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Mesoscopic ring in a magnetic field: Reactive and dissipative response
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The response of a normal-metal ring threaded by a magnetic field and coupled to a dissipative
external bath is studied via the Kubo formalism. Unlike in a wire, the diamagnetic contribution to
the induced current in a multiply connected geometry is not completely canceled by the paramag-
netic term, resulting in a persistent current in the ring. W'e find a nonzero reactive response Imo.
which is a periodic function of the flux through the ring with period go=bc/e for a single ring, but
a period of $0/2 for an array of disconnected rings. The residual diamagnetic effects also contribute
to intraband scattering in the ring. It is shown that the minimum in the dissipative response Rea
for zero flux seen in experiments is obtained upon a proper inclusion of intraband scattering (often
omitted) in addition to the usual interband scattering. A new regime appears in the response func-
tions where quantum size e8'ects, i.e., a sensitivity to the discreteness of the energy levels, are probed
when the broadening of levels y and the temperature T are much less than the typical spacing be-

tween levels 5E.

I. INTRODUCTION

A great deal of interest in the conductance of small de-
vices has been sparked by the capability to fabricate sys-
tems having dimensions on the order of p few microns.
At low temperatures the effective distance the electrons
travel between inelastic collisions can exceed the sample
dimensions, and the coherence of the single-particle wave
function is thereby maintained across the entire sample.
This leads to a number of interesting phenomena, e.g. ,
sample-specific behavior, ' fluctgations in the conductance
as the magnetic field or chemical potential is varied, '

and violations of Onsager relationships. '

An elementary example is a normal-metal ring through
which a flux tb is threaded. General quantum-mechanical
principles ' require that the wave functions, eigenvalpes,
and hence all observables be periodic with flux with
period Pc=bc/e, the normal flux quantum. Biittiker,
Imry, and Landauer noted that the periodicity of the po-
tential on a ring makes the problem formally the same as
that of Bloch wave functions in a crystal, with wave vec-
tor k given by kL =2nP/Po, where L is the length of the
loop. They also indicated the possibility of a persistent
current in the presence of a static flux. The presence of
such a persistent current implies the existence of Bloch
oscillations in response to a flux which increases linearly
in time, with a "Josephson" frequency given by eV/A',

where V is the induced emf. These ideas have been ana-
lyzed by Landauer and Buttiker' with a simple phenom-
enological model for inelastic scattering, and show that
the persistent current survives for weak scattering.

There have been two principal theoretical approaches
to the problem of calculating the transport properties of a

weakly dissipative system. The first, used extensively in
many-body problems, is the Kubo formulation which re-
lates the conductivity to a current-current correlation
function. "' This technique relates the dissipative
response to the equilibrium fluctuations in an isolated
system. Irreversibility is introduced by going to the
infinit-volume limit and arguing that the random disor-
der scrambles the wave functions sufticiently to remove
any coherence effects. The second is the Landauer for-
mulation' that relates the conductance to the transmis-
sion probability for electrons across the sample. D&ssipa-
tion is introduced by assuming that the sample is con-
nected to reservoirs which e~it and absorb electrons in-
coherently. The problem of coupling the ring to one or
more reservoirs has been summarized by Buttiker' and
by Imry. ' %e comment below on the equivalence of
these conceptually rather different approaches.

Alt'shuler, Aronov, and Spivak' evaluated the dc con-
ductivity of a hollow cylinder in a magnetic field via the
Kubo formulation and showed that the coherent back-
scattering of time-reversed paths of electrons gives rise to
a periodicity of hc/2e, half t;he normal value. An initial
examination of the problem via the Landauer formula-
tion' generally produced a periodicity of hc/e, later ob-
served experimentally in very small systems, but did not
find a period of hc/2e, except under very special condi-
tions. It was later realized' ' that this extra periodicity
appeared only after averaging the conductivity over the
impurity distribution. A su%c&ent condition ' ' for this
averaging to occur in the experimental system is a pro-
cess such as inelastic scattering which scrambles the
phase of the electronic wave function. Elastic scattering,
even when it produces an elastic mean free path much
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smaller than the sample size, results in a complicated spa-
tial dependence in the wave function which is not ran-
dom. In fact, states nearby in energy are highly correlat-
ed. Thus the electronic wave function that extends
around the entire ring is coherent in the presence of elas-
tic scattering. It is sensitive to a magnetic flux in such a
fashion as to produce a periodicity of Po, not $0/2 in a
magnetic field. Phase-breaking processes, usually pro-
duced by inelastic scattering, truly randomize the phase
of the wave function and cause the ring to break up into
regions of size L&, the phase-breaking length, which are
then independent "samples" that produce an averaging of
the transport properties. Another source of averaging is
a nonzero temperature since a thermal distribution of
electrons uses all the electronic states within k~T of the
Fermi surface and hence produces an average over ener-

gy. Stone and Imry have investigated energy averaging
and conclude that it also is equivalent to averaging over
the impurity distribution.

Once the phase-breaking length (which is usually
shorter than the inelastic scattering length since many in-
elastic scatterings can look nearly elastic and still disrupt
the phase of the wave function) is of the order of the sam-
ple size, one can ask how dissipation occurs that is irn-
plied by a finite resistance. Landauer and Buttiker' and
Buttiker have taken the point of view that the resistive
behavior is caused by coupling to an incoherent reservoir
of electrons that represents the measuring apparatus, and
that the conventional Kubo-Greenwood' formula is sim-
ply inapplicable in this situation. One can however, mea-
sure the conductivity of an isolated ring by inserting it
into a microwave cavity and measuring the resulting ab-
sorption. It is not clear a priori whether such a measure-
ment of the conductivity should give the same result as a
four-probe measurement (neglecting for the moment the
question of the different frequencies involved). Imry and
Shiren have examined the isolated metal ring from the
point of view of the Kubo formulation and'found a num-
ber of unusual features, including a conductivity that is a
maximum at zero flux, in distinction to the predictions of
weak localization.

The primary purpose of the present work is to go
beyond previous discussions of a persistent current in
equilibrium and to investigate the dynamical inductive
response of a normal ring. We would also like to analyze
the conductivity near zero flux to see if, within the
linear-response formulation, it shows the behavior pre-
dicted by weak localization. Toward this end we study
the current induced in an isolated metal ring in the pres-
ence of both a static and a time-dependent magnetic flux.
Dissipation is included in the system by modeling the dy-
narnics by a master equation with a relaxation term that
phenomenologically accounts for the coupling of the elec-
tronic system to an external environment. In order to
conserve the number of electrons in this model, the
chemical potential must be a function of the flux and
must also be time dependent. In addition, the
quasiequilibrium state that the electrons relax to in the
presence of the coupling must include the external per-
turbation. We discovered a number of subtleties in the
evaluation of the response that have been overlooked in

previous calculations. We find the following new
features.

(i) In a multiply connected geometry, a generalized f
sum rule can be shown to hold, which leads to a finite
persistent current even in the presence of dissipation.

(ii) The persistent currents contribute an intraband
tenn to the dissipative response, which must be added to
the usual interband term. The total dissipative response
then, indeed has a minimum at /=0 for a loop. Such an
intraband term is not present for a wire with open ends.

(iii) We find an extreme sensitivity of the response func-
tions to the number of electrons in the ring or the chemi-
cal potential (depending on the ensemble used) in the
weak damping limit. If the damping is increased or the
temperature is raised, this effect disappears.

(iv) As the damping increases and the above-mentioned
sensitivity disappears, the periodicity in flux of the dissi-
pative response in the ring changes from $0 to Po/2,
while the reactive response continues to show a periodici-
ty of $0. In an array of disconnected rings, the reactive
response will also show a crossover to a periodicity of
40/2.

(v) We find that the results given phenomenologically
in Refs. 8 and 10 can also be obtained from the Kubo
linear response to an applied flux if diamagnetic effects,
which are usually ignored, are retained in the formalism.

This paper is divided into five sections. Section II de-
scribes our approach to the Kubo formula for a one-
dimensional (1D) ring. We include inelastic effects within
a number conserving formulation and consider the effects
of diamagnetic and paramagnetic contributions to the
response functions. The transverse f-sum rule for a loop
is derived. In Sec. III we discuss the reactive response
and mention some similarities to the response of super-
conductors. The dissipative part of the conductivity is
described in Sec. IV and we conclude with some remarks
in Sec. V. There are two appendices where the relaxation
time approximation is discussed and the effect of the
finite self-inductance of the loop is considered.

II. FORMALISM

The gauge-invariant tight-binding Hamiltonian of an
electron constrained to move on a loop of 1V sites with
lattice spacing a is given by

H = g [(2t + V„)c„c„te "'"+'c„+,c„—

(2.1)

where t =A /2ma is the hopping matrix element and
will be taken as the unit of energy and c„and c„create
and destroy particles on the nth site. Disorder is intro-
duced via on site potentials {V„) chosen from some dis-
tribution. The phase of the hopping amplitude
H„=e/(A'c) f, A dl arises from the flux contained in

the ring. The numerical analysis is simplified if a gauge
transformation is performed to put all of the static vector
potential across the link between the Xth and first sites. '

We will assume the vector potential is given by the exter-
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nal flux alone and defer to Appendix B a discussion of the
finite self-inductance of the loop. Next we will introduce
a small time-varying flux through the ring. The new
Harniltonian is given by replacing A by A +5A (t) in
(2.1). To lowest order in 5A, the perturbation is given by
D&(t)= —(1/c)J 5A(t), where the paramagnetic
current operator is defined by

where H
~

a) =e
~
a), e &

——e —e&,po ~

a) =f
~
a), and

f =[exp(e —}Lto)+I] is the Fermi distribution func-
tion. The response of the system can be given in terms of
two kinds of changes, the first being real transitions
caused by 5A which give off-diagonal components to the
density matrix of the form

2ma
(2.2}

Cp E p
—N —lP

Since the system is described by a Hamiltonian, it can-
not show resistive behavior. To provide a relaxation
mechanism, the electrons must be coupled to a thermal
bath. This bath is not just a mathematical convenience.
Since any measuring device must be reasonably classical
in order to get a definite result, the process of measuring
the response of the ring will inevitably produce an essen-
tially uncontrolled interaction with the large number of
degrees of freedom associated with the measuring device.
In a sense, then, our approach has some of the flavor of
the Landauer picture except that we will exchange only
energy, and not particles, between the measuring instru-
ment and the device. Of course, our model could also
arise from truly inelastic processes in the ring, but we are
assuming those are negligible.

If the coupling between the ring and the environment
is small, the reduced density matrix p(t) for the electron
can be described by a kinetic equation of the form

(2.5)

and the second arising from the fact that the equilibrium
state is flux sensitive which produces a change in the di-
agonal components of the density matrix by an amount

a
I 5p I

a —
5,

—5A
(a~ J~ ~a) —5p

(2.6)

The chemical potential shift in (2.6) is obtained by impos-
ing the conservation of probability which requires that
Tr5p=O. This constraint is sufficient to determine 5p
and yields

Bp(t) +i [8+8~(t),P(t)]= —y[P(t) —PQE(t)] .

(2.3)

5A(J )
C

(2.7)
This kinetic equation neglects changes in the equilibrium
density matrix induced by the coupling to the thermal
bath. The above relaxation time approximation can be
justified from a microscopic theory when the coupling
to the environment is weak. In (2.3), pQE is the
quasiequilibrium density matrix given by I expP[P
+8,(t) p(t)]+1I —' and p(t) is the chemical potential.
Note that the quasiequilibrium state is governed by the
total Harniltonian. The chemical potential p(t) is fixed

by requiring that the number of electrons remain con-
stant.

Within linear response, the density matrix can be ap-
proximated by p =po+ 5p, where the deviation from equi-
librium 5p is linear in the perturbation. In addition, if
the chemical potential is expanded about its unperturbed
value as tJ,(t)=po+5IJ, (t}, where 5p, is a small shift pro-
portional to the perturbation, the quasiequilibrium densi-
ty matrix is given by

ie
Jd ——— g (e ""+'c„+,c„+H.c. ):——

e

5a-

(2.8}

We can now calculate the induced current J;„d given
by Tr(Jp) where in general, the current operator is
defined by J= —c 5H/5A. The induced current is com-
posed of two parts; a paramagnetic" contribution aris-
ing from the change in the density matrix p of the system
caused by the perturbation 8, and a "diamagnetic" con-
tribution from the change in the current operator due to
the addition of 5 A. Thus J=J +Jd where the paramag-
netic operator is defined in (2.2) and the diamagnetic con-
tribution is given by

(2.4)

In the continuum limit, the operator 8 is given by
(e /m)5(x —x'). Using (2.2), (2.5), and (2.8), we find the
conductivity defined as J;„d=oE =o(ice/c)5A to be
given by a generalization of the Kubo-Greenwood' for-
mula
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f ( ~D~ ~+
COY CO+ l f BE'

(2.9)

where V denotes the volume of the wire. We show in
Appendix A that the term (Jz ), incorporated to con-
serve the number of particles in the system, though im-
portant in principle, is negligibly small.

The diamagnetic contribution in Eq. (2.9) can be
rewritten using a generalized form of the f-sum rule.
To derive this generalization, consider the change caused
in the Hamiltonian given in (2. 1) by adding a small
amount of ilux 5P. The corresponding change in the
vector potential in the azimuthal direction is
A ~ A +(5$/L), where L =%a is the circumference of
the loop. To O((5$) ) the change in the Hamiltonian is

(2.13)

can exist in equilibrium in the absence of any inelastic
scattering because of the sensitivity of the energy levels to
variations in the flux. In the absence of a magnetic field,
the persistent current must vanish as required by time-
reversal symmetry. Using (2.11) and (2.12), the conduc-
tivity can be rewritten as

10(co)=—
V

5A'= —t g e "'"+'[t'58 ,'(59)—]c—„+,c„+H.c. ,

(2.10)

BEa
(2.1 1)

where 58=(ea/kc)(5$/L). The change in the energy of
the state

~

a) caused by (2.10) is evaluated by second-
order perturbation theory. By comparing terms with the
Taylor expansion of the energy e (P+5$), we obtain the
relations

+—
V

a~p

(2.14)

The first two terms are only present in a loop, while the
last term is the same as the usual Kubo-Greenwood for-
mula. ' The two extra terms are directly attributable to
the sensitivity of the system to a magnetic flux, and arise
from the change in the persistent current in the loop, i.e.,
from the change in the equilibrium state as the flux is
varied.

and III. REACTIVE RESPONSE

(a
f

8
f
a)+2+ =(eL)

E —Ep

(2.12)

The latter relation, known as the generalized f-sum rule,
reveals a very important difference between a wire and a
ring. In a wire the diamagnetic term is completely can-
celed by the paramagnetic term and the right-hand side
of (2.12) vanishes leading to the conventional f-sum rule.
This happens because any change in the phase of the hop-
ping matrix element can be removed by a simple gauge
transformation and the eigen values are therefore in-
dependent of flux. In a ring, however, the geometry is
not simply connected, so a change of the phase of the
hopping matrix elements cannot in general be removed,
resulting in energy eigenvalues which depend on the mag-
netic flux. The sensitivity of the eigenvalues to the flux
determines the degree to which the diamagnetic and
paramagnetic terms in (2.12) fail to cancel.

In addition, (2.11) implies that a persistent current

It can be seen from (2.14) that Imo (co) cr I/co as co~0.
This behavior is expected for free acceleration of elec-
trons as is found in a superconductor. The unusual
feature is that a mesoscopic normal ring by virtue of its
topology can support a persistent current and hence
when the system is perturbed by adding a small flux 5$,
there is an induced current J,„d ac 5$. Since J;„d is out of
phase with the electric field, no power is absorbed from
the electric field.

We have performed numerical calculations to study the
response functions of a ring in a magnetic field, using the
tight-binding Hamiltonian with 30 to 100 sites. On site
disorder is drawn from a rectangular distribution of
width 8'/t = 1 and results are obtained for one
configuration of potentials. From the eigenvalue spec-
trum in Fig. 1(a), it can be seen that the less localized na-
ture of states in the middle of the band is reflected in a
greater sensitivity of the eigenvalues to the flux compared
to states near the bottom of the band.

Figure 2 shows a persistent current in the loop for two
temperatures and for two different positions of the cherni-
cal potential. The persistent current, as expected, shows
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F1G. l. Eigenvalue spectrum as a function of flux p for a 40
site system with an onsite potential chosen randomly from a rec-
tangular distribution of width 8'=1.0t, where t =A' /(2ma') is

the hopping amplitude and a is the lattice spacing. The inset
shows the behavior of the 20th, 21st, and 22nd levels.

a periodicity of Pa=bc/e and is odd in P about zero flux.
An interesting feature is that the persistent current can
either lag or lead the electric field. In other words, the
magnetic moment of the ring due to these currents can
point either along the magnetic field or opposite to it de-
pending on the number of electrons present. ' By refer-
ence to the eigenvalue spectrum in Fig. 1, we see that ad-
jacent pairs of states carry nearly equal and opposite
currents so that the dominant contribution to the current
comes from the topmost state. It has been argued that in
a loop of finite transverse extent, the random sign cou-
pled with a varying magnitude for different levels pro-
duces a persistent current of order (euF/L)(kFl)(N, „)'
where N, h is the number of available channels. While we
have not investigated the effect of multiple channels in
detail, however, in one dimension we find considerable
correlation in the size of the current carried by adjacent
states. It is therefore possible that the cancellation is
much more complete than one would find from a random
sum, so the estimate quoted above may in fact be an
overestimate. In one dimension, however, we expect a
persistent current of order euF/L. The shape of the per-
sistent current as a function of the flux is highly asym-
metric about P=Po/4 in the low-temperature regime
where r&&5E. As T is increased and more states are in-
cluded in the averaging, the asymmetry in the persistent
current is reduced but at the same time the magnitude of
the current drops significantly. Using the expression
from Appendix 8 for the self-inductance of a loop, the
flux ( =XI) induced by the persistent current in a loop of
length 1 pm and thickness 0.01 pm is P=(10 —10 )Po.

The reactive response is given by the imaginary part of
the conductivity in (2.14) and in the zero-frequency limit
it is a measure of the change in the persistent current for
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FIG. 2. Persistent currents in equilibrium for the system with the spectrum shown in Fig. 1. The current is given in units of
A'/(2ma) at two temperatures T/5E =0. 1 and 1.0 where 5E =4t/N is a typical spacing between energy levels. (a) and (c) show the
current for the chemical potential p between the 20th and 21st levels (20 electrons) and (b) and (d) are for the case of 21 electrons
where p is between the 21st and 22nd levels. The current is odd in P about / =0.
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a small change in the static flux

c—l. aJp r
lim [co lmcr(ro)] =

Note that in the zero frequency limit there is no change
in the magnitude of the persistent current with damping,
because the mixing of the uncoupled eigenstates of the
electron due to the thermal bath has been neglected here.
At finite frequencies, even within this approximation,
damping reduces the amplitude of the response. The
reactive response is shown in Fig. 3. For T & 5E
quantum-size effects are evident, i,e., the response is sen-
sitive to the position of p. Inductive effects are most
prominent near zero flux or near half flux quanta.

As T is increased and becomes of order 5E, the
response is averaged over a few electron states. However,
unlike the dissipative response which is discussed in the
next section, the reactive response continues to show a
periodicity of Po provided, of course, that the averaging
does not destroy the phase coherence of the electron
around the ring. We will first rewrite the reactive
response as the sum of two terms:

lim [relmo(co]= g f (& (P) —p(Q))
co~0

af (e (p) —p(p)) a&

v X a4, a4,

(3.2)

where the first term is related to the curvature of the en-
ergy levels and the other to the velocity of the levels.
With the increase in temperature averaging, the periodi-
city of each of these terms individually changes to being
predominantly Pp/2 however, a cancellation between
these terms produces a net response in a single ring that
is periodic with period (()o. It must be noted that at some
characteristic temperature, the two contributions to the
reactive response attain a periodicity of half a flux quan-
tum, however, the total response then is a constant and
therefore, only in a trivial way has a periodicity of half
flux quantum. In general for a single ring we find that
the reactive response is periodic with the full flux quan-
turn.

The situation is rather different in an array of discon-
nected rings. If the persistent current for the two posi-
tions of the chemical potential in Fig. 2 are averaged
(equivalent to averaging the current in two rings differing
in the number of electrons by one), the effect is to pro-
duce a strong even harmonic. This is shown in Fig. 4.
Thus for an array of rings the dominant periodicity in the
reactive response should be Po/2. In addition, for an ar-
ray the response must be averaged over disorder; which is
found not to affect the weight in the even and odd har-
monics substantially. This is shown in Fig. 5 for an aver-
age over ten configurations.

The noncance11ation of the diamagnetic term described
above in a normal ring bears a close resemblance to the
behavior of a superconducting ring in a magnetic field or
to a rotating torus containing a superfluid. In a super-
conductor the diamagnetic current arises from the phase
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F&G. 3. Reactive response co lmo in units of e /(mrna) as a function of the flux P for the same 40 site system as in the previous
figures, where 3 is the cross-sectional area of the loop and "a" is the spacing between sites. In (a) and (c) the chemical potential p is
between the 20th and 21st levels (see Fig. 1) and in (b) and (d) p lies between the 21st and 22nd levels. y /6E =0.05, where 6E =4t/X
is the typical spacing between levels. (a) and (b) T/5E =0.1; (c) and (d) T/5E = 1.0. The dotted curve shows the behavior of the first
term in (3.2), the "effective mass, "and the solid curve is the total response.
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with m&0 are longitudinal and satisfy the usual f-sum
rule, which is Eq. (2.12) with the right-hand side equal to
zero. The m =0 term is however a transverse mode in a
1D loop, and according to (2.12), it behaves differently if
the single-particle eigenfunctions are Aux sensitive. The
m =0 mode is allowed only because of the multiply con-
nected geometry, and does not exist for a wire with open
ends. Hence the long-wavelength limit for a loop is not
uniform. This behavior will persist for a loop of finite
cross section, although the fact that the electrons will see
different amounts of flux depending on their path wi11

eventually wash out the effect.
From (2.9), the induced current can be written as

FIG. 4. Average of the persistent current over two different
numbers of electrons (20 and 21) or, equivalently, over a range
of chemical potential. The long dashed line is the result shown
in Fig. 2(a) while the short dashed line is the result of Fig. 2(b).
While each term is clearly periodic with period Po, the sum,
which represents the s&tuation in an array of rings, is periodic
with period $0/2.

rigidity of the order parameter due to the presence of
off-diagonal long-range order. This results in an asym-
metry between the long-wavelength longitudinal and
transverse responses. It is well known that the long-
wavelength limit of the longitudinal density-density
response is the total density n, whereas that of the trans-
verse response is the normal density n„', the difference be-
ing the superfluid density n, =n —n„. A normal metal
loop can also show this asymmetry when the coherence
of the single-particle wave functions is preserved in the
presence of sufficiently weak phase-breaking mechanisms.
This can be understood if we consider a general spa-
tially varying induced current, which if expanded as a
Fourier series in the azimuthal angle 8 yields
J = g J exp(imtI), where m is an integer. All terms

J;„d(co)= —— +X (a)) 5A (co),
c m

n, ,
m

(3.4)

where the analogy with superfluids has been used to iden-
tify 7 (co=0)= en„ l—m. The presence of a net
superfluid density will directly lead to a Meissner effect;
however, in a one-dimensional ring it is not meaningful to
talk of a penetration depth. Byers and Yang have shown
that the quantization of flux in a superconductor is a
consequence of the perfect shielding of the Meissner
effect. In a normal-metal ring, even one with a finite
cross section, the induced current is much smaller than
that needed to screen the magnetic field from the interior
of the wire, since the "superfluid" density arises from the
coherence in a few electron states. Thus there is no
preference to an integral number of flux quanta in a
normal-metal mesoscopic loop.

where t;he continuum expression of D has been used and
is the transverse current-current correlation function.

In the zero frequency and zero wavelength limit, we ob-
tain

ne T —cL BJper+X (~~O)=
m

2

ID
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-IO I

-0 5 -04

=0 I
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IV. DISSIPATIVE RESPONSE

The real part of (2.14) is the dissipative component of
the response where the current is in phase with the ap-
plied electric field. %e find

Bf Be
Reer(co)= — (cL) gV ~+@ BP Bg

+—XV
p eg

FIG. 5. The reactive response for 20 electrons averaged over
ten configurations of on-site potentials. The temperature T and
inelastic rate y are the same as in Fig. 4(a); T/5E =0. 1 and

y/5E =0.05. Note that although the amplitude of the response
is reduced, the periodicity continues to remain Po. The dotted
curve shows the behavior of the first term in (3.2), the effective
mass, and the solid curve is the total response.

yX
(e~p ~) +1'

(4.1)

Two primary sources of dissipation in this system can be
discerned. (a) Intraband processes [first term in (4.1)],
also known as Debye absorption in the context of atoms
and molecules, where the scattering is within a single lev-
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el. This arises because of the noncancellation of the di-
amagnetic term. (b) Interband processes [second term in
(4.1)], where the scattering is between diff'erent levels. As
shown here, for a loop both the intraband and interband
terms must be included, however, that in a wire only the
interband term (b) is present. The dissipative part of the
conductivity must satisfy the following sum rule:

200

(50-

2

f d co Reo (co) =
0 2m

(4.2) 50

However, if we substitute (4.1) in (4.2) we find that some
of the weight is missing. The missing weight
[=( cL/—V)BJ~,„/BP] is precisely the free acceleration
of electrons that must appear as a 5 function at co=0.

There has been much controversy in the past on the in-
clusion of inelastic scattering in the Kubo-Greenwood
formula for the real part of the conductivity, given in the
absence Of inelastic effects by

I

0
0.0

I I

l5 20lo
y/SE

FIG. 6. dc conductivity in zero magnetic field as a functio n
of the size of the inelastic scattering rate for two di6'erent tem-
peratures T/5E =0.1 and 0.5. Maximum dissipation occurs for
y =5E. For y &p 5E the behavior is Drude-like, with
Reo. ~ 1/y.

Reer(co)= g (fp f ) )
(i—z

~

J ~P) (aiV)

X 5(e Ep fia—))— (4.3)

which is nonzero only when the energy difference of the
initial and final states equals fico. Imry and Shiren,
Thouless and Kirkpatrick, and others have proposed a
generalization of (4.3) to include inelastic scattering.
Their form is obtained by assuming that in the presence
of inelastic scattering, the 5 function in (4.3) would get
broadened into a Lorentzian of width y. Their expres-
sions, derived explicitly for a wire, amount to replacing co

by ~+iy in the presence of inelastic scattering. This
simple prescription, while justified in a wire where only
the interband processes contribute to the conductivity,
does not work when there are diamagnetic effects present,
as in a ring, for which as seer) from (2.14), the first term
only has an co and not co+i y. In fact, a somewhat incau-
tious application of the above-mentioned gnsatz can lead
to unphysical conclusions in the presence of diamagnetic
eifects. Within a linear-response formalism, the expres-
sion in (4.1) can be obtained from a relaxation time ap-
proximation only when the system is allowed to relax to a
state of quasiequilibrium that includes the perturbation.
In Appendix A we share some of the insight we gained by
dealing with different approximations for the quasiequili-
brium distribution function.

The behavior of Reo. as a function of the level broaden-
ing is shown in Fig. 6. If y is much less than the typical
level spacing 5E at the Fermi level, the conductivity is
proportional to y; in this regime the discrete nature of
the levels is probed. A larger y simply leads to a larger
rate of absorption of energy because the electrons spend
most of their time in a single state before giving up their
energy. For y &&6E, the discreteness of the levels is
unimportant and the inelastic scattering into other levels
dominates the absorption of energy resulting in a Drude-
like response where Reer ~1/y. We would like to em-
phasize that the scattering rate that appears in the Drude

expression is an inelastic and not an elastic rate. It can be
seen that the maximum absorption occurs at y =5E (see
Fig. 6).

As a function of the dc flux threading the ring, P, we
find that the conductivity is very sensitive to the position
of the chemical potential p when the temperature k~T
and inelastic scattering rate Ay are much smaller than the
typical level spacing 5E In this r. egime, where quantum-
size effects dominate, the conductivity is clearly periodic
in P with period equal to the normal fiux quantum
Pc=bc/e, as has been noted by other workers. 23 2 This
is shown in Fig. 7 for two cases: (L) where p is exactly at
the center of the band, and (R) where p is moved up by
one level so that there is one more electron in the loop.
Most of the absorption takes place either around zero
flux or half flux quanta. The interband contribution to
the conductivity switches from a maximum at /=0 to a
minimum depending on the number of electrons. This
behavior can be understood from the eigenvalue spec-
trum in Fig. 1 as a consequence of the different energy-
level denominators involved in the absorption process.
The total absorption must include intraband processes
arising from the incomplete cancellation of diamagnetic
terms. Shown by the solid curves in Fig. 7, the dissipa-
tive response including both interband and intraband
contributions indeed has a minimum at /=0. The im-
portance of these diamagnetic terms has alamo been dis-
cussed by Biittiker within a Landauer formalism.

Note that the conductivity obtained above is a
minimum at zero fiux, as would be predicted from the
theory of weak localization. Imry and Shiren found in-
stead a max&mum at zero flux in the absence of any spin-
orbit scattering, which they attributed to the energy
denominator effect described jn the weak scattering re-
gime. In view of the above analysis, they got a maximum
at zero flux because only the interband term was included
in their calculation. They also claimed, in contrast to our
results, that no change was observed when the chemical
potential was shifted.

With increasing temperature, the conductivity is aver-
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FIG. 7. dc conductivity as a function of the Aux for two di8'erent temperatures. The figures are arranged in the same fashion as
Fig. 4, where the corresponding reactive response is shown. The dotted curve is the interband contribution and the solid curve is the
total dissipative response from (4.1) including both intraband and interband contributions.

aged over energies of order kz T which washes out the
quantum-size effects. The sensitivity of 0. to the position
of the chemical potential is lost. However, as seen in the
behavior of cr with P at two different temperatures in Fig.
7, the periodicity of cr changes ' to hc/2e as the tem-
perature becomes of order 5E. The inelastic scattering
shows qualitatively different behavior in that if the tern-

perature is low, increasing y does not produce sufficient
averaging of the conductivity and the dominant periodi-
city continues to be hc/e. This is shown in Fig. 8, and is
due in part to the fact that here we have ignored the level
mixing caused by the coupling to the environment. This
effect is not seen in Ref. 23 because in that calculation the
temperature is high enough to produce the averaging by
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FIG. 8. dc conductivity as a function of the enclosed magnetic Aux as the magnitudes of the inelastic scattering and temperature
are changed. Only the case of 20 electrons on the 40 site ring is shown, since the case of an odd number of electrons is similar.
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increasing the inelastic broadening. Inelastic scattering
has a greater effect on the intraband conductivity com-
pared to the interband term. We also find that the
manner in which one averages changes the results one
sees; averaging via a thermal distribution is in general
much more effective than averaging via inelastic broaden-
ing of the electron states. Of course, in a real system
both processes occur simultaneously and the inelastic
effects are temperature dependent.

The effects arising above from the sensitivity to the flux
is a measure of the conductance of a loop. ' It is clear
that the effects we are describing become negligible as the
disorder is increased and localization sets in. If the
states are localized, by applying a gauge transformation
all the vector potential can be put on a link where the
wave function is zero. The electron then no longer "sees"
the magnetic field.

V. DISCUSSION AND CONCLUSIONS

We have given a description of electrons in a normal
metallic ring threaded by a magnetic flux using a tight-
binding model. We have generalized the Kubo linear-
response formalism to include two important effects per-
tinent to a calculation of response functions: (a) diamag-
netic contribution arising from the special multiply con-
nected geometry of the ring and (b) phenomenological
description of inelastic scattering included in a way to en-
sure that probability is conserved. In order to separate
the intrinsic properties of the ring from the perturbation
caused by leads attached to it for measurement purposes,
we have considered here an isolate;d ring. The response
functions of such an isolated ring can be measured by a
resonant-cavity experiment.

The dissipative response has been studied in consider-
able detail over the past couple of years by the Landauer
transmission matrix method. ' ' ' Here we have shown
that similar results can be obtained via the Kubo formu-
lation if the diamagnetic effects that lead to intraband
scattering are retained. An important consequence of re-
taining the diamagnetic contribution is that Reo. has a
minimum at /=0 in agreement with the predictions of
weak localization. Previous approaches that neglected
such a term found a maximum instead.

We find that if the temperature and inelastic broaden-
ing are much smaller than the typical level spacing, the
response of the system is very sensitive to the number of
electrons in the band. This is the response that might be
expected for a very small system that could almost be de-
scribed as "molecular. " In this regime the dissipative
part of the conductivity shows a periodicity in flux of $0.
As the inelastic broadening is increased or the tempera-
ture is raised, these "quantum-size effects" disappear and
the response is no longer sensitive to the number of elec-
trons. Within a single ring the periodicity changes to
Po/2. The actual averaging of the conductivity does not,
however, appear until k~ T or y are much larger than the
typical level spacing. Also, the energy averaging pro-
duced by a thermal distribution of electrons is found to
be much more effective than that produced by inelastic
broadening.

We have also studied the inductive response of the
ring. If the inelastic length is longer than the size of the
ring, the wave functions of the electron are coherent and
lead to a persistent current in the ring. We suggest that it
may be simpler to see the change in the persistent current
in a ring via a phase-sensitive technique than to measure
the current itself. The reactive response of a single ring
continues to show a periodicity of $0 even when the tem-
perature or the inelastic scattering rate are comparable to
the spacing between levels, though the amplitude of the
response goes down dramatically. In an array of rings
the situation is different, and we expect the periodicity of
Po to be replaced by $0/2. However, it is not so much
the average over the different impurity configurations in
each ring that produces a doubling of the period, but an
average over even and odd number of electrons, (or aver-
age over positions of the chemical potential), that has the
effect of changing the periodicity to $0/2. Thus to see
the doubled periodicity in the inductive response, it is, in
fact, necessary to average over the number of electrons,
while for the absorptive part this appears without the ad-
ditional averaging.

Further work is needed to calculate the effect of multi-
ple channels in the ring and also to understand the role of
disorder on the reactive response. It would also be useful
to develop a microscopic description of dissipation by
coupling the ring to a bath of oscillators in a less ad hoc
fashion than that used here and to study its effect on per-
sistent currents and Zener tunneling.

Note added in proof. After this paper was submitted,
we received a copy of a paper by H. F. Cheung, Y. Gefen,
E. K. Riedel, and W. H. Shih [Phys. Rev. B 37, 6050
(1988)] which also discusses the question of persistent
currents in a one-dimensional ring.

APPENDIX A

In this appendix we discuss some of the subtleties asso-
ciated with the relaxation time approximation and the
linear-response formulation. We clarify the conditions
under which the different forms for the conductivity, in-
cluding those found by other workers ' are obtained.
We derive the correct expression for the conductivity in
the case of a wire with open ends where the diamagnetic
effects are unimportant. We also show that, while for the
sake of purity, the chemical potential shift should be in-
cluded, it has negligible effect on the dc conductivity of a
loop.

The equation of motion of the density operator is given
by

i [H+H, (t),—p]+dt dt
(A 1)
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for the off-diagonal components of the change in the den-
sity matrix, where pe I

a) =f
I
a) and e p=e —tp The.

diagonal components are given by

&a I5p I
a&= . &a

I 5pQE I
a&

N+lg
(A3)

We now discuss three different choices for 5pQE and
derive the corresponding expressions for the conductivi-
ty. Note that in each case if one takes the limit y ~0, the
real part of the conductivity is given by the Kubo-
Greenwood' formula (4.3) and also obeys the sum rule
given in (4.2).

1. Case I: 5p&E ——0

This situation arises when the conservation of particles
is ignored entirely. In the same spirit we will assume that
the f-sum rule is invoked to cancel the diamagnetic term.
One then finds that the off-diagonal elements of the densi-
ty matrix are given by

(A4)

and correspondingly, the conductivity which only has an
interband component to it is

asap

(A5)

The real part of the conductivity is given as

Rea(~)= —X
f. fp—

V p ep
a@p

2
y 26~p

(e~p ~) +l' (e~p+co) +7'

(A6)

This is the correct generalization of (4.3) that includes the

where 8 is the unperturbed Hamiltonian with

a) =e
I
a). The second (collision) term on the

right-hand side of (Al) is the change in p because of cou-
pling to an external bath and is typically written within a
relaxation time approximation as —y(p —pQE). Here, y
is the relaxation rate and p&E is the quasiequilibrium dis-

tribution that is discussed in some detail below. In the
spirit of linear response, we assume that 8, is a small

perturbation and expand p=po+5p, where po is the glo-
bal equilibrium described by the Fermi distribution func-
tion. We also assume that the quasiequilibrium distribu-
tion can be expanded in powers of H

&
and

pQE=po+5pQE We find

(f.—fp) & a
I
&i I & &

—i)'& a
I 5pQE I & &

6~p —CO —l P

(A2)

effect of inelastic scattering on a system assumed to relax
to a state of global equilibrium.

(f —fp)(a
I
8, IP)a

I 5PQE I
~ = (A7)

where note that case II differs from case I in that the per-
turbation 0& has been included in the description of the
equilibrium state. The off-diagonal elements of 6p are the
same as in (2.5) and differs from case I by a multiplicative
factor (e,& iy)le—&. Once again, evaluating the di-

amagnetic and paramagnetic contributions to the induced
current, we find

«~)=—2 '
. 1&a I&, I&& I'

p 6~@ 6'~p —co —i 7'

a~p

(A8)

where the diamagnetic contribution is completely can-
celed by a part of the paramagnetic term since
(a

I 5p I
a ) vanishes. It is obvious that the results for the

wire are quite different from the situation discussed in

Sec. II, in that there is no intraband term.
The dissipative part of the conductivity in (A8) is then

given by

Rea(co)= —g I
(a

I J~ IP) I 2 2V p ep (e ~)2+F2
a~p

(A9)

which is the form obtained by Thouless and Kirkpa-
trick for the interband term in a wire. Here we have
shown that this modification of the Kubo-Greenwood
conductivity in the presence of inelastic scattering can be
justified if the system is allowed to relax to a quasiequili-
brium state that includes the effects of perturbation. The
imaginary part of the conductivity in (A8) has no diver-
gence at zero frequency because of the different boundary
conditions in a wire compared to the loop considered in
this paper.

3. Case III: (a
I Sp I

a )+0
This is the situation encountered for a ring geometry.

While the form of the interband scattering is the same as
in a wire given in (A9), there is an additional intraband
term. Also as discussed in Sec. II the system must be al-
lowed to relax to a state of quasiequilibrium with a time-
dependent chemical potential in order to conserve proba-

2. Case II: (a
I 5poE I

a)=0
This situation is obtained for a wire with open ends,

since the current operator then has no diagonal elements.
From (A3) we see that probability is trivially conserved
since the diagonal components of the density matrix are
unchanged by the external perturbation. Then the
change in the density operator involves only off-diagonal
components. The quasiequilibrium density matrix is
given by
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FIG. 9. The behavior of the two terms A, given in (A10},and B, given by (A11), for two different temperatures. Both terms con-
tribute to the change in the diagonal components of the density matrix (2.6). The B term arising from the change in the chemical po-
tential with Aux is indeed seen to be negligible compared with A. Note the different scales for A and B.

bility. We wish to show that the chemical potential shift
is quite small. Consider the two competing terms given
in (2.9). Let us define

terms of the self-inductance of the loop, we get

g1+ lg2
I,„d

—— . . (i co/c)P, „,1+(i co/c )2 (g, +ig 2 )
(82)

(&a~ J ~a&)
BE

(A10)
which reduces to

and the term arising from the shift in the chemical poten-
tial by

aa=y &a[7, [a)&J,),
86~

(Al 1)

1COI,„d ——(g, +igz }
c

(Bl}

where the total flux through the loop is the sum of the
external and the induced flux and 6 =g& +Eg2 is the con-
ductance of the ring. Substituting for the induced flux in

where & J~ ) is defined in (2.7). In Fig. 9 we show the be-
havior of the terms A and B at two different tempera-
tures. The correction introduced by the chemical poten-
tial shift is indeed negligible. Thus our conclusion is that
it is not essential to include a chemical potential shift in
the quasiequilibrium distribution function, however, it is
crucial to include the perturbation H, in & a

~ 5pQE ~
P).

APPENDIX 8
We obtain conditions under which self-inductance pro-

cesses in the loop can be neglected. In the discussion in
Sec. II we obtained the current induced in the loop by ap-
plying a time-dependent magnetic flux through it. In
general, the induced current will also produce a flux,

P,„d XI,„d, where X i——s the self-inductance of the loop
and I;„d is the induced current in the loop. Thus

Iind = [g i + i (g2 —MXg i )/c](iso/c)P, „, (83)

if it is assumed that the induced effects are small. In gen-
eral, g, is also renormalized by the self-inductive effects,
but we focus here on the reactive part. The condition for
the reactive response of the ring not to be masked by
self-inductive effects is

g2 CO)) +gi (84)

If we assume the thickness of the wire, 5, is much
smaller than its length, we find the inductance to be given
approximately by

( —lni) ),2L
c

(85)

where g=2~5/L. Consider typical numbers for a 1-pm
loop having a square cross-sectional area of 0.01X0.01
pm . If the resistivity is taken as 2 rMA cm, then

g, =20e /fi. Using the expression for the inductance of a
loop in (85), we find Xgi/c=0. 5X10 ' sec. This can
be combined with (84) to set limits on the frequency used
to study the response functions. To estimate gz note that
it is of the order of (c/~L)(eUF /itio) as can be seen from
(3.1). This implies that co « 10' sec ' if intrinsic
response is to be seen, unmasked by ordinary inductive
effects.
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