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We present a quantum-mechanical analysis of magnetotunneling in a high transverse magnetic
field B. We use a transfer-Hamiltonian technique for computing the current density through a bar-
rier as a function of both B and the bias voltage V. Several systems of the type semiconductor-
barrier-semiconductor and superlattice-barrier-superlattice are studied. From our results quantum
oscillations and negative differential conductance are interpreted in terms of variations in the avail-
able channels for tunneling. Special attention is devoted to the comparison with previously report-
ed experimental information.

I. INTRODUCTION

The present availability of high magnetic fields and
high-quality semiconductor heterostructures grown by
molecular-beam epitaxy has allowed an enormous ad-
vance in the experimental study of magnetotransport in
low-dimensional electronic systems. A great path of such
effort has been devoted to the geometrical configuration
of the quantum Hall effect where a magnetic field B is
perpendicular to the electronic currents. A closely relat-
ed problem of increasing interest is the effect of a trans-
verse B on the tunneling through a barrier separating ei-
ther two semiconductors' (SC) or two superlattices
(SL). In the case of semiconductors, the current intensity
I for a given bias voltage V applied to the barrier de-
creases monotonously for increasing B.' Only the
second derivative d I /dB shows quantum oscillations.
For a SL-barrier-SL system negative differential conduc-
tance (NDC) regions in the current-voltage characteris-
tics are observed for low magnetic fields, but this feature
decreases significantly or even disappears when B in-
creases. The analysis of these experiments has been per-
formed by means of either a semiclassical WKB ap-
proach' or by qualitative arguments about the
magnetic-field effects on the electronic states. A com-
plete understanding of those experiments is not simple
because the theoretical effort devoted to magnetotunnel-
ing in this configuration is scarce. Magnetotransport in
transverse fields has been studied in a semiclassical mac-
roscopic framework by using effective resistance and
temperature arguments. Therefore, such a scheme is
more concerned with inelastic-scattering processes than
with quantum-tunneling effects. Recently, some model

problems within the extreme quantum limit (hco, ~ao )

have been treated by either Landauer-type formulas or
by path-integral methods. Apart from this, no
quantum-mechanical calculations of tunneling currents in
actual systems have been reported.

The aim of this paper is to present a generalization of
the transfer-Hamiltonian method for studying tunneling
of electrons through a barrier of width Ib and height V&

with a bias voltage between two semi-infinite media in the
presence of a transverse B. Each of the two media is in
thermal equilibrium but their two chemical potentials are
shifted from each other by the bias V dropping across the
barrier. The existence of B produces important effects
both in the electronic spectra and in the tunneling-
selection rules that we will analyze in detail. We are con-
cerned with elastic-tunneling effects that in practice are
superimposed on the background due to dissipative
scattering processes. This method allows us to compute
the current density j as a function of V and B obtaining
quantum oscillations and NDC features. We will discuss
in detail the cases of samples previously studied experi-
mentally as well as others that our calculations indicate
to be of potential interest.

The paper is organized as follows. In Sec. II we
present the theoretical method used to compute tunneling
currents through a barrier. In Sec. III we apply
the method to the case of semiconductor-barrier-
semiconductor. There, we compare our results with
available experimental information and analyze two sys-
tems that have not yet been experimentally studied. Sec-
tion IV is devoted to the SL-barrier-SL system with spe-
cial emphasis on using our results for understanding the
experiments reported previously. Some conclusions and
a summary are contained in Sec. V.
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II. METHOD

A. Stationary states

+a u +a u ). In the gauge A=(0, B—z 0) the
Schrodinger equation

Before introducing the ingredients that characterize
tunneling problems, let us start by sketching the effects of
a magnetic Geld Bu directed along one of the principal
axes of a crystal with potential U( r }= U( r+ a„u„

1
(p —e A} + U(r) ii„(r)=Ei,g„(r)2

2m

becomes

2—fi ' . 8 . 8 . ieBz 8ik„+ + ik, + + ik~+ +
2

+ U(r) ui, (r) =Ei,ui, (r), (2)

where we have taken the usual form

Pk(r) =ui, e'"' .

Equation (2) suggests that, in order to recover a general-
ized Bloch condition, ' " one can perform the gauge
transformation

—iyeBpa IAA~ Ae (4)

p being an integer number. Then, one has a new periodi-
city gi, +s ——Pi, with g =eBa,u~/A' superimposed on the

crystalline one (2ir/a )u . In the case in which
(peBa, /fi}(a~/2ir) is not an integer number the system
presents incommensurability and, consequently, very spe-
cial properties. "' However, when peBa, a~/fi2ir is an
integer number q, one recovers a perfectly periodic sys-

tern. ' '" In many cases, a is much smaller than the
magnetic field length l =&Pi/eB =256/v'8 A (8 in
teslas) so that g «g . Then the Hamiltonian can be
treated in an effective-mass approximation for the crystal
potential U(r), being g =(a, /l )u the only periodicity
explicitly appearing in the problem. ' ' Such approxi-
mation is not adequate for a SL where there is a potential
VsL(z) with a periodicity a, comparable with l . Then it
is preferable to treat explicitly VsL(z) keeping the
effective-mass approximation just for the crystal potential
of each component of the SL.' ' We are interested in
extending this scheme to a system where an additional
potential breaks some symmetry. In particular, we have
a barrier potential Vb(z) separating two semi-infinite
crystals as depicted in Fig. 1. The stationary states of the
whole system can be obtained from the Schrodinger equa-
tion that in the effective-mass approach described above
1s

i' k„
2mom'(z) 2mo» m'(z)» 2mom*(z)

2

z + + Vb(z) e ' e ' P(z) =Fe " e ' P(z),eB

where mo is the free-electron mass and the effective mass m is allowed to have different values in the two crystals and
in the barrier. The mixing between k and z as discussed in Eqs. (2) and (4) appears very clear in Eq. (5). Sometimes it
is useful for practical purposes to relate the quantum number k with a "center" of the electronic orbit

Ak
zo = =Imk

eB

In order to make the discussion easier, let us take m '(z) as a constant in Eq. (5). Then one obtains

A' k
+En,2m *mo

where the magnetic levels En k must be computed fromn,

f2 Q2 e2B2
(z+zo) + Vb(z) E„„P(z)=0. —

2m *mo Bz 2m *mo n,
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For a given value of k» (or zo) this one-dimensional equa-
tion (8) can be solved numerically by means of a finite-

elements method. ' In Fig. 1(b) we show the different
curves E„k obtained in a model problem for clarifying

t y

the following discussion. As depicted in the figure, the
states at anticrossings between different branches have
wave functions shared between the two crystals. The
eigenstates away from the anticrossings have wave func-
tions which are only at one of the sides of the barrier.
The states at anticrossings form the channels for the
magnetotunneling because they allow the electron wave
packets initially appearing to the left side pass through
the barrier to the right side. The best way for treating
such a process is to use a transfer-Hamiltanian tech-
nique such as the one we are going to introduce now.

B. Transfer-Hamiltonian method for magnetotunneling

H =HI + VL ——HR + V~ (9)

with H =—HL in the left side and H =H~ in the right side.
Moreover, HL and HR must be chosen in such a way that
their eigenstates

~

L ) and
~

R ) are localized in the left
and right sides, respectively. The wave functions

QL, (r) = (r
~

L ) and pa (r) = (r
~

R ) can be considered as
wave packets of the actual problem. Then, tunneling
processes are described by a time-dependent perturbation
theory which gives the transition probability between an
initial state PL(r) and any possible final state P„(r) in

terms of a kind of Fermi golden rule

This method gives a time-dependent formulation of
tunneling probabilities. It is based on the separation of
the total Hamiltonian in two spacial regions left (L) and
right (R ) (see Fig. 1). Then, one writes

(a} ILR I ( R
I VL, I

L &
I
'5(EL Eit ) . (10)

,,EF

~ ~ ~ ~ ~ ~ ~ ~ ~

$
~ ~ IP I

)EF

(b)

After some manipulation this can be written as

2m 2
~LR I TLR I

6(EL Eii ),
fi

where

$2
TLR g, f (NR~NL PL~PR ) ~SLR

2mp pl
(12)

(C)

HL

r

-&- E.

L

FIG. 1. (a) Potential profile V~(z) of a barrier with Vb
——0.3

eV, 1b ——100 A, and an applied bias V=O. 1 V between two crys-
tals with Fermi levels EF and EF (dotted lines). The probability
density

~
P(z)

~

' of a magnetic level in the presence of an in-

plane magnetic field B= 10 T is also shown. (b) Magnetic levels

E„k (solid lines) of the Hamiltonian H depicted in (a) as a func-

tlon of ky or of its associated orbit "center" zo. The dot labels
the level for which

~
P(z)

~

is given in (a). Dashed line gives

Vb(zo) in order to facilitate the discussion. (c) Model left HL
(solid line) and right Hz (dashed-dotted line) Hamiltonians used
to compute tunneling current densities in the transfer-
Hamiltoniyn method (see text). Dashed lines depict the magnet-
ic levels for these Hamiltonians including an in-plane magnetic
field.

T~~ ~ 5(k —k )5(k„—k„) . (13)

Then, the practical procedure is as follows: (i) to in-
tegrate two one-dimensional equations like Eq. (8) with
the potential profiles of HI and Ha [shown in part (c) of
Fig. 1], respectively, instead of V&(z); (ii) to look for the
crossing between the two dispersion relations E„k and

» y

E„"k ,'and (iii) to evaluate Eqs. (11) and (12) only for then

eigenstates corresponding to such crossings.
It must be pointed out that these crossings transform

in the anticrossings of the dispersion relation of H being
the only possible tunneling channels as we have men-

the current being evaluated on the surface SLz separating
the left and right regions. In one dimension, the integral
reduces to compute the current at some point in the bar-
rier. The main constriction of this theory is that of being
a perturbation method. Then, it is necessary that the
spectrum of H be close to the combination of those HL
and Hz. We have checked out this condition by in-

tegrating for HL and HR equations similar to (8). The re-
sults are shown in Fig. 1. There, one can see that the
dispersion relations of H [solid lines in Fig. 1(b)] are a
perturbation of the dispersion relations of HL and H~
[dashed lines in Fig. 1(c)].

For magnetotunneling in transverse 8 the application
of Eqs. (10)—(12) simplifies because, as discussed in Sec.
IIA, the problem is separable. In other words, in Eqs.
(10), VL is only a function of z so that both k, and k are
good quantum numbers which must be conserved in the
transition between PL (r ) and Pii (r ), i.e.,
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tioned in Sec. II A.
Once one can calculate the transition probability from

the left to the right of the barrier, the current is comput-
ed by considering the occupations of the initial and final
states. This requires the calculation of the Fermi level in
each medium (EL and ER ) in the presence of the magnet-

ic field. This is a bulk property of the two crystals that
does not present any special dif5culty. From that infor-
mation, the current density is computed by summing up
all the transition probabilities between occupied states to
the left and empty states to the right. For zero tempera-
ture, we have

j= g Jdk„dk
~

T „(E,k )
~

[B(E E„q—) 8(E—R E„".—~ )]5(E„~ E„—J ) (14)

where n and n are indices running over the magnetic levels of HL and Ha, respectively. In Eq. (14) the integral in k„ is
straightforward because for this variable the dispersion relations are simply parabolas. The integral in ky is performed
using

5(E„q —E„"~ ) = d(E„„E„"„—)
y 7 y

dk

5(k —k'),

where ky stands for the crossing nn', i.e., the value in which E„& ——E„".
& . After some algebra the current density is

y 7 y

given by

2e(2mom ')'
j= I TLz (kp I

'
d(EL ER )

dk

[(E E, )' [8(E——E, ) B(E„E—,)]—

+ f(E E, )' ' (E— E, )—' '][8—(E, )8(E„—E, )]], (16)

where the sum runs over all the crossings k' with energy
E, discussed above. In (16) the origin of energies is in the
bottom of the potential to the left and we have taken the
crystal to the right shifted down in V (as shown in Fig. 1)
with respect to the left. To compute the current density j
from Eq. (16) we use Tra(k') calculated as discussed
above and

~

d(E„E„",)/dk
~ „, is —also evaluated from

the dispersion relations of HL and HR. It must be point-
ed out that the current through the barrier in the z direc-
tion is essentially controlled by the dependence on k be-
cause the magnetic field associates these two magnitudes
as shown in Eq. (6). Once electrons cross the barrier, in-
elastic processes restore the equilibrium in the right side
where EF is lower than the initial energy of those elec-
trons due to the bias.

III. SC-BARRIER-SC

In this section we apply the method presented above
for analyzing magnetotunneling between two semi-infinite
n-doped GaAs separated by a Al Ga& As barrier. The
ternary compound forming the barrier has x &0.43 so
that we are concerned with electrons at the bottom of the
conduction band in the I point;. Then, a simple square
barrier model of height Vb ——0.94x eV for electrons with
m*=0.067 is adequate. Since the semiconductors are n

doped, the applied bias voltage just drops at the barrier.

As far as the barrier width lb is concerned, it is con-
venient to work with values comparable to I which is
the magnitude representing the spatial extension of a
given state. For fields between 4 and 20 T in which quan-
tum effects can be expected, l varies between 130 and 50
0
A. Therefore we start by studying two different GaAs-
Gap «Alp 3zAs-GaAs systems at zero temperature.

(i) I&
——50 A with a bias V=0. 1 V and a doping

n =10' cm in the GaAs. Our results for this case are
shown in Fig. 2.

(ii) lb
——100 A with a bias V=0.2 U and a doping

n =10' cm in the GaAs. Our results for this case are
given in Fig. 3.

In order to understand the different contributions to
the observed oscillatory dependence, we include in these
figures the Fermi-level variation with 8 for the bulk of
GaAs with the above given carrier dens&ty. At low fields
the current oscillations are clearly correlated with
Fermi-level oscillations while for higher fields very strong
oscillations of j appear independently of the variation of
EF. This behavior is clearly understood within our for-
malism. For a fixed value of Ez, the dependence on B of
the current due to only one crossing between an occupied
PL and an unoccupied Pz is shown in the dashed line in

Fig. 3. At low fields there are many crossings between
the spectra of HL and H„. Then there are so many tun-
neling channels that the different variations with 8 tend
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FIG. 5. Logarithm of the current density (in A/mm') as a

function of B' (in teslas) for the two samples of Gueret et al.
(Ref. 1) having the characteristics written in the 6gure.

FIG. 6. Density of states p (in arbitrary units) as a function
of the energy (in eV) for two different in-plane B applied to the
SL forming part of the sample DB106 of Davies et al. (Ref. 5)
shown in the inset. The origin of energies is taken at the bottom
of the SL wells.

IV. SL-BARRIER-SL

From a fundamental point of view a SL is a perfect
crystal so that no essential differences should be expected
with respect to the case studied in the previous section.
However, as we mentioned in Sec. II, the periodicity of
the SL potential VsL(z) is comparable to I and new

quantum effects are possible. Therefore Vs„(z) must be
explicitly included in Eq. (8) instead of treating it in an
effective-mass approach. Apart from this, the method
developed here is straightforwardly applicable to com-
pute tunneling current densities in a SL-barrier-SL sys-
tem.

The anisotropy introduced by VsL(z) is the origin of
rninibands and minigaps in the absence of B. When a
magnetic field Bu exists, the spectrum remembers the
minibands because in its energy region the magnetic lev-
els are practically independent of k» (flat levels) while in
the minigaps regions magnetic levels strongly dependent
on k appear. ' ' ' The two different energy regions are
well visualized in the density of states, shown in Fig. 6,
obtained from the perfect SL band structure by numeri-
cal integration in k and k . Then, for discussion pur-
poses, one can think in rninibands and minigaps even in
the presence of Bu . As in the case of Sec. III, the mag-
netic field produces a bending of the dispersion relations
for orbit "centers" z0 close to the interface with the bar-
rier (see Fig. 1). Therefore, tunneling experiments give
information on the magnetic levels bent at interfaces in-
stead of doing it on bulk minibands and minigaps.

Davies et al. have reported very interesting experi-
rnents on transport in the SL-barrier-SL system with a
transverse magnetic field. There, it is shown that there
are NDC regions that evolve with 8 in a similar way for

different samples. The general trend is that when B in-
creases, NDC features move to higher biases and
currents. The ratio of the peak-to-valley currents initial-
ly increases but in larger fields it begins to decrease and in
some cases the NDC is lost for high fields. Davies et al.
just give qualitative semiclassical arguments for discuss-
ing their results but they suggest that a deeper theoretical
understanding is required for high fields. We have ap-
plied our method to the most interesting cases of Davies
et al. '

(i) Sample MB275. A barrier with Ib
——80 A and

Vb
——235 rneV between two SL with n=4&(10' cm,

wells of 55 A of GaAs and barriers of 35 A of
Ga0 75A10.25As.

(ii) Sample DB106. A barrier with Ib
——40 A and

V&
——400 meV between two media formed each one by a

triple well of 60 A of GaAS with n =5X1017cm3 and bar-
riers of 25 A of Ga0 57A10 43As.

Figures 7 and 8 show our results of current-voltage
characteristics for those two samples with different trans-
verse magnetic fields. In the case of MB275 we plot our
results for the magnetic fields reported by Davies et al.
while in DB 106 we continue the sequence up to much
higher fields in order to discuss carefully some interesting
features. In both figures we observe that for low fields
there are two main peaks separated by a region where no
tunneling currents flow. The lower peak corresponds to
crossing between occupied magnetic levels coming from
the lowest miniband to the left and empty states corning
from the lowest miniband to the right. When the bias in-
creases these two energy regions become misaligned and
there are no channels available for the tunneling. For
higher fields, states from the first miniband to the left and
the second to the right start to be coupled and j increases
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FIG. 7. Current density j (in A/mm') as a function of the
bias voltage V (in V) for different transverse magnetic fields (in
teslas) in the sample MB275 of Davies et al. (Ref. 5) (see text).

FIG. 8. Current density j (in A/mm') as a function of the
bias voltage V (in V) for different transverse magnetic fields (in
teslas) in the sample DB106 of Davies et al. (Ref. 5) (see text).

again. Therefore the bias voltages giving NDC give in-
formation on the first rninigap. We must insist that
around the SL-barrier interface there is an additional
bending (see Fig. 1) of the dispersion relations which
slightly alters their shape.

The comparison with experiments must be done
remembering that, as in the case of GaAs-barrier-GaAs,
the elastic-tunneling current is superimposed on a back-
ground produced by inelastic-scattering processes. How-
ever, the main experimental features are due to elastic
tunneling. For small fields, the first peak of j increases
with B as can be seen in the evolution between 6 and 10 T
for sample DB106 (Fig. 8). This is consistent with the ex-
perimental increase of the ratio of the peak-to-valley
currents. The subsequent experimental decrease of that
ratio until the disappearance of NDC is just the lowering
of the first peak of j observed in Figs. 7 and 8. At the
same time all the structure of j spreads and shifts to the
right as is experimentally observed. That is due to the
fact that higher 8 implies a higher energy of the cross-
ings, (i.e., higher bending of the magnetic levels), so that
a higher bias is required to get current. In some cases
(between 22 and 26 T for DB 106) the first and second
minibands slightly overlap. This is due to a different
bending of both structures at the interface. The last
feature to be pointed out is the appearance in both sam-
ples of a threshold bias which increases with B. Once

900[

600-
E

300 I- 00 rnv

10 20 30

FIG. 9. Current density j (in A/mm ) as a function of the
transverse magnetic field (in teslas) for two different bias volt-
ages (in mV) applied to the sample DB106 of Davies et al. (Ref.
5) (see text).
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again this is caused by the moving up in energy of the
tunneling channels as mentioned above. The oscillations
superimposed on the main peaks have the same origin as
the one observed in the case of GaAs-barrier-GaAs, i.e.,
the disappearance of a given tunneling channel when
there are only a few of them. All the characteristics hith-
erto discussed manifest in the same way if one represents

j as a function of B for a given bias as we did for GaAs-
barrier-GaAs. The results are shown in Fig. 9 where one
observes regions with low current density related to NDC
of Fig. 8. We must stress that the narrowness of the
minibands implies a rather high density of states for any
B. Therefore the oscillations of the Fermi level when B
varies are much smaller than in the case of GaAs. So the
whole structure observed in Fig. 9 is due to changes in
the available tunneling channels.

Apart from the inelastic background, the only
discrepancy between our results and those of Davies
et al. is that the experimental features occur at values of
V higher than the theoretical ones. We think that this is
due to the fact that the doping of the SL is only within
the wells so that the external bias does not drop just in
the barrier. Therefore any experimental value of V corre-
sponds, in fact, to a smaller value of the bias at the bar-
rier improving the agreement with the theory.

V. SUMMARY AND CONCLUSIONS

The use of a magnetic field has given excellent results
to get insight on the electronic structure of a SL grown
along a direction perpendicular to the field. ' Magne-
tooptics' ' has been the technique mainly used for such
purpose. Tunneling measurements are an excellent can-
didate to study the electronic properties of the interfaces
of both semiconductors or SL with some other medium.
Scarce attempts have been made' to use transverse
magnetotransport to analyze magnetic levels at inter-
faces. On top of experimental difficulties a quantum
theory for this problem was not developed hitherto. In
this paper we have presented a transfer-Hamiltonian ap-

proach for computing elastic-tunneling currents in the
presence of a magnetic field parallel to the interfaces.
The total Hamiltonian is separated in two spatial regions
(left and right) and the use of time-dependent perturba-
tion theory gives the transition probability of electrons
from one region to the other. The method is conceptual-
ly simple and manageable from the numerical point of
view. We have used this technique to compute current
densities produced by a bias applied either to GaAs-
barrier-GaAs and SL-barrier-SL systems. The agreement
between our results and experimental ones can be con-
sidered satisfactory mainly in the latter case. Some
difficulties for a detailed quantitative comparison exist
due to the experimental background coming from inelas-
tic scattering mechanisms which are not included in our
method. In spite of such difficulty our theoretical scheme
allows a better understanding of the experimental data.
Using our theoretical results one can identify the origin
of any feature as coming from one of the different tunnel-
ing channels well individualized in the calculation. The
results obtained here encourage us to extend the method
to similar problems, as the magnetotunneling through a
double barrier where resonance effects can be expected.
This is the target of our current work.

Note added in proof. After this manuscript was accept-
ed for publication, we became aware of a paper by T. W.
Hickmott [Solid State Commun. 63, 371 (1987)] where
the oscillations of the current here obtained were ob-
served experimentally.
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