribution to the total energy but have a large effect on the
hyperfine couplings. Unlike Hartree-Pock methods,
density-functional methods such as MS Xa satisfy Fermi
statistics for fractional as well as integral occupation
numbers. ' This gives a smooth, consistent relationship
between spin-restricted (closed-shell) and spin-polarized
(open-shell) formalisms, leading to generally good accura-
cy in the values of properties depending on the spin den-
sity [e.g. , as in recent discrete-variational-method (DVM)
Xa calculations for the isotropic proton hyperfine cou-
pling constants in organic ir radicals]. ' This consistency
is particularly important in studying the Pb center, where
both diamagnetic and paramagnetic charge states are of
interest.

Procedures have been developed for calculating molec-
ular properties directly from the partitioned-charge rep-
resentation of the MS Xa wave function. ' Studies
of a range of molecular properties have shown that these
procedures give results of roughly double-zeta ab initio
quality, ' ' the most accurately calculated matrix ele-
ments are typically those which, like the integrals in-
volved in hyperfine interactions, weight most heavily re-
gions of space close to the nuclei where the MS Xa
muffin-tin potential approximation is least severe. In
transition metals and other very heavy atoms the impor-
tance of spin-orbit interactions and the sensitivity of
inner-core polarizations can cause problems in the calcu-
lation of accurate hyperfine couplings, but no such
difficulties are anticipated for atoms of the second row.

In the present paper we concentrate primarily on the
analysis of hyperfine interactions in our largest Pb center
cluster models. A preliminary account of some of these
results has been given earlier. Aspects of these calcula-
tions apart from the hyperfine interactions, including
one-electron levels and interface states, the role of Si d or-
bitals, and the effects of cluster size, will be discussed in a
subsequent publication. In addition to the model clusters
considered explicitly in this paper, a number of smaller
silicon and silica clusters have been studied in order to in-
vestigate the effects of cluster size and angular basis, and
to verify that the results are not sensitive to the particular
values of the sphere radii and a values which define the
MS Xa model.

In Sec. II we describe and discuss our cluster models
for the Pb center. The hyperfine calculations are present-
ed and analyzed in Sec. III. Section IV summarizes the
principal conclusions.

II. MODEL CLUSTERS

The largest cluster model that we have considered for
the Pb center is shown in Fig. 1. This Si22H2]/Si60]8H6
cluster contains 73 atoms and 563 electrons, and mea-
sures 14 A across. It has C3, symmetry about the z axis;
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FIG. 1. Ball-and-stick model of the Siz2H2l/Si60&sH6 P& de-
fect cluster. The sphere radii are in the same ratios as the MS
Xa radii but are greatly reduced in size for clarity. Only one
atom from each symmetry-equivalent set is labeled explicitly.

TABLE I. Geometry of the Si22H»/Si60&sH6 cluster model.

Bong length (A) Bond angle (deg)

All Si—Si
All Si—H

2.352 '
1.480

c-Si phase
All Si—Sj—Si 109.47

All Si—0
A11 0—H

1.610'
0 957"

Si02 phase
All 0—Si—0

Si„—0 —Si,
Si,—0+—Si„
Si,—0(—Si,2

Si,—0,—H,

109.4-109.5
138.6
149.3
150.9
143 5'

'Experimental c-Si value (Ref. 58).
Experimental SiH4 value (Ref. 59).

'From a-quartz (Ref. 60).
Experimental Hz0 value (Ref. 61).

'S&—0—Si from a-quartz (Ref. 60). The experimental distribu-
tion of Si—0—Si angles in crystal structures of silicates and sil-
ica polymorphs is primarily in the range 135 —160' (Ref. 62).

the (x,z) plane is one of the three cr„reflecti on planes.
The largest spheres in the figure represent Si atoms.
Spheres of intermediate size denote 0 atoms, while the
smallest spheres are H-atom saturators. Bond angles and
bond lengths in the model are given in Table I.

The crystalline-Si half of the cluster is a roughly hemi-
spherical fragment of 22 Si atoms formed from three
fused ada mantanelike cages. It includes all lower-
hemispPere neighbors of the central defect atom Si' out
to a distance of 5.43 A (fourth-nearest neighbors). The
(x,y) plane forms the (111)surface of the c-Si phase. H
atoms saturate the unsatisfie Si bonds at the exposed
surfaces of the Siz2 fragment and sweep them down out of
the HOMO-LUMO (highest occupied molecular
orbital —lowest unoccupied molecular orbital) gap into
the valence bands to prevent any unphysical mixing of

the defect orbital with dangling-bond surface states.
These H saturators are positioned along c-Si bond direc-
tions, but the Si—H bond lengths are set equal to 1.48 A,
the experimental bond distance in silane. The c-Si
atoms are distinguished by subscripts s or b, denoting
surface or bulk, 1;o indicate whether the atom is in the
surface monolayer or not, and by numerical subscripts
which increase monotonically with distance from Si'.
For example, the three Si,

&
atoms are the defect atom's

nearest neighbors in the surface monolayer: the three
Si&2's are the second neighbors in the bulk, etc.

The Sizz c-Si fragment makes a more satisfactory model
than either slightly smaller or slightly larger clusters in
that every Si atom is a member of at least one six-
membered ring, ensuring that two or more of its bonds
are to other silicons. This represents a local minimum in
the [H]/[Si] ratio as a function of fragment size. One
concern in modeling a solid-state defect by a finite cluster
is that the saturators at the cluster surface have a
different electronegativity than the bulk atoms; the per-
turbation of the electronic structure due to this electrone-
gativity difference should be reduced when the [H]/[Si]
ratio is decreased. If the radius of the c-Si fragment were
made slightly larger by replacing each H saturator in the
present cluster by Si, thep every additional silicon would
have to be added as an SiH3 group and the [H]/[Si] ratio
would be increased significantly (Si43H63). The surface of
the cluster would of course also be moved farther from
the defect atom by expanding the cluster, but only by the
length of one Si—Si bond. It is unlikely that this would
improve the model enough to offset the perturbing effect
of the increased [H]/[Si] ratio and justify the much
gregter computational expense.

The silica side of the junction is modeled by a puck-
ered, ditrigonal ring of six Si04 tetrahedra. Three 0+
atoms are puckered up above the plane of six-ring silicons
Si„, and three 0 atoms are puckered slightly down-
wards. Six OI—Si,z linking bonds form the interface, and
the silica cap is terminated by six 0,—H, groups. This
model for the silica phase has a number of attractive
features. Ditrigonal rings are common in the naturally
occurring phases of silica, particularly tridymites ' (in
P-tridymite the whole structure is of this form; see Fig.
2). Konnert, Karle, and co-workers ' have found from
radial distribution-function analyses of x-ray and neutron
diffraction experiments that the short-range order in sili-
ca glass is more closely related to that of tridymite than
of any other common SiOz phase. More recently, Our-
mazd et a/. have argued on the basis of high resolution
transmission electron microscopy that in an epitaxial
Si(100)/SiO~ interface, the silica side of the junction is
effectively a crystalline tridymite. These experimental re-
sults suggest that ditrigonal six-membered rings predom-
inate in the local structure of amorphous silica. By ad-
justing the dihedral angles (the puckering) of a ditrigonal
ring so as to flatten it slightly, the ring can be fitted neatly
onto a hexagon of Si(111) surface atoms with very little
strain. The local bonding at Si„ is kept regular and
tetrahedral, consistent with the nearly invariant geometry
of SiOz tetrahedra in silicates and silica po-
lymorphs. ' ' The spread of Si—0—Si angles is
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FIG. 2. (g) Top view of the Si6O, SH, ring in the model of Fig.
1, showing the "boxy" shape characteristic of a ditrigonal ring.
(b) Crystal structure of a hexagonal P-tridymite (coordinates
from Ref. 63). The unit cell is outlined at lower right. The view

is down the hexagonal axis, along channels formed by stacked
ditrigonal rings.

139'—151' in our model. This is a reasonable range: In
the crystal structur of a meteoritic a-tridymite with a
large Cc unit cell, for example, Dollase and Baur found
all but one of the Si—0—Si angles (96%%uo) to lie in the
range 142'-159'.

Using this ring to represent the Si02 phase, the Pb dan-

gling bond points into a silica microvoid. The radius of
the cavity is 2.2 A (measured from the Si' nucleus to the
van der Waals surface of 0 ). The surfaces of 0& and

0+ are farther away, at 2.8 and 3.0 A, respectively. This
is a sufficiently large space to allow small radical species
(e.g. , H) diffusing through the silica to be accommodated
in a bond to Si. Saturation by diffusing H atoms is be-
lieved to be responsible for the decrease in the number of
paramagnetic Pb centers observed on thermal or hydro-
gen annealing, so that a microvoid of this size or larger
should be expected in a realistic Pb structure. The pri-

0
mary access to the microvoid is through a 1.4-A-diam
opening in the center of the capping silica ring, bounded
by the van der Waals surfaces of the three 0 atoms
(Fig. 2). This opening can presumably be widened some-
what by thermal excitation of ring vibrations. The
Si60,8H6 silica cap consequently provides a degree of

protection for the Si dangling bond against saturation by
the larger radical species present in silica, but, consistent
with observation, it does permit an H radical to reach the
defect atom and coordinate to it in a thermally activated
process.

The Si22Hq)/Si60)8H6 model has been made as com-
pact as possible to minimize the effects of the MS Xa
muffin-tin potential approximations on the electronic
structure. It has also been kept at high symmetry (C3 )

to take advantage of the reduction in computational
effort due to a doubly degenerate (E) irreducible repre-
sentation. Actual Pb centers might well not all be so
compact or symmetrical. fn particular, entropic con-
siderations would oppose the presence of a closed,
symmetrical ditrigonal ring capping each defect atom.
However, experimentally the g tensor and largest
hyperfine tensor of the Pb center are found to have axial
symmetry around the ( 111) direction, consistent with a
threefold axis normal to the interface. ' ' Whatever the
degree of disorder or asymmetry about the defect, it is
sufficiently small that the concept of an average high-
symmetry Pb center is still meaningful, and the sym-
metric model that we use should give an accurate repre-
sentation of this average Pb structure.

The most important unresolved structural question
concernigg the Pb center is what value to use for the ver-
tical reconstruction Azs; of the defect atom away from
its ideal, tetrahedral e-Si position. Simple considerations
of orbital energy variation as a function of geometry
(Walsh diagrams) as well as self-consistent semietnpiri-
cal ' and ab initio ' calculations agree that; hzs;
should be negative in the ESR-active neutral charge state.
As compared to a fourfold-coordinated silicon with
tetrahedral bonding, the Si'—Si,

&
bonds are strengthened

and shortened: In local hybridization language the dou-
bly occupied Si hybrids bonding to Si„ increase their s
character at the expense of the singly occupied nonbond-
ing orbital, which becomes more p-like. The size of this
reconstruction should affect the hyperfine interactions
significantly because of the variation in s versus p charac-
ter induced at Si'.

The qualitative trend of this simple local-hybrid pic-
ture is certainly correct, but the value of Azs; is not
known accurately. Theoretically calculated values ap-
pear to be sensitive to the size of the model cluster and to
the size of basis sets. ' ' ' ' For our present purposes
we consider calculations at two geometries: the unre-

0
laxed tetrahedral geometry hzs; ——0 A, which serves as a
we11-defined benchmark, and Azs; ———0.098 77 A, a
representative reconstructed value taken from a recent
semiempirical total energy minimization by Edwards.
A11 other atoms are held fixed.

Three calculations will be discussed. Models holding
Si' at the tetrahedral position have been studied both
with and without the Si02 cap in order to measure the
effect of the silica phase on the properties of the Pb
center. When the cap is removed, the Si,2 atoms are sa-
turated by H, as for the rest of the cluster surface. One
relaxed-Si' calculation has been carried out on the un-
capped cluster.
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The MS Xa sphere radii have been taken as 2.50ao (Si),
1.50ao (0), and 1.01 ao (H). For the full cluster including
the Si60&8H6 cap, the outer sphere is centered at
z =0.5431ao with respect to Si', with radius 13.2227ao:
in the calculation without the cap, the outer sphere is
centered at —3.0334ao and has radius 12. 1043ao. The a
values used are the atomic aHF from the tabulation of
Schwarz, with the exception of H, for which the spin-
polarized value is used. a for the intersphere and outer
sphere regions are valence-electron weighted averages
over the atoms in the cluster. The basis set includes an-
gular functions up to ( =4 on the outer sphere, 1 =2 on
all Si, I =1 on 0, and I =0 on H. This constitutes a po-
larization basis on Si (Siz orbitals included) and is a
minimum angular basis on 0 and H. The MS Xa
minimum angular basis has much more flexibility than a
standard linear combination of atomic orbitals (LCAO)
minimum basis set because the radial functions are not
6xed before the calculation but are computed self-
consistently by numerical integration. Only the angular
flexibility of the atomic functions is restricted. Polariza-
tion based on 0 and H were not considered necessary
here. Our primary interest is in the characteristics of the
electronic structure of the defect, which is comparatively
localized, and this is not greatly affected by the small
amount of charge that would be accommodated in 0& or
H functions in the silica phase and at the surface of the
cluster.

III. RESULTS AND DISCUSSION

A. Defect orbital and spin populations

Our calculated values for the defect orbital atomic
populations and the net atomic spin populations are re-
ported in Table II. A number of important features of
the Pb center are evident in these results. Most of the de-
fect orbital (60%) is located on Si'. The delocalization
away from the trivalent atom is limited in extent and
highly directional. More than 93% of P& is concentrated
on Si, its three nearest neighbors Si, &, and the three Sib2
second-nearest neighbors which lie below Si„ in the bulk
c-Si. A contour plot showing the bonding structure in
the defect orbital is presented in Fig. 3. It is effectively
Si -Si„nonbonding to antibonding (the negative lobe of
the Si„3p orbital is directed just above the node of Si 3p,
pointing at the positive lobe of that orbital) and is Si„—
Sis2 bonding. Very little of g delocalizes along the (111)
surface onto the six Si,2 second-nearest neighbors or into
more distant regions of the cluster.

In the largest cluster in particular, only 2.1% of Pz is
located in the Si02 phase and most of that (1.44%) re-
sides on the three 0 atoms, due to direct overlap with
the part of the Si' hybrid orbital which projects into the
silica cavity. The net spin density likewise has small
values in the Si02 half of the cluster. This is very plausi-

TABLE II. Pb model defect orbital populations and net spin populations.

Defect orbital populations (%%uo}'

Unrelaxed Unrelaxed
Si22Hp i/Si60)8H6 Ss22H»

Relaxed
S&22H»

Net spin populations {%)
Unrelaxed Unrelaxed

Si»Hq )/S160)8H6 S&»H»
Relaxed
Si2qH»

Si'
S

d
Si, l

d
Sib

S

d
Si,2

Sib3

Si„
Srb4

0(
Si„
0+
0

60.05
3.64

56.00
0.41
6.21
0.27
3.88
2.06
4.75
0.37
3.68
0.70
0.11
0.24
0.11
0.06
0.04
0.03
0.02
0.48
0.03

61.02
3.80

56.70
0.52
6.81
0.32
4.18
2.31
4.61
0.35
3.45
0.82
0.11
0.21
0.05
0.04

61.69
3.04

58.03
0.63
6.35
0.28
3.33
2.74
4.76
0.41
3.47
0.88
0.15
0.19
0.05
0.04

73.98
6.08

67.28
0.63
5.40
0.08
2.95
2.37
4.02
0.33
3.09
0.60

—0.18
—0.64

0.11
0.01

—0.08
0.00

—0.25
0.32

—0.28

72.18
6.47

65.02
0.69
5.72
0.16
3.03
2.52
4.23
0.35
3.13
0.74

—0.33
—0.37
—0.18
—0.25

72.66
5.58

66.20
0.88
5.52
0.09
2.41
3.02
4.56
0.39
3.34
0.83

—0.43
—0.30
—0.42
—0.19

'Percentages of the Pz charge assigned to each site by the MS Xa charge-partitioning procedure. The intersphere and outer sphere
charges have both been partitioned onto the atomic centers.
Sum over all occupied levels of the majority- minus minority-spin partitioned charge populations.
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in Table II how important a role interatomic spin polar-
ization plays in the Pb center. The spin population on Si'

is significantly greater than would be expected from the

Pd charge distribution because charge in the filled valence
levels is free to polarize so as to concentrate extra
majority-spin density on Si, where it is stabilized by ex-
change interactions. In the net spin distribution the lo-
calization on Si' is increased from 62% to 73%%uo (5.6% s,
66.2% p, 0.9% d). The local-hybrid estimate is a some-
what more accurate gauge of the net spin populations
than of the defect orbital itself.

B. Hyperfine interactions

FIG. 3. Contour plot of the defect orbital in the relaxed

Si»H» model. The plot is in the xz plane and the y axis points
into the page (same orientation as Fig. 1). The dimensions are
20ao)&20ao. Si' is the nucleus at top center, while Si» lies
below Si, ~

on the left. Contours begin at 0.2 and decrease by
factors of 2. Positive and negative phases are represented by
solid and dashed lines, respectively. The contours have been
smoothed by mixing the atomic and intersphere representations
of the wave function within each atomic sphere using a sig-
moidal radial switching function.

ble behavior in view of the relative conductivities and
dielectric constants of silicon and silica: We should not
expect that an unpaired c-Si electron located at the inter-
face would delocalize much into the Si02 phase, or that it
would be able to polarize the silica significantly. The re-
sults in Table II illustrate this clearly. Because of the
very small amount of Pd amplitude and spin density in
the silica cap and the Si,2 atoms bonded to it, the pres-
ence of the cap has only a small effect on the hyperfine in-
teractions. The silica phase does significantly perturb
other aspects of the electronic structure, which will be
discussed in a future publication, and its presence
prevents the c-Si interface from reconstructing away from
a uniform (111) surface. But in the absence of recon-
structions, the spin-dependent properties are not strongly
affected. Because of this insensitivity to the cap, our
relaxed-Si' calculation has been carried out on the smaller
Si2zH27 cluster in which the cap is removed.

Our calculated values of defect orbital populations on
Si' are appreciably smaller than the values that have pre-
viously been suggested using the local-hybrid picture and
isolated-atom values of

~ $3,(0)
~

and (r )3 for sil-
icon. ' Brower estimated that 80% of the defect orbital
was localized on Si': 9.6% s and 70.4% p. In the relaxed
SizzHz7 cluster we find only 62% of g on Si', divided as
3.0% s, 58.0% p, and 0.6%%uo d. Much of the reason for
this discrepancy is that the local-hybrid picture cannot
consider polarization effects. We can see by comparing
the defect orbital populations with net spin populations

In the present study we do not use the spin populations
of Table II in conjunction with serniernpirical formulas
and assumed atomic integrals to estimate hyperfine cou-
plings. Instead we calculate the hyperfine tensors directly
from our all-electron self-consistent wave function. The
phenomenological spin Hamiltonian which expresses the
interaction of a paramagnetic system like the neutral Pb
center with an external magnetic field H can be written,

H =@AH g S+ gH ~,
N

where pz is the Bohr magneton. The electron spin cou-
ples to the applied field through the g tensor, and couples
to each nearby nucleus X having a nonzero ma netic di-
pole moment through a hyperfine Hamiltonian ~. The
individual hyperfine interactions each separate into an
isotropic Fermi contact-interaction term and a traceless
dipolar part:

B~=H~+H g (2a)

(2b)

Additional second-order terms A' z which depend on in-

teractions of the ground state with excited states through
spin-orbit coupling can also contribute to the hyperfine
Hamiltonian. ' In heavy atoms of the first transition
row and beyond, these contributions can be very large:
since their calculation depends on a knowledge of the ex-
cited states and excitation energies of the system they are
rarely computed directly from a wave function but are es-
timated using ligand-field theory approximations and
empirical or isolated-atom values of coupling constants,
orbital moments, and excitation energies. Fortunately
these second-order terms are negligible for the Pb center.

Approximate relations which exist between the experi-
mental g tensor and the orbital hyperfine tensor ' ' in-

dicate that the contribution of second-order terms is no
greater than -0.5 G, and this can safely be neglected.

The isotropic and dipole-dipole terms in Eq. (2b) can
be computed from the ground-state wave function alone.
The MS La wave function for the Pb center is a spin-
polarized, single-determinant M& ———,

' wave function con-
structed from molecular spin-orbitals p„s. Neglecting
spin contamination, which should be small in this system,
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where gN is the nuclear magnetogyric ratio with

gN ——pN/IN, pN is the magnetic moment of nucleus N, p„
is the nuclear magneton, and g, is the free-electron g
value. The subscripts N on the radius vectors in Eqs. (3)
and (4) indicate that nucleus N is to be taken as the origin
of electronic coordinates in the matrix elements.

The terms in large parentheses in Eq. (3) represent the
electron spin density at the nucleus (net minority-spin
minus minority-spin density in units of electrons/ao ). In
a spin-restricted model the a and P spin contributions
from all the doubly filled orbitals cancel and only a single
term remains in the summations, representing the ampli-
tude at nucleus N due to the singly occupied defect level

However, in a spin-polarized picture i)I„and P„are
allowed to have different spatial forms so that in the gen-
eral case every orbital p not constrained by symmetry to
vanish at nucleus N will make some nonzero contribu-
tion. Similar considerations apply to the contributions to
anisotropic hyperfine coupling in Eq. (4), where the
operator is the electric field gradient.

The theoretical hyperfine tensors in our Pb center clus-
ter models are reported in Table III along with recent ex-
perimental results from ESR spectra. The primary iso-
tropic hyperfine interaction is located, as we should ex-
pect, on the defect atom Si' where the bulk of the spin
density is concentrated. The negative sign of a ' indi-
cates net majority-spin density at the nucleus, because
gp9, is negative [cf. Eq. (3)]. The sign of the coupling

Si

constant is not measured by ESR experiments, but the
negative sign we find here is almost certainly correct. In
high-spin transition metals, very strong core polariza-
tions can exist which can induce a net minority-spin den-
sity at the nucleus of atoms which carry predominantly
majority spin in the valence shell. * But to our
knowledge, core polarizations are never strong enough in
atoms of the second row to cause such a reversal in sign.

In Table IV we give a breakdown of the isotropic
hyperfine coupling at the most important nuclei in the re-
laxed Si22H27 cluster according to contributions from the
direct versus induced interactions. There is a net isotro-
pic hyperfine interaction at Si of —128.6 G in this clus-
ter. Only —80. 1 G of this is due to the direct contribu-
tion from the defect orbital il)d itself; polarization of the
doubly-occupied valence orbitals contributes an addition-
al —65.8 G, while core polarization produces opposing
effects which are smaller, but still significant (+ 4.5 G

from the Si2, levels, and + 12.7 G from the Si'„core).
The large size of the valence polarization illustrates again
the difficulty in working backwards from experimental
hyperfine couplings within the local-hybrid model to
derive defect orbital populations. Other differences from
the local-hybrid estimate are created by variations in the
self-consistent field (SCF) values of matrix elements ap-
pearing in Eqs. (3) and (4) as compared to the fixed,
isolated-atom values of

~ l(3, (0)
~

and (r )3z used in
the simple picture. The defect orbital and each of the
valence levels have slightly different values of the matrix
elements, reflecting perturbations in the shape of atomic
orbitals in the molecular environment. The qualitative
predictions of the local-hybrid model are largely correct
and its simplicity makes it a valuable interpretative tool,
but it is not very reliable for quantitative prediction of
the defect orbital distribution a4 second-row atoms.

The anisotropic hyperfine tensor at Si' is axial, as re-
quired by the C3, symmetry of the system. The principal
component points along the z axis ((111)direction) and
has the same negative sign as the isotropic coupling
(Table III). The negative sign of A„' is to be expected
from the prolate majority-spin distribution of the p, -like
defect orbital about Si'. This is also consistent with the
experimental finding that the hyperfine splitting is
greatest when the applied field points in the ( 111) direc-
tion, giving an effective splitting of a + A„G, and is
smallest when the field is normal to that direction, for an
effective splitting of a ——,

' A„G.
In Table II we saw that the defect orbital charges and

net spin populations on the atoms of the silica cap are
small in the Si22H2&/Si60, 8H6 cluster. This results in
only small differences between the hyperfine interactions
of the clusters with and without the Si02 capping ring in
the first two columns of Table III. These unrelaxed clus-
ters produce hyperfine couplings at Si' which are too
large compared to experiment. This is what we should
anticipate. We know that as Si' relaxes downward to-
ward the plane of its nearest neighbors Si,&, the Si' s char-
acter of iI)d will be diminished and the isotropic hyperfine
coupling will decrease. When Si' is frozen at the
tetrahedral position the computed hyperfine coupling
ought to be too large.

Using the relaxed value of hzs;. , our calculated a ' is
reduced from —152.7 to —128.6 G. The principal aniso-
tropic component A„' is not greatly affected by the relax-
ation ( —57.8 to —59.2 G). The relaxed values are in very
good agreement with experiment: closer agreement than
this would be fortuitous, given the uncertainty in hzs;.
and the muffin-tin approximations inherent in the MS Xa
method.

C. Superhyperfine interactions

The good agreement of our Si' hyperfine results with
experiment suggests that these calculations should also be
useful in assigning the superhyperfine interaction first ob-
served by Brower' in his ESR study of the Pb center.
With the magnetic field oriented normal to the (111) sur-
face (along the z axis) a small superhyperfine shoulder of
—15 G was found in the wings of the central line of the
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ESR spectrum. It is very important in understanding the
structure of a defect center like the Pb center to be able to
identify the source of such superhyperfine interactions
correctly, and to understand them in terms of the local
electronic structure. Just as the primary hyperfine in-
teraction gives specific information about the nature of
the defect atom and its hybridization and reconstruction,
the superhyperfine tensors reAect more extended interac-
tions between the defect atom and its host lattice. This
extra information about the response of the host can be
valuable for distinguishing among alternate possibilities
for the setting of the defect in the solid-state matrix, and
for interpreting the defect-host interaction in simple
chemical terms.

In the absence of a detailed picture of the bonding in

the Pb center it would be natural to assume that the delo-
calization of spin population away from Si' would be
greatest onto the nearest neighbors Si,

&
and progressively

smaller on second- or third-nearest neighbors, as if the
spin were extending into a uniform continuum. It would
likewise be natural to expect that the superhyperfine in-
teractions should decrease monotonically and isotropical-
ly with distance from Si'. Tables II and III show that
these are not, however, good assumptions for the Pb
center. The delocalization of spin population is indeed
greatest onto Si, i, as expected (5.5% per Si„) but the
delocalization onto second-nearest neighbors is highly an-
isotropic (4.6% on each of the three Sibz, but —0.43% on
the six Si,2).

The most striking contradiction to naive expectations

TABLE III. Model Pb center hyperfine tensors (G). Calculated values of a are converted to units of
G using a (G) =285.522g~ (5 (rz)) p (a.u. ) for nucleus ¹ g29 ——1. 11052,g„=—0.75748 (Ref. 76).

Si 0
The conversion factor for the anisotropic A tensor is smaller by a factor of 8~/3. The principal axes of
A coincide with local coordinate axes only for Si . For other atoms the principal component of A is la-

beled by the coordinate axis with which it makes the smallest angle (primed subscripts). The asym-

metry parameter g=( A „—A» ) /A 33 where A„ labels the principal values in order of increasing mag-

nitude. t9 is the counterclockwise rotation angle about the axis out of the paper in Fig. 1 (the —Y axis)

required to bring the coordinate axes into coincidence with the principal axes of A. See Fig. 4 for illus-

trations.

Si'

Si, )

Sib2

Si,z

Sib3

Si,3

S&b

Si„

0

a
A„

A„„

A, ,

a
Ayy
7l

Ayy
Yl

A

A

A„„

A, ,

Unrelaxed

SippH2)/S60&SH6

151.94
—65.57

0.45
—2.33

0.19
42. 1'

—9.67
—3.36

0.03
—3.5'

1.68
0.23
0.36
2.19
0.18
0.74
0.38

—0.13
0.04
0.56

—0.10
0.01

—0.24
—0.12

0.30
—2.25
—0.68

0.11
38.8'

Unrelaxed

Si2qH27

152.73
—57.76
—0.17
—2.38

0.08
33.2'

—8.31
—3.04

0.03
—2.3'

2.24
0.25
0.23
2.73
0.15
0.62
0.94

—0.11
0.05
1.20

—0.10
0.50

Relaxed
Si22H27

128.62
—59.16

1.24
—1.64

0.09
33.6'

—9.84
—3.12

0.03
—1.6'

1.91
0.22
0.30
2.82
0.15
0.52
0.99

—0.11
0.08
1.24

—0.10
0.51

Expt. '

113+7'
44+13

15'

Expt b

106 '
45

13.3 '
1.9

-0'

'Reference 18.
Reference 84.

'The sign of the hyperfine interaction is not measured by the ESR experiment: the experimental cou-
plings represent absolute values.
Estimated from the figure in Ref. 18, with the field along the ( 111)direction.
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TABLE IV. Direct and induced contributions to isotropic
hyperfine coupling constants in the relaxed Si&2H» Pb model

cluster (G).

Defect orbital
Valence polarization
2s core polarization
1s core polarization
Net

Si'

—80.05
—65.81

4.53
12.71

—128.62

Si„
—7.22

7.81
0.41
0.24
1.24

Sib2

—10.33
—0.35

0.32
0.51

—9.84

is that despite the significant spin population on the
nearest neighbors Si„, only a small isotropic hyperfine
coupling is produced on them; and in the relaxed cluster
that coupling has the minority-spin sign, not the
majority-spin sign (+ 1.2 G). The principal anisotropic
component A .' is only —1.6 G, and it is not possible
for this tensor to be responsible for the 15-G shoulder re-
gardless of the orientation of the applied field. It is actu-
ally the three second-nearest neighbors Sib2 which pro-
duce the superhyperfine shoulder. Both the size and the
orientation of this calculated Sib2 tensor are consistent
with the experimental shoulder seen by Brower. ' The

isotropic coupling a is calculated to be —9.8 G: whenS&b2 ~

the field is in the z direction (Table III), this is reinforced
by the principal component of the dipolar tensor A
( —3. 1 G}, giving a net interaction of —13 G, close to the
experimentally observed splitting. The identification of
Sib2 with this shoulder is straightforward from our calcu-
lations, because no other interaction in the cluster is close
to the correct size. The characteristic error in hyperfine
matrix elements calculated by the MS Xa method is
-20—30% at most in a system of this sort: the errors in
our Si' couplings in Table III, for example, are in line
with previous experience. If there were another interac-
tion in the cluster of about 8-15 G, it would require ex-
tra information to distinguish between them. But all
atoms in the cluster apart from Sib2 are calculated to
have much smaller hyperfine couplings ( & 3 G), too small

by a factor of 3 or 4 to account for the observed shoulder.
This discrepancy is too large to be an artifact of our cal-
culational methods.

It should be noted that experimental intensity ratios in
ESR spectra, which are often very useful in identifying
the source of an interaction, would not distinguish be-
tween Si„and Sib2. In both cases three atoms are in-

volved. %ithout specific bonding information we might
have imagined that a second-neighbor coupling would
necessarily have an intensity ratio of 9; but the second
neighbors are not all required by symmetry to be
equivalent, and in this case the couplings at the two
symmetry-equivalent sets Sib2 and Si,2 differ by a wide
margin.

The small minority-spin coupling at Si,
&

is not an iso-
lated or anomalous result, but is consistent with well-
understood spin polarization effects. It can be simply ex-
plained in the context of small-molecule chemistry. The
lobe structure of the local atomic orbitals in the Si'—
(Si„)3system is very similar to that of SiH3, with the H&,
atomic orbitals replaced by a hybrid on each Si„directed

at the Si' atom. It should therefore show many of the
same trends as silyl radical and other AH3 radicals as a
function of geometry variation.

%hen the heavy atom in an AH3 radical occupies the
same plane as the H atoms so that the whole molecule is
planar, the defect orbital t}}d becomes purely p-like. The
o.-~ separability of this planar system prevents any mix-
ing of the H„orbitals into pd, so that majority-spin den-

sity is prohibited by symmetry from delocalizing onto the
hydrogens. However, a sizable minority spin density can
be induced at the protons by polarization effects. Among
the filled valence orbitals, the majority-spin levels p„will
tend to concentrate more of their amplitude on the cen-
tral atom A to benefit from the exchange stabilization
there. Their minority-spin partners P~ are oppositely po-
larized. The net result is a minority-spin coupling at the
protons. This is characteristic of planar AH3 systems;
the same behavior is seen at the in-plane H atoms of pla-
nar organic ~ radicals.

In pyramidal AH3 radicals, on the other hand, the o-m

separability breaks down. If we imagine raising the cen-
tral atom up out of the nearest-neighbor plane, the polar-
ization effects continue to operate but positive spin densi-
ty is gradually built in at the nearest-neighbor position by
direct overlap: the net spin density at the nucleus can
pass through zero and become positive. For silicon,
which has a negative value of g» . , this corresponds to

Si
a & 0 on Si,

&
in the planar geometry, a & 0 for highly py-

ramidal conformations. For a range of values of hzs;.
corresponding to moderately pyramidal radicals, the
nearest-neighbor isotropic hyperfine coupling is small.
This near-cancellation of opposing effects has resulted,
for example, in a long controversy in the literature over
the correct sign of the proton coupling constant in the
SiH3 radical itself.

The situation in the Pb center is somewhat more com-
plicated than in silyl radical because of the presence of
polarizable cores and the possibility of rehybridization
and hyperconjugative effects at Si„as a function of bond
angle. But we can see by comparing unrelaxed and re-
laxed Si22H27 results in Table III that the net trend is the
same as expected from the analogy with SiH3. As the
geometry at Si' becomes more nearly planar, the isotropic
hyperfine coupling at Si„goes from slightly negative to
slightly positive. Table IV exhibits the opposing effects
explicitly. The direct majority-spin contribution from pd
at Si„ is —7.22 6; but this is counterbalanced by the in-
duced contribution of + 7.81 G due to valence polariza-
tion.

At the time our calculations were completed, the only
experimental superhyperfine result available for the Pb
center was the 15-G shoulder observed by Brower with
the field in the ( 111) direction. ' Subsequently, Carlos
examined this signal in SIMOX materials (last column
of Table III}. In that study, the isotropic and principal
anisotropic components were determined to have magni-
tudes of 13.3 and 1.9 G, respectively: our calculated
values of —9.84 and —3. 12 G agree satisfactorily with
those results.

Most importantly, Carlos found the principal com-
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ponent of the anisotropic tensor to be directed within a
few degrees of the (111) axis. Figure 4 illustrates the
significance of that result. The calculated isotropic
hyperfine coupling at each atom in the figure is given in-
side a sphere surrounding the nucleus, while the principal
anisotropic components are attached to the axes which
diagonalize the tensor. When an unpaired electron occu-
pies a localized site, the principal component of the an-
isotropic tensor on its nearest neighbors tends to point at
the position of the electron, as A ." in the figure points
just above Si' at the hybrid orbital. But since the field
gradient operator in Eq. (4) falls off rapidly as a function
of distance, the tensors of more distant atoms have a
greater tendency to point along bond directions at any of
their own neighbors which carry a significant amount of
spin. This is the case for A, ," in Fig. 4. These simple
considerations imply that, whatever the particular values
of the components, the superhyperfine tensor on Si,

&

should be tilted strongly away from the ( 111) direction
while the Si&2 tensor would be much more closely aligned
with that axis. The direction of the experimental tensor
is therefore in itself a significant indication that the ob-
served splitting should be associated with Si~2 rather than
Si, &, even apart from the evidence of our theoretical cal-
culations.

There are still several important points to be resolved
experimentally. We find the isotropic and anisotropic in-
teractions on Si&2 to have the negative sign, and this has
not been tested by the ESR experiments which have been
done. We also find the Si&2 tensor to be nearly axial; the
asymmetry parameter g is only 0.03. This nearly axial
character is not required by symmetry, and it would be
very interesting to know if this is correct experimentally.
Both these points could in principle be determined by

-59.16

+29.58

0.74

—3.12

—1.6

1.61

1.51
FIG. 4. Hyperfine tensors of the atoms with appreciable am-

plitude in the defect orbital. Relaxed Siz2H» model. Orienta-
tion as in Figs. 1 and 3.

multiple-resonance experiments such as electron-nuclear
double resonance (ENDOR).

IV. CONCLUSIONS

Spin-polarized MS Xa calculations have been carried
out on large cluster models of the PI, center at the
Si(111)/SiOz interface. We find that the silica phase can
be modeled by a single ditrigonal ring of six Si04 tetrahe-
dra, bonded to the hexagon of Si,2 atoms surrounding the
defect atom at the (111) surface. The ditrigonal ring is
common in naturally occurring phases of silica, particu-
larly in tridymites. This model of the Si02 phase intro-
duces no abnormal strains in either phase or at the inter-
face, and it provides a microvoid above the defect atom
of the appropriate size to allow Si' to be passivated by an
H atom diffusing through the silica.

We find that the delocalization of the defect orbital and
the distribution of spin density in the Pb center are limit-
ed in extent and very anisotropic. The only atoms which
carry significant spin populations are Si, its three nearest
neighbors Si, &, and the three Si&2 second-nearest neigh-
bors below Si' in the bulk silicon. Because of the very
small degree of spin delocalization into the silica phase, it
makes little difference to the calculated hyperfine tensors
whether the Si02 cap is present or not.

The hyperfine tensor at Si' is modeled very well by our
relaxed-cluster calculation, using a relaxation Azs; at the
defect atom close to the average from recent semiempiri-
cal and ab initio calculations. Spin-polarization effects
are found to be important in the Pb center in several
ways. The defect orbital is less concentrated on Si' than
the local-hybrid model would predict because polariza-
tion effects bring additional spin onto Si. The hybrid-
orbital picture gives a somewhat better description of the
net spin populations than of the unpaired spin-orbital it-
self. The hyperfine coupling at the three nearest neigh-
bors Si„ is found to be small in the P~ center because of
the opposing effects of direct spin delocalization and in-
duced exchange polarization. This can be understood by
a straightforward analogy with the behavior of simple
AH3 radicals as a function of H—A —H bond angle.

The largest superhyperfine interaction in the cluster is
actually located at the three second-nearest neighbors
Si&2. The magnitudes of the isotropic and principal an-
isotropic components and the orientation of the tensor
that we predict at Si&2 agree well with experimental ESR
studies of the superhyperfine interaction carried out sub-
sequent to the completion of the present theoretical
work. The good agreement of our theoretical hyperfine
and superhyperfine tensors with experiment gives strong
support to the standard threefold-coordinated model of
the P& center in which the defect orbital points into a
small microvoid in the silica phase.

The present study illustrates both the strengths and the
limitations of the widely used local-hybrid picture. That
picture has been a very valuable tool for interpreting ESR
spectra of localized paramagnetic defects. It constructs a
qualitatively correct model for the spin localization and
hybridization of the defect atom, and this can be effective
in giving an overall picture of the defect. Our calcula-
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tions confirm, after all, a basic structural model of the Pb
center which was first proposed using a local-hybrid pic-
ture alone. But this picture is less successful in treating
the smaller hyperfine couplings which might be associat-
ed with a defect. It is very unlikely, for example, that the
identification of the Pb superhyperfine interaction with

Sib2 rather than Si„would have been made within a
local-hybrid framework. This is not an isolated case.
The small superhyperfine interactions are particularly
sensitive to polarization and other second-order effects
because their couplings are not necessarily dominated by
a large direct majority-spin contribution. However, it is
essential to assign these smaller couplings to the correct
atoms and to give a physically reasonable rationale for
their signs and magnitudes in order to arrive at a con-
sistent, co~piete picture of the interactions between the
defect and its host lattice.

Self-consistent spin-polarized calculations which treat
the cores as well as the valence levels explicitly do include
all the physical interactions which are important for pro-
ducing hyperfine couplings in systems composed of first-

and second-row atoms. The present work has shown that
the spin-polarized MS Xa method can be applied success-
fully to both the large and small couplings of the Pb
center. We expect it to be equally useful in the study of
other paramagnetic defects in the solid state, particularly
in assigning the smaller interactions and resolving ambi-
guities among alternate proposed structures. Other such
systems are currently under study.
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