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Ising model with short-range correlated dilution
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We consider a diluted Ising model in which the absence of a spin affects the exchange coupling

of a nearest-neighbor pair along the line joining the three spins; that is, it acquires the value aJ,
where a is a phenomenological parameter e[0, 1]. This model has been proposed to explain the

experimental phase diagram for KNi„Mg&- F3. A position-space renormalization-group analysis

clearly distinguishes two percolation thresholds depending on whether a 0 or a &0, though both

cases seem to be in the same universality class. Further, thermal fluctuations dominate over the

geometrical ones as in the uncorrelated case, and the critical curve (critical temperature versus

concentration of magnetic sites) displays an upward curvature for intermediate degrees of correla-

tion 0 & a & 1, as experimentally observed.

The cluster structure properties of quenched dilute
magnets are usually described by a simple percolation
model. Here, a site on a lattice is considered occupied
(magnetic) or unoccupied (nonmagnetic) at random, with
the single global constraint that the percentage of occu-
pied sites must equal the concentration of the "magnetic"
species present in the sample being modeled. However, it
has been found experimentally that in some circumstances
a (potentially) magnetic atom may fail to display a mag-
netic moment, depending on its local environment. Clear-
ly, the simplified picture given above cannot account for
these effects; thus, more sophisticated ("correlated per-
colation") models have been proposed, in which one tries
to get hold of the essential environmental aspects, in addi-
tion to the purely random ones.

This seems to be the case for KNi, Mg~ —„F3.. nuclear
magnetic resonance (NMR) data for this system' show
striking differences from those for the isostructural com-
pound KMn, Mgt —„F3, which have been interpreted as
signaling that a specific correlated percolation model ap-
plies to the former substance, '2 whereas the latter is prop-
erly described by an uncorrelated dilution picture. 3

The authors of Refs. 1 and 2 recall that, while in Mn2+

the electronic configuration is such that the Mn ions can
form both tr and o bonds with the fluorine ligands, the
corresponding configuration for Ni2+ allows only the for-
mation of cr bonds. The directionality of a bonds then im-
plies that, if an Ni2+ ion is replaced by a nonmagnetic
atom, this must have a strong effect on the exchange cou-
pling of a nearest-neighbor magnetic pair situated along
the line joining the three atoms. For Mn + the directional
effect should be less drastic, owing to the existence of tr

bonds. Those authors then proposed a model in which
the exchange between atoms located at nearest-neigh-
boring sites is

J;,;+a =Je;e;ps[(1 —a)e;-s+ a], (1)

where b denotes an elementary lattice vector, e; is a site
occupation variable, with the ensemble average (e;) x
(magnetic atom concentration), and a gives the strength
of the correlation; while for a=0, the existence of the
bond between i and i+b is entirely dependent on the oc-

cupancy of i —b, the uncorrelated limit is recovered for
a 1. For 0& a & 1, the absence of a magnetic ion at
i —8 only weakens the bond between i and i+6, propor-
tionally to a, but does not destroy it.

At zero temperature, for any a & 0 the problem is the
same as that for a 1 (uncorrelated); for a 0, it can be
described by the following geometric prescription: Two
neighboring magnetic sites are considered to be in the
same cluster only if their nearest-neighbor sites along the
same direction of the line joining them are also magnetic.
With this rule for the formation of clusters, the authors of
Ref. 4 found, by large-cell Monte Carlo renormalization-
group calculations on the square lattice, the critical con-
centration x, 0.741~0.002 (significantly higher than
the corresponding value 0.5931 ~0.0006 for the uncorre-
lated site problem on the same lattices). They also found
the critical scaling power yp 0.75+0.02; comparison
with the (presumably exact) yp 4 for uncorrelated per-
colation in two dimensions indicates that the two prob-
lems are in the same universality class, with regards to the
percolation transition.

For finite temperatures, the authors of Ref. 2 apply an
effective-field theory to a dilute spin- 2 Ising model on a
square lattice, with the nearest-neighbor interaction term
given by Eq. (1) above. They find qualitative trends, such
as an increase in the slope (I/T, )(dT,ldx) at the pure
point x 1 (relative to the uncorrelated case), and an up-
ward curvature in the T, xx phase diagram, which are
consistent with the experimental data for KNi„Mg~ —„F3
(although the latter is a three-dimensional Heisenberg
magnet rather than a two-dimensional Ising system, these
trends are interpreted as being essentially correlation
effects, expected to be present regardless of spin struc-
ture). However, they find three different percolation
thresholds at zero temperature: x, (a 1) 0.428 for the
uncorrelated problem, x, (a=0) =0.765 for full correla-
tion, and x, (a) =0.381 for 0 & a & 1. This, as noted by
those authors, is not consistent with their model Hamil-
tonian, from which one should obtain only two distinct
thresholds: one for a =0 where correlation can erase a
bond, and another for intermediate or zero correlation
0&a~ 1. Further, they find different values of T,
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(x 1) for different values of a, which is clearly an un-
desirable feature [this does not show in their figures,
where only the normalized quantity T,(x)/T, (1) is plot-
ted]. These two unphysical characteristics stem from the
approximations implicit in the Honmura-Kaneyoshi for-
malism. Although on the Bethe lattice an exact solution
of this correlated dilution problem is free from such
difftculties, s it must be recalled that this kind of lattice is
itself a pathological structure; specifically in the present
case, where directional efl'ects are all important, the fact
that it is only the "radial" direction that is uniquely
defined for the Bethe lattice may introduce an undesired
bias, which is hard to gauge.

Having this in mind, we have studied the above-
mentioned correlated dilution problem for Ising spins on a
square lattice, by means of a position-space renormaliza-
tion-group (PSRG) procedure. As shown below, our re-
sults do not display the unphysical features just men-
tioned; further, they provide an additional insight into the
relevance [(in the renormalization-group (RG) sense) of
correlation, which is not obtainable through other calcula-
tional methods. Thus, we feel that the picture coming
from our study complements and improves upon what is
already known about the subject.

We have made use of a PSRG transformation which is
depicted, for a rescaling parameter b 2, in Fig. 1. For
the scaled probability (x') 2 of the two renormalized sites
in Fig. 1(b) being both present and joined by an active
bond, we count all paths in Fig. 1(a) which lead from A or
A

' to 8 or B' and are formed by active bonds. In the ex-
tremely correlated limit a 0, where a bond can actually
be destroyed by correlation [see Eq. (1)], two magnetic
sites are considered as joined by an active bond only if
both their nearest neighbors along the line joining them
are occupied as well. For 0 (a ~ 1, a bond is considered
to exist between any two occupied nearest-neighbor sites;
this reflects the fact that, no matter how weakened a bond
is, it will fully transmit information at zero temperature as
long as its strength is not exactly zero. We thus have two
different probability recursion relations, one for a 0 and
another for a~0; this will give different percolation
thresholds in either case, in agreement with physical intui-
tion. The thermal aspects are incorporated as follows.
For each connected configuration of sites which enter for
x', if the sites at the bottom of the cell are connected to

B'

o B=-9

FIG. I. (a) Cell used in our PSRG transformation (here the
scaling factor b 2). (1) The cell in (a) is transformed into the
two-site, one-bond simpler structure depicted by summing over
internal degrees of freedom.

those at the top through at least one path made up entirely
of unaffected bonds (i.e., exchange J, or transmissivity
t =tanh J/ktt T), then the renormalized bond is considered
to be J'; if this connection necessarily includes a weakened
bond (i.e., exchange aJ or transmissivity u=tanhaJ/
kttT), then the renormalized bond is taken as a'J'.
Though somewhat arbitrary, this criterion is justified by
the fact that, for a path with one weak bond, magnetic or-
der propagates with lower intensity than it would along
one totally made up of strong bonds. One should note that
this prescription has the overall effect of grouping togeth-
er all disorder configurations that do not percolate in the
extremely correlated (a 0) limit; as a consequence, in
this limit one has u' u 0. With this criterion, we can
average t and u over the disordered configurations to get
two other recursion relations: t'(t, u, x) and u'(t, u, x),
which give the renormalized quantities J' and a'. In a
three-dimensional (x, T,a) parameter space, the flow of
the PSRG recursion relations gives the approximate phase
diagram. In what follows, we shall display only constant-
a sections of the critical surface, in order to compare our
results to experimental and other theoretical data.

Two technical remarks are worth making. First, we
have used the "tilted" cells of Fig. 1, instead of the tradi-
tionally used 8-shaped cells for the square lattice5 be-
cause they are more suitable for the inclusion of direction-
al effects o second, for small cells one needs suitable
boundary conditions imposed on the cell perimeter in or-
der to simulate environmental effects properly; we have
tested both free boundary conditions (counting sites along
and outside the cell boundaries as occupied) and periodic
boundary conditions (which have been successfully em-
ployed in PSRG treatments of other correlated dilution
problems" ). The results obtained in either way were
qualitatively similar, showing that our approach is essen-
tially stable relative to calculational details.

For the zero-temperature (percolation) transition, we
have used scaling parameters b 2 and 3, as well as a
cell-to-cell renormalization with b'/b —', , which is be-
lieved5 to give accurate results as b'/b 1; this is indeed
what happens in our case, as shown below. For the in-
clusion of thermal aspects, we have performed calcula-
tions only for b 2.

Owing to the structure of our recursion relations, we
have found only two percolation thresholds: one for a 0,
and another (lower) for a~0, as it should be (see Table
I). Note that the percolation threshold obtained for the
uncorrelated case is compared with the critical probability
for site percolation, while the authors of Ref. 2 refer their
results to the bond percolation problem. Although, for the
five-site, crosslike cell used in their calculations there is
indeed a one-to-one correspondence between sites and
bonds, this is purely coincidental; for the actual physical
problem, the relevant quantity is the site percolation
threshold. The general agreement between our results
and other available estimates is rather good (however, the
closeness of our percolation critical probability with
b '/b —,

' and free boundary conditions to the value quoted
in Ref. 4 is to be deemed as somewhat fortuitous). Note
that the estimates for the percolation correlation-length
exponent vz are consistent with the correlated and un-
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TABLE I. Critical parameters: concentration (x, ) and the

correlation-length exponent vp yp
' at the zero-temperature

fixed point obtained from our PSRG. For a~0, the results are
the same both for free and periodic boundary conditions.

@&0

b 2
b 3
b

3
2

Best estimate

0.533
0.537
0.542
0.5931 ~ 0.0006 '

Vp

1.750
1.655
1.511

b
3

u 0

b 2
b 3

b'/b

Xp

Periodic boundary conditions
0.841
0.827
0.809

Vp

1.586
1.479
1.427

b 2
b 3

b'/b 2

Best estimate

'Reference 5.
Reference 6.

Free boundary conditions
0.692
0.718
0.743
0.741 +' 0.002 '

'Reference 4.

1.672
1.571
1.421
1.33 +'0.03 '

correlated problems being both in the same universality
class, as proposed in Ref. 4.

At the pure limit x 1, we obtain the same critical tem-
perature for all values of a; further, owing to the self-
duality properties of the cells employed, '2 this is the exact
critical temperature ktrT, /J 2.269. . . for Ising spins on
a square lattice. As depicted in Fig. 2, the initial slope
[ I/T, (1)][dT, (x) /dx]„-~ increases gradually with the
degree of correlation, varying from 1.82 for a 1 for both
periodic and free boundary conditions (BC's) to 3.12
(periodic BC) and 2.55 (free BC) for a 0. Although, to
our knowledge, no accurate estimates are available for the
uncorrelated site dilution problem (see a discussion of this
point in Yeomans and Stinchcombe9), it is clear that the
exact value'3 1.329 for the bond problem must be a lower
bound to the initial slope for a 1 in the present case (this

T (x)

Tc( [ )
0.8-

a
(a) [.0
(b) 0.5
(c) 002
(d) 00

I

OA

p [axQ) P ( =0)

FIG. 2. Phase diagram obtained from our PSRG transforma-
tion; here b 2 and periodic boundary conditions were used.
Use of free boundary conditions implies only slight quantitative
variations.

is because removal of a site tends to have more drastic
effects than removal of a bond). As the values of 1.345
and 2.438 are obtained, respectively, for a =1 and a =0 in
Ref. 2, our general picture is in qualitative agreement
with the results of Albino de Aguiar, Brady Moreira,
and Engelsberg, and also with experimental data on
KNi, Mg~ —,F3. Further, as can be seen from Fig. 2, our
T, xx curves for intermediate correlation 0 & a & 1 tend
to have an upward curvature, though perhaps not as
markedly as in the corresponding cases of Ref. 2. It is in-
teresting to note that the shape of the phase diagrams ob-
tained are somewhat insensitive to the RG prescription
used: Similar ones were obtained by keeping a fixed un-
der scaling (thus following the evolution of x and t only).

As a final remark, we note that the PSRG flow lines
(not depicted in Fig. 2) along the critical surface are
directed from the zero-temperature percolation point to
the pure Ising fixed point, both for a 0 and aWO. This is
coincident with corresponding results obtained by PSRG
for ordinary (uncorrelated) dilution problems, and is re-
lated to the existence of two relevant eigenvalues of the
PSRG transformation at the percolation point. Since it
has been found' that, for a different type of correlation
(the so-called "bootstrap dilution" problem) the tempera-
turelike eigenvalue is zero at the percolation threshold
(meaning that concentration fluctuations tend to dom-
inate over thermal ones), we interpret the present result as
signaling that the correlation studied here is "weak. " This
means that the overall picture of two competing diverging
lengths, one thermal and the other geometric, '5 close to
the percolation point, is valid for the present problem as in
the case of ordinary dilution: correlation effects are not
enough to reverse the situation, as happens for the
"strongly correlated" case of bootstrap dilution. Thus, in
addition to the result that the geometric transition at zero
temperature is in the same universality class as ordinary
percolation (consistently with the findings of Ref. 4), we
obtain that the behavior against thermal fluctuations (and
the interplay between thermal and geometric phenomena)
is qualitatively the same in both cases. In other words, the
type of correlation discussed here is irrelevant (in the RG
sense) regarding both geometric and thermal aspects.

Overall, in our PSRG study of correlated dilution we
have obtained the qualitative features of upward curva-
ture (for intermediate degree of correlation) of the T, x x
critical line, as well as the gradual increase (with correla-
tion) of the initial slope of this line at the pure (undiluted)
point. From our approach, one naturally obtains only two
distinct percolation thresholds: one for a =0 and another
for a~O, as well as a constant (correlation-independent)
value of T, for the pure system. Further, the very struc-
ture of the PSRG approach has allowed us to establish
that the correlation effects discussed here are irrelevant
(as regards universality class of the transition) with
respect to both geometric and thermal aspects.

At present, we are discussing the inclusion of antiferro-
magnetic correlations (that is, a & 0) for Ising spins on
the square lattice (for which the cells used here are spe-
cially suitable'6), as well as an extension of our method to
Heisenberg spins on the cubic lattice, which is closer to
the experimental situation in KNi, Mg~ —,F3.
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