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Using molecular-dynamics simulations and an interatomic potential that had been designed to be
unstable to (110) {110} shears, we studied the mechanisms of tweed formation in face-centered-
cubic (fcc) crystals. We found that tweed is most probably a premartensitic phenomenon that nu-
cleates homogeneously in strongly anharmonic solids. Yet tetragonal strain fields will enhance the
formation of tweed in the crystal. Unlike the case of body-centered-cubic (bcc) crystals, we did not
find any particular feature in the interatomic potential that is common to all materials showing a
tweed instability. Finally, we showed that solitons with hyperbolic-tangent strain fields are the kind
of elastic shear waves that propagate in such anharmonic solids.

I. INTRODUCTION

Since its first characterization in relation to Guinier-
Preston (GP) zone formation in Cu-Be alloys by Tanner'
in 1966 as spontaneous tetragonal distortions of a cubic
lattice, “tweed” has attracted considerable attention be-
cause of its possible connection to the nucleation of the
martensite phase. With the sudden new advances in the
field of superconductors, the tweed phenomenon has
rearoused the interest of many researchers. Indeed, it has
been suggested”? that tweed, or rather tetragonal distor-
tions of the lattice, might be the basis for the supercon-
ducting effect in Y-Ba-Cu-O and Ba-La-Cu-O perovskite
compounds, through its influence on the electron-phonon
coupling in these materials. However, the fundamentals
of the phenomenon are still not fully understood.

In the course of an extensive study of tweed in Ni-Al
alloys, Robertson and Wayman* proposed the following
definition of the term. “Tweed describes linear variations
in contrast which lie approximately parallel to the traces
of {110} planes of a nominally cubic solid solution, and
which obey extinction rules consistent with [110]{110}
shear displacements.”

Apart from being associated with GP zone formation,
tweed microstructures have also often been observed in
systems undergoing martensitic transformations. Most of
the abservations were made on bcc alloys, such as NiAl*
Cu-Al-Ni, and Cu-Zn,’ but there is evidence of tweed
occurring in fcc alloys as well [Fe-Ni alloys (Refs. 6 and
7), and Ni;Al (Ref. 8)]. In most cases. the appearance of
tweed is concurrent with other anomalous phenomena,
such as lattice softening and anomalous phonon disper-
sion, that also appear in the vicinity of the M, tempera-
ture upon cooling from higher temperature, or in the vi-
cinity of the A, temperature upon heating of the sample.
This is what led various authors>® to conclude that large
amplitude vibrations were responsible for the diffracted
streaks characteristic of tweed microstructures.

The theories on tweed formation cah basically be divid-
ed into two categories. (1) one category includes theories
that suppose that tweed originates from static causes,
such as shears produced around defects, precipitates, lo-
cal ordering, or GP zones. Those have been invoked in
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particular by Tanner' and Wen ef al.’ In that case, lat-
tice anisotropy seems to be the major cause of the appear-
ance of tweed contrast. (2) Another category concerns
theories that suppose that the origin of tweed is essential-
ly dynamic, caused by phonon softening and anharmoni-
city, which have occurred in relation to premartensitic
phenomena. In fact, when tweed occurs prior to a mar-
tensitic transformation, it has in some cases been possible
to prove that its formation is not caused by second-phase
precipitation.?

Delaey et al.'® pointed out that the magnitude of
C'=4(C,—C,;) (at least for the Hume-Rothery S
phases) is very sensitive to uniaxial stresses, and Guénin
and Gobin'! showed that this may lead to values locally
equal to, or very close to, zero due to the strains involved
near lattice discontinuities (such as dislocations, grain
boundaries, point defects, etc.). This process could be
one of the causes for a C' lattice instability. Another sug-
gestion derives from the observation that many of the al-
loys that show tweed also have a very high elastic anisot-
ropy in that temperature range, so that the strain created
around small tetragonal precipitates is quite large. A
different explanation applies to the family of ferromag-
netic invar alloys such as Fe-Ni and Fe-Ti alloys. In that
case, the marked softening of the lattice has been related
to the magnetic properties of those alloys, since no elastic
softening occurs if T, < M, (where T, is the Curie temper-
ature).'?

Lattice anharmonicity and softening have also very
often been invoked for the interpretation of tweed behav-
ior in reciprocal space. For instance, diffuse scattering
effects have been interpreted in terms of transverse (110)
fluctuation waves of displacements characterized by ex-
tensive two-dimensional regions parallel to {110}
planes.>® They have also been described as the manifes-
tation of the tetragonal transformation of the austenite
phase upon the action of a double (110), {110}, shear."
This latter point suggests the appearance of tweed as a
premartensitic effect, the tweed microstructure being in-
termediate between the microstructures of the austenite
and the martensite. However, up to now there is no
proof that this might indeed be the case.

In addition to those experimental results, some com-
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puter experiments have been performed to try to shed
some light upon the nature of tweed. Using a Monte
Carlo simulation algorithm, Wen et al.’ looked at the
most stable configuration that randomly dispersed tetrag-
onal precipitates in an idealized elastic cubic matrix
would assume. They showed that under such assump-
tions, the energetically favorable configuration of the pre-
cipitates is to align along (110) directions of the matrix.
They calculated that this configuration reproduces fairly
accurately the experimental diffraction pattern, as well as
the observed bright-field imaging oscillation contrast,
thus proving that tweed is the result of an attempt to
minimize the elastic energy produced by an array of
tetragonal precipitates. In an attempt to understand the
mechanisms of tweed formation, Clapp et al.'* ran
molecular-dynamics simulations using an interatomic po-
tential that had been specifically calculated to produce a
bee lattice unstable with respect to (110){110} shear
strains. They were able to reproduce (110) streaking in
the diffraction patterns and found that point defects such
as interstitials (which produce a tetragonal strain field in
a bece lattice) increased the tweed effect, i.e., streaking was
more marked and appeared at higher temperature,
whereas vacancies (which have a cubic strain field) had
not noticeable influence as compared to the perfect crys-
tal response. The simulated crystal underwent a homo-
geneous martensitic transformation at low temperature,
but no attempt was made to relate that transformation to
the tweed phenomenon itself.

As mentioned previously, lattice anharmonicity can
very often be associated with the presence of a tweed in-
stability. It is interesting to note here the analysis made
by Krumhansl and Schrieffer'> who showed that when
the interactions between the particles in a solid are
strongly anharmonic, then the displacements of those
particles can no longer be adequately represented by the
usual phonon waves or phonon perturbation approxima-
tion. They calculated that (following their terminology)
domain walls are an important type of excitation in one-
dimensional systems which result directly from the
anharmonicity of the system, and which produce a cen-
tral peak in the phonon spectrum that has been observed
experimentally to accompany the appearance of a soft-
mode in the course of structural phase transitions. Those
domain walls, which have been shown by computer simu-
lation to link small clusters of locally distorted regions,
can be described by

1 (x—un) ] W

=uytanh
u=uytan Vi €

where u is the displacement of the particles, u is the am-
plitude of the displacement at * o [the displacement is
+uy if (x —vt)>0 and is —u, if (x —vt)<0], and v is
the velocity of the wall, which has a thickness 2V/2¢.

In the next section of this paper, we describe the model
and assumptions used to simulate a tweed instability in
the computer. In particular, we assumed that the fcc lat-
tice had to be strongly anharmonic, and unstable with
respect to {110) {110} shears. We also detail the method
used to calculate an interatomic potential appropriate for
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the molecular-dynamics simulations.

In Sec. III we present the results obtained during the
simulation experiments. We were able to observe tweed
in a temperature range T < T,, /5 (where T,, is the ap-
proximate melting temperature of our system), and the
effect of various defects on the phenomenon. An analysis
based on the various energies of the waves has been per-
formed to try to determine exactly what kind of shear
wave was propagating in our anharmonic solid. We
found that a new kind of soliton that produces a hyper-
bolic tangent strain field was the energetically most favor-
able in our system, and those results will be discussed in
Sec. IV.

II. MODELING

The displacements that show up as tweed during elec-
tron imaging of the crystals can be thought of as small
tetragonal distortions in the cubic matrix. Our approach
was to construct a lattice in the computer that, due to the
interatomic potential chosen, exhibits a tetragonal insta-
bility, and specifically a (110){110} shear instability,
since the combination of two of those shears of the same
amplitude is equivalent to a tetragonal distortion.

A. Model for the lattice potential energy

Such a requirement implies a strong anharmonicity of
the lattice, which shows as a negative second derivative
of the potential energy with respect to the strain parame-
ter of interest. We assumed that the potential energy of a
system that shows tweed can be adequately represented
as a function of a strain parameter by the curve shown in
Fig. 1. This double-minimum curve simply means that a
slightly strained configuration of the crystalline lattice is
energetically more stable than the unstrained fcc lattice.
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=500 {
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-0.4 -0.2 0.0 0.2 0.4

Shear Strain
FIG. 1. Model assumed for the lattice potential energy as a

function of strain. € is the height of the energy barrier for
straining the lattice.
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In particular, one can speculate that the free energy of
our system (which becomes the same as the potential en-
ergy at absolute zero) will evolve as a function of temper-
ature following these key steps.

(i) If kT <&, the height of the energy barrier, the crys-
tal will spend a substantial amount of time in a strained
configuration, since the kinetic energy will not be large
enough to surmount the free-energy barrier. A
diffraction pattern taken from such a structure will exhib-
it Bragg peaks shifted because of the homogeneous strain
that the lattice undergoes, with some diffuse scattering
that accounts for thermal fluctuations around that posi-
tion.

(ii) If kT =e, there is a finite probability for the system
to surmount the energy barrier, and the crystal will keep
switching from one strained configuration to the next, de-
pending on whether it is trapped in one or the other of
the two minima. The intensity of the Bragg diffraction
peaks, in this case, should be split symmetrically on ei-
ther side of the Bragg position to a position that corre-
sponds approximately to the amount of strain at the
minimum.

(iii) If kT > ¢, the lattice should behave on average as a
regular fcc lattice, and the diffraction pattern should
show peaks at the regular Bragg positions.

Even though the quantitative determination of the free
energy of a system as a function of temperature is a rath-
er complicated process even with the use of molecular-
dynamics simulations (see, for example, Ref. 16), we ex-
pect to be able to test our hypothesis at least qualitatively
by examining the resulting diffraction patterns and radial
distribution functions of the lattice at different tempera-
tures.

B. Analytical expression for the potential energy E

Because of the periodicity of a crystalline lattice, the
lattice potential energy must also be periodic as a func-
tion of strain if the strain is itself a periodic function (as
are, for example, pure shear strains, as opposed to dila-
tional strains). As a result, we can expand the function
describing the potential energy versus { 110) {110} strain
in a Fourier series:

E(np)= 3 A,cos 2mnn + > B,sin 2mnn ,  (2)
n n
n=0 Mo n=0 Mo

where 7 is the shear-strain parameter (taken as the ratio
of the shear displacement of any plane to its distance
from the origin), and 7, is the period (17,=2 in our case
as a consequence of the fcc symmetry).

But our choice of a model with a symmetric double
minimum around =0 implies an even function, so

E(= 3 A,cos | 21 3)
n=0 Mo

It is shown in the Appendix that the simplest expansion
of E(n) that will reproduce the desired features of the
curve can be limited to the three first terms: n=0,1,2.
We chose arbitrarily the value of the strain at the
minimum to be 7,,;,=0.2, and the height of the energy
barrier € to be equal to 211.28 K (for convenience, all the
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energies have been divided by the Boltzmann constant
and are expressed in degrees Kelvin). The potential ener-
gy curve was then expressed as

E(n)=6489.43—9391.68 cos(m)+2902.25 cos(2my) .
4)

C. Calculation of the interatomic potential

Once the potential energy curve has been determined,
we can calculate an interatomic potential that will pro-
duce the desired tetragonal instability. The energy of in-
teraction of individual atoms within a crystalline lattice is
described as a function of distance by the interatomic po-
tential curve. Assuming only central forces are present,
the potential energy of a lattice is equal to the sum of all
the pairwise interaction energies:

=13V, (5)
iJj

where i and j represent, respectively, all the atoms in the
lattice, r;;= | r;—r; | is the distance between atom i and
its jth nelghbor, V(r ) is the value of the pa1rw1se poten-
tial at a distance r;; between atoms. The factor 1 corrects
for counting each pair of atoms twice.

In our particular problem, the total potential energy E
is a function of the strain parameter 7, as is also 7;; i
Therefore, in order to obtain the pair potential curve, the
following system of equations has to be solved in V(r):

E(?’]I):%E V(r,/('rll)) »

iJ

E(le)=% 2 V(rij('ﬂz)) »
ij

E(n,,) =%2
ij

Tij nm ),

where the 77,,’s are discrete values of the strain parameter
chosen so as to give a good representation of the shape of
the curve E(7n). If the 7,,’s are chosen at sufficiently
close values, the equations above should lead to a unique
function V(r) in the range r;, <r <r., where r;, is the
distance of closest approach between atoms during shear,
and r, is the assumed cutoff distance for V(7). For an fcc
lattice _ in  homogeneous  (110){110}  shear,
Fmin ="V 3ay/2V2.

We then assumed that V(r) could be expanded in a
power series:

n—no

p—1
=3 a,r , (N
n=0

where the parameters are p (the length of the series) and
n, (the initial power), and the a,’s are to be determined.
Additional constraints were imposed on V(r) in view
of the computer simulation. In particular, we truncated
the interatomic potential at a cutoff radius r, half-way be-
tween the third- and fourth-neighbor distances. In order
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to help in the simulation algorithm, we imposed a value
of zero for the potential and its first derivative at r.. Fi-
nally, in order to simulate physical systems, we had to en-
sure that the system would be stable at its nominal atom-
ic volume (i.e., it would not spontaneously collapse or dis-
sociate). For that purpose, we used a stability condition
derived by Maeda et al.'” and assuming no volume forces
are applied to the system, it may be written as

g , av(ry) —o

=Y oy ’

(i)

(8)

where N is the total number of atoms. The system of
equations now transforms to

E(n)=53a, > [rij(nl)]n_no ,
n ij

fl-ﬂ0

E(n)=33a, 3 [r;(n,)] )
n ij

Emy)=+3a, 3 r;m,01 ", 9)

n i,j
0= 3 a,[r.(0]" ",
n

n—ny—1

0= 3 (n—nga,[r.(0)] )

n—no

0= 3 (n—nga, 3 [r;(0)]
n iLj

This (m +3)Xp system of linear equations was then
solved for the a,’s using a least-square analysis.

ITII. RESULTS AND DISCUSSION

A. Interatomic potential

We found that a minimum number of elements in the
series expansion of the interatomic potential p >7 had to
be used to ensure the reproduction of the potential energy
curve, which was then duplicated with an accuracy of
*+1%. The interatomic potential that we chose for the
computer simulations is

8
Vir)=3 a,r*! (10)
n=0

and is represented in Fig. 2. The cutoff radius was
chosen half-way between the third and fourth neighbors
at r.=1.32 fcc unit cell lengths, and the corresponding
coefficients a, of the power series are given in Table I.
The behavior of this system as a function of a homo-
geneous expansion or contraction of the lattice is shown
in Fig. 3. It can be seen from that figure that this poten-
tial makes both the fcc and the bce phases stable, which
is a requirement to be able to simulate both lattices in the
CcMD (Computer Molecular Dynamics) program, and
furthermore that the bcc phase (with an energy of
—1938.70 K/atom) is, at least at O K, thermodynamical-
ly more stable than the fcc phase (whose corresponding
energy is —28.09 K/atom), which indicates a driving
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FIG. 2. Interatomic potential that produces a C’ instability.
The r,’s (n=1-4) represent the positions of the four first fcc
neighbors, and 7, =1.32 is the cutoff distance. The interatomic
distance is expressed in terms of the fcc lattice parameter, and
the potential is in units of degrees Kelvin (with multiplication
by Boltzmann’s constant understood).

force toward a phase transformation. It is noteworthy
that a majority of the interatomic potentials that we cal-
culated also showed this tendency for a low-temperature
transformation. The calculation of the first and second
derivatives at the successive neighbor positions has been
performed systematically for all the calculated interatom-
ic potentials, but no obvious trend has been found that
could be invoked as a feature common to all fcc systems
that show tweed, as had been the case during the study of
bec alloys. '

B. Simulation results

Simulation runs were done systematically from 10 to
7000 K. Such a wide temperature range has been chosen
in order to characterize the system under simulation, in
particular to find the melting temperature, observe the
occurrence of any phase transformation, and determine

TABLE I. Coefficients of the series expansion of the intera-
tomic potential.

X

a,

1.1961 x 10*
—2.8722x 10*
2.9845x 10
—1.7519x 10*
6.3507x 10°
—1.4552x 10°
2.0579x 10°
—1.6423x 10’
5.6643x 107!
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FIG. 3. Behavior of the lattice potential as a function of the
atomic volume. The atomic volume is expressed in terms of the
fcc parameter. The solid line represents the fcc phase, and the
dashed line represents the bee phase.

the tweed behavior as a function of temperature. Various
defects artificially put into the perfect lattice array have
been tested in addition to the perfect lattice: a vacancy,
an interstitial, a tilt boundary, and a vacancy loop. The
initial relative orientation of the fcc particle array and
the simulation box has to be chosen relative to the insta-
bility that we seek to observe, a consequence of the
periodic boundary conditions used in the molecular-
dynamics program in order to minimize the effect of free
surfaces on the system. Indeed, homogeneous particle
displacements in directions nonparallel to the orientation
of the simulation box will be prohibited because the
periodicity of the lattice would be broken upon applica-
tion of the periodic boundary conditions. For the
(110) {110} shear, the box was oriented along the (110)
directions of the fcc lattice, i.e.,

Xoox =[110], Y,,,=[110], Z,,=[001]. (11)

A perfect array of 640 particles was fitted into the box,
i.e., there were four fcc unit cells in both the X and Y
directions of the box, and five unit cells in the Z direc-
tion.

An interstitial was created by simply adding one parti-
cle in an empty octahedral site of the lattice, a vacancy
by removing one of the particles of the array, and a va-
cancy loop was produced by removing part of a (110)
atomic plane, parallel to one side of the box, so as to pro-
duce a semi-infinite (in the Z direction) planar defect.
Therefore, the array contained 641 particles when an in-
terstitial was added to the perfect lattice, 639 particles in
the case of a vacancy, and 620 particles when a vacancy
loop was created.

For each of those defects, we ran a ‘“‘presimulation”
simulation of 1000 steps at 1 K to allow the defects to
statically relax before running any simulation at higher
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temperature. The relaxed configurations were then input
as step 0 into the CMD program.

The melting temperature T,, of our system was deter-
mined from the discontinuity that occurs in the potential
energy versus temperature curve at the melting point. It
was found to vary by as much as 20% depending on the
defect simulated in the lattice, from about 5000 K with
the vacancy loop to about 6000 K for the perfect infinite
crystal. However surprising at first, such a large varia-
tion in the melting point can be rationalized if one con-
siders that under periodic boundary conditions free sur-
faces, which are among the most effective heterogeneous
nucleation sites for the melting transition, are completely
absent. We are, therefore, looking at the melting transi-
tion under quasihomogeneous nucleation conditions,
where high-energy defects such as the tilt boundary or
defects that produce some free volume such as the vacan-
cy loop are expected to ease considerably the melting
process. Also, since the simulations are run at constant
volume, the volume increase that would be expected upon
melting is rather translated into an increase in pressure of
the system, unless there is enough free volume to release
this pressure, thereby increasing the melting point from
what it would be under adiabatic conditions.

1. Effect of temperature on tweed

The mean-square displacement (MSD) is a good repre-
sentation of the magnitude of the atomic motions in the
system and/or of the number of particles that participate
in the motions and may be directly related to the Debye-
Waller factor in x-ray measurements or the recoilless
fraction in Mossbauer experiments. The “averaged
MSD,” a time average of the MSD at a given tempera-
ture, gives an idea of the average magnitude of static dis-
placements and/or of the amount of particles that took
part in the motions once transient displacements (caused
by the inherent instability of our system) have settled
down. It can, therefore, be used to evaluate the amount
of tweed deformations that are taking place in the system
at a given temperature. Note that the averaged MSD
cannot be meaningful if the diffusion rate in the system is
large, since the magnitude of the displacements keeps in-
creasing with time. Fortunately, this was the case only
when the vacancy loop was present in the system, and
then only at temperatures larger than 4000 K.

We characterized the tweed behavior through the use
of calculated diffraction patterns and of plots of the aver-
aged MSD of the particles as a function of temperature.
The diffraction patterns were calculated from the instan-
taneous coordinates of the particles after allowing long
enough simulation times to reach equilibrium. We found
that the behavior of the system was very much influenced
by the temperature at which the simulation was run.
This is well illustrated from the diffraction patterns taken
in various temperature ranges: At high temperatures
(T > 1000 K), the system shears randomly at all available
amplitudes of the shear parameter, and the diffraction
pattern appears indistinguishable from that of a perfectly
harmonic fcc lattice under these simulation conditions,
i.e., peaks at the Bragg positions or slightly away from
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those positions [Fig. 4(a)]. If 30<T <1000 K, a scan
through one of the (220) peaks of the diffraction pattern
reveals that both the positive and negative values of the
shear parameter are being activated, which shows as two
peaks symmetrical around the original Bragg position
[Fig. 4(b)]. In the very low-temperature region (T <30
K), the system is shearing through the use of only one of
the two possible values of the shear parameter in that
direction, since the Bragg peak is displaced only on one
side of the original Bragg position [Fig. 4(c)]. It should
be noted that due to the orientation of the simulation box
(Z .4 |I[001]), only two out of six distortion modes are al-
lowed in the system: shears along the [110] and the [110]
directions. In the range of temperatures T <1000 K,
streaks equivalent to the {110) streaks that have been re-
ported in the literature started to form in the (110)
directions of the diffraction pattern. Their intensity and
length increases upon lowering of the temperature.

In our system, the shear is produced by a periodic
shear wave (which is, as a result of the periodic boundary
conditions, commensurate with the dimensions of the
simulation box) propagating through the box parallel to
the edges. In all three cases above, we could identify the
periodicity of the subpeaks that appear in the (110)
streaks as artifacts of the periodicity of the simulation
box.!® A study of the nature of that wave has been con-
ducted and will be discussed later on.

The temperature behavior of the MSD is closely relat-
ed to the calculated diffraction patterns, as can be seen on
a plot of the MSD calculated with reference to step O
versus temperature (Fig. 5). From 1000 K and up, the
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<00 1000 13 by 500 10 0t oo 300 sec0
Temperature (K)

FIG. 5. Mean-square displacement as a function of tempera-
ture.
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lattice seems to behave as a perfect fcc lattice, where the
mean-square displacement increases regularly with tem-
perature. However, below 1000 K, the MSD starts to ab-
normally increase again, peaks at about 30 K, and de-
creases slightly for even lower temperatures. This
phenomenon occurs with various intensities for all the
defects tested.

Our interpretation of the variation of the averaged
MSD and the diffraction patterns with temperature is as
follows: At high temperatures (7 > 1000 K), thermal en-
ergy is sufficient to surmount easily the energy barrier ¢
(Fig. 1), and the system behaves as if it were perfectly
harmonic. When the temperature decreases, however,
small atomic regions get trapped for longer and longer
times in the energy wells that correspond to large values
of the strain parameter, hence increasing more and more
the time-averaged mean-square displacements of the par-
ticles and displacing the Bragg peaks away from the per-
fect fcc configuration. However, when the temperature
becomes less than about 30 K, the thermal energy is so
weak that only part of the particles succeed in having dis-
placements large enough to reach one of the energy wells,
the other ones remaining more or less around their equi-
librium positions. Since the MSD calculation takes all
the particles into account, it makes sense that even
though some of the particles achieved large displace-
ments, the fact that most remained at their initial posi-
tions will decrease the total MSD value.

2. Role of the defects on tweed

It had been proposed"’ that static tetragonal strain
fields around defects or precipitates would produce the
appearance of tweed. In order to test that suggestion, we
introduced various defects into the simulated array,
which produce different strain fields. The strain field gen-
erated by a vacancy has an essentially cubic symmetry, as
does the one produced by the interstitial. The only
difference between those two defects is that the vacancy
creates a contracting strain field whereas the interstitial
creates a dilating strain field. On the other hand, the va-
cancy loop, which is oriented on a (110) plane, produces
a much more complex strain field which is rather difficult
to interpret. However, if we consider the displacements
of the atoms that surround the vacancy loop (Fig. 6), ei-
ther in the layer that contains the loop, or in the layer
just above or below it, it seems that the distortions they
undergo could be regarded as approximately tetragonal.
As shown in Fig. 5, the potency of those defects to pro-
duce tweed is variable. A vacancy or an interstitial alone
does not seem to produce significantly more tweed
(characterized in terms of the averaged mean-square dis-
placement) than what occurs in the perfect-lattice case.
It even seems that an interstitial reduces slightly the oc-
currence of tweed. A vacancy loop, on the other hand,
seems to be very effective in producing tweed. The fact
that the vacancy loop does indeed produce tetragonal dis-
placements of the atoms substantially larger than those
produced by the other defects, as does also the interstitial
in the bcc lattice,'* seems to confirm Tanner’s theory that
static tetragonal strain fields will bring out the tweed in-
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FIG. 6. Perturbations induced during the static relaxation of
the lattice containing a vacancy loop. The absolute magnitude
of the displacements that occurred during the relaxation process
have been increased by a factor 5 to emphasize the pattern of
the strain field. The simulation box has been sliced into layers
half an fcc unit cell thick in the Z direction, and layers 5 and 6
are represented here.

stability. On the other hand, displacements associated
with tweed also appeared in the case of the perfect fcc
lattice, or when the lattice contained a vacancy or an in-
terstitial. This thus shows that tweed can form homo-
geneously as well.

3. Tweed as a premartensitic phenomenon

Even though our system did show tweed at low tem-
peratures, we did not succeed in observing a martensitic
transformation in the span of time of the CMD simula-
tions we performed (which was in average about 5000
time steps, 200 average atomic vibration periods, or
1.176 X 10~ ! sec), in spite of the expected instability of
the fcc phase with respect to the bcc phase as shown by
the relative magnitude of their respective lattice potential
energies at O K (Fig. 2). Even the sheared fcc lattice that
produces a static lattice energy of —452.75 K/atom is
not as stable as the bcc phase, with an energy of
—1938.70 K/atom. (We use the convention of express-
ing energy in terms of temperature where Boltzmann’s
constant is an understood multiplicative factor.) This
may mean that for kinetic reasons, no martensitic trans-
formation will occur at finite temperature in that system,
since it would have to happen at such a low temperature
that thermal motions will be much too small to offer any
finite probability of surmounting the energy barrier to the

A. SILBERSTEIN AND P. C. CLAPP 38

transformation, or that a transformation might still have
occurred at the temperatures tested, but was taking
longer than the simulation length to nucleate. Yet anoth-
er explanation may lie in the CMD simulation itself, where
the transformation will be aborted if the energy required
to create the grain boundary necessary to render the bcc
phase commensurate with the simulation box!® is larger
than the driving force for the transformation.

In any case, since all of the interatomic potentials that
we calculated to be unstable with respect to (110) shears
and that were mechanically stable with respect to both
the fcc and the bce phases also showed the bec phase to
be more stable than the fcc phase at absolute zero. It
seems that a tweed instability cannot exist without having
a martensitic transformation potentially present in the
system.

This result, if true, would not be surprising since bcc
may be produced from fcc via the Zener transformation'’
which consists of (1) a (110)(110) shear plus (2) a
compression normal to the shear plane, i.e., {(110), and
(3) a compression in the (001) direction, eliminating any
remaining tetragonality. The (110) plane of the bcc crys-
tal becomes the (111) plane of the fcc crystal without ro-
tation. Of the three steps of the Zener transformation,
the shear usually involves the largest increase in strain
energy, so it would seem if this shear mode is already
completely soft for small shear amplitudes, the system
will be predisposed to a martensitic transformation at
some point.

C. Nature of the lowest-energy shear wave

Because of the strong anharmonicity of our potential,
we found it of interest to determine the nature of the
periodic shear wave traveling through the simulation
box. Would it be a classical phonon wave, or would it
rather be a nonlinear soliton wave as might be expected
from the calculation of Krumhansl and Schrieffer?’> We
decided to calculate dispersion curves for both of those
cases and determine their relative energy for the wave
vectors corresponding to the dimensions of the simula-
tion box.

As a consequence of the periodic boundary conditions,
we had to consider soliton waves made up as the sum of
two symmetrical solitons, so that periodicity could be
conserved. The waves we investigated are plotted as a
function of distance in Fig. 7 and are given below in
terms of both their strain and displacement fields:

n= Agqcos(q'r), u= Asin(q-r) (12a)
for a phonon, and for the three types of solitons:
B box
7=A and u=Ar ifr< 5
(12b)
Lbox Lbox
M=—A and u=—A |[r— > fr>
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FIG. 7. Strain fields investigated during the study of the
shear wave.

for soliton I;

7= Ag[tanh(q-r—L,,, /2)—tanh(q'1)],

(12¢)
u= Aflncosh(q-r—L,,, /2)—Incosh(q-r)]
for soliton II; and
1= Ag[sech¥(q'r—L,,, /2)—sech¥(q-1)] ,
(12d)

u= A[tanh(q-r—L,, /2—tanh(q-r)]

for soliton III. The wave vector q was chosen parallel to
the [110] direction, and the amplitude vector A parallel
to the [110] direction. L., is the length of the cMD
simulation box in the direction of propagation of the
wave. For the solitons a different simulation box has
been used, on which no periodic boundary conditions
were imposed, that consisted of one unit cell in the [110]
and 10 unit cells in the [110] direction, the direction of
propagation of the soliton [Fig. 8(a)].

[oo1] (Mo]
T Ng ceils
1 cell
l > [110] (a)
— 1 cel |—

(b)

Simulation unit cell

FIG. 8. Simulation cell used for the dispersion calculations.
(a) Orientation of the simulation cell; (b) details of one fcc unit
cell.
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For phonon calculations the length of the simulation
box in the direction of propagation of the wave is directly
related to the precision desired on the dispersion curve,
since the only allowed wave vectors are such that

_ 2mn
1= Nod,
2mn mN,
= s =0,1,2,..., s 13
Nomb " 2 13

where ¢ is the wave vector, N is the number of unit cells
in the direction of propagation of the wave, d; is the
length of the unit cell in the direction of propagation of
the wave, 8 is the spacing between planes perpendicular
to the direction of the wave, and m is the number of
those planes within one unit cell [see Fig. 8(b)]. Higher
values of n would lead to values of ¢ greater than the lim-
it of the first Brillouin zone q,,, =7 /8. In the case of an
fcc unit cell of lattice parameter a,, dy=48=a,V'2, and
for phonons Ny=4 was found to give sufficient accuracy
for our purposes.

We calculated the dispersion curves for amplitudes be-
tween 5% and 30% of the fcc lattice parameter a,. The
potential energy corresponding to each wave vector is
calculated as follows.

(1) The displacements of the particles under the
influence of the wave are calculated, and the new posi-
tions stored in the array.

(2) The interaction energy of each particle with all of
its neighbors is computed using the interatomic potential

E=1 3 Vir,). (14)

J G
(3) The total energy per atom is finally calculated
1 N

E=— S E,, (15)

where N is the total number of particles in the simulation
box.

In the case of the phonon wave, we found necessary,
especially at high-g values, to additionally phase average
the energy of the wave to ensure the reproduction of the
effect of a wave traveling through the crystal. Phase
averaging was performed by averaging, for a given value
of the amplitude and wave vector, the energies calculated
for a wave whose phase angle at the origin varies between
0 and 27 by increments of 1/167.

The results are shown in Figs. 9(a)-9(c). The results
obtained in the case of the soliton wave I, which only de-
pends on an amplitude term and is independent of any
wave-front factor, are listed in Table II. The energy max-
imum that occurs for the larger amplitudes at
q /qmax =0.5 can be rationalized if one considers the par-
ticle displacements produced by such a wave. Indeed,
every other plane of atoms will have a maximum dis-
placement, while the remaining planes will not be dis-
placed at all. For large amplitudes (greater than about
20% of the lattice spacing), both situations correspond to
a maximum in energy, while at smaller amplitudes, the
magnitude of the displacements (when they occur) pro-
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duces a decrease in the corresponding lattice energy.

In the case of phonons, the only allowed g values are
those that are commensurate with the CMD simulation
box size L,,. Since L, =4d,=165, we must, therefore,
have values of the wavelength A=168, 88, 45, and 26,
i.e., §/qmax=0.125, 0.25, 0.5, and 1. The lowest-energy
phonon in our array would have, out of those four al-
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lowed values, the combination of wave vector and ampli-
tude that generates the lowest lattice energy. Observa-
tion of Fig. 9(a) shows that the most stable phonon in our
system would have a wavelength equal to the length of
the box L, and an amplitude of about 20% of the lat-
tice spacing, with an energy of about —120 K/atom.
Note that this amplitude corresponds exactly to the value

o
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oor e 10% ---25% ,/
—-30% /
,

-100

T
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FIG. 9. Results of the dispersion calculations. (a) Phonon wave. (b) Soliton II. (c) Soliton III. Top figures represent a blowup of
the energy behavior at small wave vectors. The energy is in units of kelvin, and the amplitude is in percentage of the fcc lattice pa-
rameter.
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TABLE II. Results obtained in the case of the propagation of
a step-function wave.

Amplitude (in % of Lattice energy

the lattice parameters, ag) (K/atom)
5 —30.325
10 —67.732
15 —95.847
20 —67.465
25 77.697
30 390.751

of the shear-strain parameter at the minima of the poten-
tial energy curve.

On the other hand, all the soliton waves tested were al-
ready commensurate with the simulation box, and the pa-
rameter g is now only an indication of the steepness of
the change in the strain field as a function of distance.
The lattice energy produced by the step-function strain-
field wave (soliton I) is always larger than the lowest-
energy phonon described above, so that it is not very
probable that such a wave would propagate in our sys-
tem. Figure 9(b) and 9(c) indicate that a steep change in
the strain field (high ¢) is a very unfavorable configur-
ation since all these waves would yield an increase in the
energy of the system. However, the more gradual
changes of the strain fields achieved with values of ¢
below about 0.2 for solitons II and III produce a lowering
of lattice energy with the minima occurring at ¢ =0.04
and 0.07 for II and III, respectively, and an amplitude of
about 30% in each case. For increases in the amplitude
above 30% (not shown) the lattice energy begins to in-
crease again, so that 30% is about optimum. In compar-
ing the minimum energies reached by each type of soli-
ton, one finds —95, —130, and — 65 K/atom for solitons
I, II, and III, respectively. A rough estimate may be
made of the soliton interfacial energies by regarding the
difference between the above numbers and the ground-
state energy of —453.90 K/atom as a measure of the ex-
cess energy of the two soliton wave fronts per simulation
box. Given that the simulation box contained 80 atoms
and had a cross sectional area of V'2a (2,, these estimates
are 10150, 9165, and 11 000 K/a(z, per wave front in the
same order.

Consequently, we have good reasons to believe that the
wave that dominates the displacive motion in our solid at
low temperatures is indeed a soliton wave of type II de-
scribed in Eq. (12¢). This result is particularly interesting
for two reasons. First, it confirms the results obtained by
Krumhansl!® that soliton waves will provide important
components of the motion in highly anharmonic solids,
and second, we found a stable form of soliton wave that
to our knowledge has not been considered before (type
II). If we were to increase the size of the simulation box,
the energy/atom of the phonon wave will decrease slight-
ly, but that of the solitons will decrease even more. In
the limit of an infinite box size, the energy of soliton II
would reach the value of —453.90 K/atom.

IV. CONCLUSION
In view of the two parallel main theories of tweed, it
appears to us that tweed can indeed be divided into two
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categories: a static tweed, which occurs in the vicinity of
microstructural features in the crystal, and which seems
to originate principally from the elastic properties of the
material, and in particular its anisotropy, and a dynamic
tweed, which has for cause a strong lattice anharmonicity
in a certain temperature range. Our approach to the
treatment of tweed instabilities restricts the extent of our
interpretation of the tweed phenomenon to the second
category. In that context, we found the following con-
clusions.

(1) As opposed to bcc crystals, there are no easily
recognizable features of the geometrical shape of the in-
teratomic potentials of fcc crystals that show a tweed in-
stability that could help distinguish them from normal
materials.

(2) There is some evidence that the presence of a tweed
instability in the system implies the potential of a marten-
sitic transformation, whether or not that transformation
is kinetically possible. In other words, it seems that
tweed is indeed a premartensitic phenomenon.

(3) Tweed can nucleate homogeneously, but the pres-
ence of tetragonal strain fields in the lattice will enhance
its formation.

In addition, we identified the elastic shear wave that
propagates in such an anharmonic solid as being a soli-
ton, whose displacement field has the form

u= %ln cos(q-r) .
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APPENDIX: FOURIER EXPANSION OF
A CURVE WITH A DOUBLE MINIMUM

In this section, we derive the minimal number of pa-
rameters of a Fourier expansion required to produce a
curve E(7) with a double minimum around =0 that is
periodic of period 1. Let us assume that the minima are
located at n==t¢ (¢ >0). Then, the condition of a double
minimum requires that

dE
£z =0 Al
dn (A1)
n=x=e
and
2
an;: >0. (A2)
n=xte

The function E(7) is even, therefore the Fourier expan-
sion is limited to the cosine series:

2mnn

Mo

E(n)=3 A,cos (A3)
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Thus the first derivative with respect to 7 is

dE _ 27 5, g,sin | 20| (A4)
dn Mo Mo
and the second derivative is
2 2
d—€=— 2m 3 n*A,cos 2mn1 (AS)
d77 Mo n Mo

So, for a double minimum at 7= *¢, we want

S nd,sin | 2TE | 0, (A6a)
n Mo

S n?d,cos |[TE | <0 (A6b)
n Mo

Case 1, when n= 0,1. Equation (A6a) can be rewritten
as

2me

To

A sin =0 (A7)

which holds if

A, =0or s:k%)-, k an integer . (A8B)
The case A,=0 is trivial and is of no interest for the
problem. The other solution tells us that it is possible to
describe a curve with a double minimum with only two
elements in the Fourier series 4, and 4, under the con-
dition that € > 1,/2. However, this case is not of practi-
cal interest for us, since in our particular application, we
would rather have the minimum located close to the ori-
gin.

Case 2, when n=0,1,2. Equation (A6a) can be rewrit-
ten as

2me

0

A sin +2A4,sin =0 (A9)
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which can be solved if
A4,
44,

—COos

(A10)
7o

2me ]

If 0<e<mny/4, then cos(2me/ny) >0, and 4, and 4,
must be of opposite signs. If 77/4<e<mny/2, then 4,
and A4, must be of the same sign.

Inserting Eq. (A10) into Eq. (A6b) gives

A3

44, | ———
2144,

1

<0 (A11)

which can also be written as

2me

—4 A,sin? <0 (A12)

Mo

which is possible only if A, >0. Since we require that
the minima be close to the origin, we must have 4, <0.
If we further add the condition that E(0)=0, then we
must have

> 4,=0 (A13)
or, in this case,
Ao+ A, +4,=0. (A14)

In conclusion, a periodic curve with a double minimum
located close to the origin can be described by a Fourier
expansion limited to three terms. The knowledge of one
of the expansion coefficients allows the determination of
the two remaining ones, through the relations (A10) and
(A14).
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