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Wavelength dependence of static intensity correlation functions
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We develop a real-space theory for the wavelength dependence of the intensity correlation func-

tion C(dA) in the framework of the diffusion approximation. We calculate C(hX) for various

practical geometries and boundary conditions and find that they play a crucial role in determining

the functional form.

The propagation of optical waves in random media has
recently aroused much interest. ' 7 The multiple scatter-
ing of the wave causes new weak localization effects,
which result in a narrow coherent backscattered peak,
that were observed for disordered media. For random
solids, in addition to the coherent backscattered peak one
gets6 7 intensity fluctuations. These fluctuations are close-
ly related to the universal conductance fluctuations. s9

The time dependence of the backscattered intensity fluc-
tuations were studied experimentally'o" and related
theoretically'o" to the dynamic intensity-intensity corre-
lation function C(ht) by the concept of light trajectories
caused by multiple scattering.

These effects were also studied' by diagrammatic tech-
niques for various geometries and recently shown'3 to
coincide with the real-space method. 'o" The sensitivity
of the transmitted speckle to the wavelength of the wave
was demonstrated experimentally. ' The static autocorre-
lation function C(M) for a int source was studied di-
agrammatically by Shapiro, ' and Stephen and Cwilich'6
have shown that Shapiro's result is correct only for two
points which are apart less than the transport mean free
path 1. For large distances long-range correlations ex-
15t 16,17

In this Rapid Communication we develop a real-space
theory for calculating C(LO, ) for various geometries. We
show how C(M) depends on the phase acquired by the
real-space photon trajectory and its sensitivity to the
source wavelength change M. Larger photon trajectories
are more sensitive to M, and therefore are more strongly
affected by the surrounding boundaries which act as a
cutoff for long photon trajectories. We derive analytical
expressions for C(M) for various practical geometries
which may be studied in future experiments.

The motion of an optical wave undergoing multiple
elastic scattering performs a random walk in a random
media where each step is 1, the transport mean free path.
This picture has led to a very successful model' which ac-
counts'9 2o for the coherent backscattered peak and which
was found to be in agreement with rigorous diagrammatic
approaches. ' ' ' The concept of photon trajectories was
also used successfully to calculate C(ht), the dynamic
correlation functions. 'o"' ' Here we use the random-
walk theory'3 24 for each geometry for the probability Wtv
for performing N random steps. The phase ttN acquired
by the wave-traveled N steps depends explicitly on A, and

Qiv ()I ) —
yN (Z+n) - (2tr/A, ) (m/Z)Ltv (3a)

and is proportional to the actual trajectory length. Thus,
longer trajectories are more sensitive to the wavelength
changes. The correlation function C(M) will depend
strongly on the particular geometry through PN in (2).
Smaller values for Wjy for large values of N will corre-
spond to a broader fall-off of C(hA, ).

We perform the ensemble average in (2) by using the
equality

(exp[i(2tr/k) (Mlk)LN]) exp[i(2trlk) (M/A, )Nl]

(3b)
and neglecting higher moments of LN which leads to
another factor exp[- —,

'
(2tr/X) 2((bLN)2)] in (3b), where

bLN is a fluctuation in the length of a trajectory of N
steps. We find that this approximation is almost always
justified. z5 Using (3a) and (3b) in (2), we get a normal-
ized C(bk) [namely, we divide all our C(hX) by C(0)]:

C(M) OWN exp[i(2tr/)I. )(M/)I. )1N]
N

(4)

where WN is the probability of performing N random
steps. Equation (4) is our key result and shows how
C(dA) depends explicitly on M.

We now derive C(hA, ) for the following geometries: (i)
a point source in an infinite medium (no boundaries); (ii)
an injected point source outside a "half-infinite" space
geometry (one boundary) with point detection inside the
medium; (iii) an infinitely wide light source injected from

is given by'

ytv -(2tt/) )Ltv,

where Ltv is the length of the trajectory of N steps. On
the average, (Lit) Nl. The intensity-intensity correlation
function at a given point in the diffusion approximation is
factorized to yield

[ 4)- (+ )j

N, N'

where ( ) denotes an ensemble average and Ptv is the am-
plitude probability (P$ Wit). The sensitivity to M
enters through the optical phases in (2). The random-
walk amplitudes PN are not sensitive to small changes of
M. The change in phase of a photon trajectory of N steps
is given by
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outside a "half-infinite" space geometry (one boundary)
and detection on the boundary; (iv) the same as (iii) but
from a slab width S (two boundaries); and (v) transmitted
light through a slab.

These geometries were recently used by Edrei and Ka-
veh'3 to calculate the dynamic correlation function
C(ht). Some of these geometries were also used for
measuring 'o"z3 C(ht ). The explicit experimental form
of C(M) for these geometries was not yet determined.
Nevertheless, the half-width of C(M) for transmission
through a slab was measured'4 and our results are in
agreement with these data. The above geometries differ

by their different forms for W~ which result from solving
the diffusion equation for the particular boundary condi-
tions. For a point source in an infinite random medium
where the light is collected at a point R from the source,
we use for Wjy the standard well-known random-walk
solution with discrete time'o r Nl/e, where c is the ve-

locity of light in the medium:

'/ exp[ —-', (R/1) 2/N], (5)

where Cl (4tri /3)
Inserting (5) in (4) yields, for C(M),

C(M) exp[- (R/1) J12rrlM/) zl

in precise agreement with the result first obtained by
Shapiro's by diagrammatic methods. Thus, the real-

I

space method which leads to (4) is capable of accounting
for the correlations between different trajectories to the
same accuracy of the Shapiro approach which is be-
lieved'6' to yield correct results for correlations at a
given point from the source. For correlations at diferent
points one needs the Stephen-Cwilich (Ref. 16) type dia-
grams. ' The stretched exponential in (6) comes about
because there is no characteristic length scale in the prob-
lem. The averaged diffusive trajectory of the optical wave
between the source and a point at distance R is
(L) QW~Nl and diverges. This leads to the extra sensi-
tivity of C(M) to small M which corresponds to large
photon trajectories. Indeed, the derivative dC(M)/d(M)~ ~ asdA 0.

We now calculate C(dA) for the geometry of an inject-
ed point source on the surface of a "half-infinite" medium
and collected at a point with distance

~
R

~
(z +p ) '

from it, where p (x2+y2)'/2. In this case, W~ can be
obtained by using the image method7'o's 2324 in which
W~ is given by subtracting from Eq. (5) an image term,
and is given by

W~-C, N "[exp[- ,' (R-d)—'/1'N]

—exp[ —
4 (R+d) /1 N]] (7)

where 1 di (z is the direction perpendicular to the
boundary) and d 1.71. Inserting W~ as given by (7) in

(4), we obtain

C(M) [A8/(8-A)] {A exp[ —(p/l)XA]+8 exp[- (p/1)X8]
—2(A8) ' exp[- (p/1 )X(A +8)/2kos(p/1 )X(A —8)/2],

where A [1+(z+d) /p ]',8 [1+(z-d)2/p ]', and X (12xlMA, 2)' 2. The effect of the boundary is to reduce

the probability for large trajectories. Here the asymptotic form of W~ is N 5/2 instead of [as follows from (3)] N
The reduction in Wz for large loops causes a broadening of C(M). In Fig. 1, we plot C(M) as given by (8) [curve (b)]
for z d and p 201, and compare the result with a point source in an infinite medium (no boundaries) for R 201 [curve

(a)]. We see that the effect of the boundary is to cut the large loops and therefore to broaden C(hA, ).
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FIG. l. C(hk) as a function of heal/k for (a) point source in infinite medium for R/i 20; (b) point source with one boundary for

p/1 20; (c) transmitted intensity from a slab with S/1 20; and (d) backscattered intensity from a slab with S/l-20.
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C(M) exp[ —(d/l) 412trlMIX ] .

This result coincides with (11)for X& 1, up to 2%.

(i2)

For the case where p»z and for (p/l )x«1, expanding
Eq. (8) and reexponenting it yields a simplified expression
for C(m):

C(M~ 0)=exp[ —1/6(p/l) (12xMl/k ) ] (9)

This expression is a good approximation for C(M) for the
backscattered intensity-intensity correlation function
(where the light is collected at z d).

We now turn to a plane source. In this case, p disap-
pears from W~ and therefore C(M). For a "half-
infinite" space (one boundary) WJv is now obtained by in-
tegrating Eq. (7) over p, which yields

W&-(4~l'/3) "N -'"[ex-p[- ,' (z-—d)'/l'N)

—exp[ —-', (z+d)'/l N)} .

(io)
For the correlation function C(M) for a given point z in-
side the medium, we find

C(M) —,
' (l/dX) 2[exp[ —(z -d)X/l]

+exp[ —(z +d)X/l ]
—2 exp(- zX/l)cos(dX/l)}, (11)

and again X (12n;lM/k ) ' .
The most practical case is to measure C(dA) for the

backscattered intensity. Here we make the usual assump-
tion that the intensity at z-d is actually the measured in-
tensity. Inserting z d in (11) and expanding for dA 0,
we expect to obtain the same result as (6) for a point
source but with R replaced by d. The reason for this lies
in the fact that for z d the asymptotic form of W~ is
N 3/2 exactly as for a point source. Thus, our result for
C(dA) for backscattered light from a plane source inject-
ed from outside an infinite "half-space*' random medium
18

We have also calculated C(M) for the backscattering
from a slab of width S. In this case W~ is obtained by
solving the diff'usion equation for the geometry of a slab as
done in Ref. 24 and is given by

W~ S '+sin(kid/S)sin(kxz/S)

x exp[ —(kxl/S) N/3] . (i3)
For backscattering correlations we have to take z d, and
for transmission z S—d. The correlation function
C(M) for backscattering is given below by Eq. (14).
However, for large values of S/l, we find that the result
coincides with Eq. (12) (see Fig. 2). The eff'ect of small
values of S/l is to cut large trajectories. In particular,
trajectories with large number of steps for which
N & (S/l) 2 will be cut off, causing a rounding of C(~)
for M 0. This is demonstrated in Fig. 2 for S/l
1(), 20, and S/l ~. We see a systematic broadening of
C(~) as S/l becomes smaller, and how it rounds off for

0. The full expression for the correlation function
C(M) for backscattering is given by

C(M) -X 2(1 —d/S) '[F(X )/F(X )]
x [F(XI)G(X2)+G(Xl)F(X2)

—F(Xt+X2)+F(X2-X)], (14)

where Xl Xd/I, Xz Xs/l, F(y) coshy-cosy, and
G(y) coshy+cosy. In contrast to (12), C(M) due to
finite values of S/l as given by (14) is very fiat for
M~ 0.

We now provide our final result for C(M) for the
transmitted light, a case studied experimentally by
Genack. ' Inserting WN as given by (10) with z S—d
in (4) yields

C(m) -(S/dX )'
[1 —cos(Xl)cosh(Xl)] 2+sin2XI sinh2X1

coshXz —cosXz
(is)
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FIG. 2. C(M) for backscattered intensity from a plane wave from a slab for (a) S/I ~, (b) S/l 20, (c) S/I 10, and (d)
S/I -5.
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In Fig. 1 [curve (c)l, we plot C(M) for S/I 20. We see
that it decays much faster than C(M), which corresponds
to backscattering from a slab with S/I 20 [curve (d)l.
This follows from the fact that for backscattering the oth-
er boundary has little effect on Wiv. Thus, Fig. 1 demon-
strates clearly the role of the boundaries on C(M) for the
different geometries. From (15) we find that the half-
width for C(M) is proportional to (I/S)2 in agreement
with experiment. ' For X2)) 1 and X1« 1, Eq. (15) leads
to C(M)=exp[ —(S/l)Xj, which coincides with the
point-source result as given by (6) but with R replaced by

In summary, we have calculated the wavelength depen-
dence of the intensity-intensity correlation functions
C(M) in the diffusion approximation [which leads to Eq.

(4) for various geometries). Our main results are demon-
strated by Figs. 1 and 2, where we see clearly the effect of
the boundaries on C(M). The sharpest decay of C(bk) is
for a point source in an infinite medium. When a bound-

ary is introduced, C(M) decays more slowly. The slowest
decay of C(M) corresponds to backscattering from a
plane source where only short light trajectories are
effective.
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