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Density-functional theory of elastic moduli: Icosahedral quasicrystals
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A recently developed density-functional method for calculating elastic moduli of crystals is gen-
eralized to include phason elasticity in incommensurate crystals. The theory is applied to hy-

pothetical icoshedral quasicrystals based on interactions embodied in the pair correlation functions
of a dense-random-packing model. It is found that the usual (phonon) elastic moduli are not
dramatically different in quasicrystals and crystals. However, we show that a sufficiently strong
phonon-phason coupling, which is very sensitive on the pair correlations at long wavelengths, may
cause an elastic distortion with nonzero phason as well as phonon components.

I. INTRODUCTION

Ever since the experimental discovery of icosahedral
quasicrystals, ' one of the important theoretical questions
has been understanding the origins of their stability or
metastability. A frequently pursued objective of the
theoretical investigations was the identification of these
features of many-body interactions which are favorable
for the formation of icosahedral structures. The two
main approaches to this question are based on computer
simulations and density-functional-type theories. While
computer simulations are still in a preliminary stage,
mostly dealing with small systems and two dimensions, '

numerous density-functional calculations have been
reported.

Density-functional calculations can be divided into
three categories. In the first category are numerous pa-
pers which sought the features favoring icosahedral or-
dering in the higher harmonics ' or higher-order terms
in Ginzburg-Landau-type models of solidification based
on the Alexander-McTague theory' "of fcc structure
formation. Unfortunately, these approaches were unsuc-
cessful: the free-energy terms which manifestly favored
the icosahedral or pentagonal symmetry were always
insufticient to generically stabilize an icosahedral struc-
ture relative to a periodic crystalline structure. ' ' No
simple cause of quasicrystal stability could be identified.
The best that could be done, within this framework, was
to show that icosahedral quasicrystals are stable with
respect to small commensurate lack-in elastic distor-
tions. '

In the second category are the density-functional
theories which, besides the density, also include an orien-
tational order parameter. Clear evidence that a tendency
for short-range icosahedral orientational ordering is an
important feature which promotes not only the long-
range icosahedral orientational ordering, but also the
icosahedral positional ordering, was given in a density-
functional theory which couples the positional and orien-
tational order parameters. It was shown that a large

portion of the orientational phase diagram is occupied by
an icosahedral phase' and that in this portion of the
phase diagram a coupling with the positional order pa-
rameter can induce an icosahedral quasicrystalline posi-
tionally ordered phase.

The density-functional theory of solidification
developed by Ramakrishnan and Yusouff' (RY) and its
generalizations form the third category. The RY theory
was very successful in a number of recent applica-
tions. ' For example, predictions based on this
theory and its extensions are in excellent agreement with
results of computer simulations for freezing of hard-
sphere and Lennard-Jones liquids. The theory
is based on a functional expansion of the interaction part
of the Helmholtz potential around a reference liquid
state, while the noninteracting, entropy part is treated ex-
actly. The expansion is usually carried to second order so
that the information about the interparticle interactions
is embodied in the direct pair correlation function of the
reference liquid.

Using the direct pair correlation functions experimen-
tally measured for amorphous cobalt and iron modeled
by dense random packing (DRP), the RY theory was re-
cently generalized to investigate stability of icosahedral
quasicrystals. In all cases the icosahedral structures
were found more stable than the reference uniform struc-
ture, albeit less stable than the fcc or even bcc structures.
Since icosahedral quasicrystalline structure cannot be sta-
bilized for hard-sphere or Lennard-Jones correlations
which, unlike cobalt and DRP, do not have the split
second peak, a feature of the direct pair correlation func-
tion which stabilizes the icosahedral quasicrystalline or-
der can be identified with this splitting. The split second
peak is indeed a consequence of the emergence of the
short-range icosahedral clustering. A long-range
icosahedral structure is, however, usually destabilized be-
cause of the frustration expressed by the presence of ener-
getically costly, arbitrarily long wavelengths.

Like all incommensurate crystals, quasicrystals also
have phase degrees of freedom (phasons). Therefore, in
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addition to the elastic energy associated with the usual
strains (shear and compression), one can define phason
strains and elastic energies associated with them.
Therefore, for a quasicrystalline structure to be stable, it
is necessary that it is stable not only with respect to the
usual (phonon) elastic distortions, but also with respect to
the new, phason elastic distortions.

In this paper we calculate the static elastic-modulus
tensor for icosahedral quasicrystals by extending the
theory we previously developed for crystals (hereafter re-
ferred to as I). The elastic-modulus tensor is calculated
by evaluating and minimizing the RY functional of the
strained solid and expanding the resulting thermodynam-
ic potential to second order in the strain matrices. In the
absence of necessary information about real quasicrystals,
we applied this theory to hypothetical icosahedral quasi-
crystals whose structure was determined in Ref. 8 using
the RY theory.

We find that the usual, phonon part of the elastic-
modulus tensor for icosahedral quasicrystals is positive
and not dramatically different from the elastic-modulus
tensor calculated for corresponding fcc or bcc structures.
Also, we find that the phason part of the elastic tensor is
stable. For a sufficiently strong phonon-phason interac-
tion term the total elastic-modulus tensor may still be-
come unstable. Using the same DRP direct pair correla-
tion function as in Ref. 8 we found that the interaction
term is not strong enough to render the icosahedral struc-
ture elastically unstable.

However, stability of icosahedral structure with
respect to the supercooled liquid, as well as its elastic sta-
bility, are sensitive to the large-wavelength behavior of
the direct pair correlation function. Indeed, different in-
terpolation schemes between the lowest experimentally
available wave vectors and the zero wave vector lead to
different answers, leading in one case to a sufficiently
strong interaction term which causes an elastic instability
with both phonon and phason components present. As
shown in Ref. 34, such elastic deformations cause distor-
tions in the diffraction pattern which are not unlike the
distortions actually observed in real samples. The
icosahedral elastic moduli calculated here were used else-
where to illustrate a calculation of the thermal and
quenched diffuse scattering from quasicrystals.

This paper is organized as follows. Section II contains
a derivation of the RY theory for incommensurate crys-
tals and quasicrystals. In Sec. III we derive the RY
theory of elastic moduli for incommensurate crystals.
The results for icosahedral quasicrystals are summarized
in Sec. IV. Section V is devoted to discussion and a sum-
mary. Appendix A proves the connection between in-
commensurate crystals and crystals in higher dimensions.
Equivalence between RY energies of incommensurate
crystals and hypercrystals is proved in Appendix B. Elas-
tic distortions of incommensurate crystals are defined in
Appendix C while the elastic moduli are explicitly
defined in Appendix D.

II. RY THEORY FOR INCOMMENSURATE
CRYSTALS

The RY theory was developed originally to explain
freezing of a liquid into a periodic, crystalline solid.

=min [EW[n(x};by,, V, T]I,
n(x)

(2.1)

where the variational potential
r

bW= I n(x)ln n(x)
V nl

b,n(x) ——n(x)bp d x

C,' '(n, ;x, —x~ )b,n (x, )
V V

xb, n(x2)d'x, d'x2+ (2.2)

is varied over the single particle density n (x ). The chem-
ical potential and the variational potential in this expres-
sion are in units of ks T, while b, n (x ) = n (x ) —n& and

Lp=p, —pI. For a given pI the equilibrium density of
the liquid is ni. The equilibrium density of the solid is
the density n(x ) for which the minimum in Eq. (2.1) is
achieved.

The expansion in Eq. (2.2) is usually truncated at the
second order so that the information about the interparti-
cle interactions is limited to the direct two-point correla-
tions Cl' '(ni, x) (the reference "liquid" state is assumed
translationally invariant). This correlation is easily ex-
perimentally available from the structure factor S~(ni,'q ),

1
C)(n( ,q ) =1—'

S(n, ;q)
' (2.3)

where C, (ni,'q) is ni times the Fourier transform of
CI '(ni,'x ) Alterna. tively, CI can be extracted from com-
puter simulations or evaluated in approximate theories of
the liquid state.

It was shown recently that in the case in which C& is
known as a function of ni, rather than only for a single
density nI, an infinite subset of higher than second-order
terms can be summed in Eq. (2.2) resulting in an effective
second-order term where C ( I'nq l) is "renormalized" as

n
CI(ni, q }~ CI(n, ;q),

n
(2.4)

n, being the average solid density. The terms which are
summed are of the form

~

b, n(q)
~

(n, ni), m—=0, 1, . . . , (2.&)

Unfortunately, for the DRP model considered here the

However, the approach was later adopted to deal with a
variety of other problems, such as glass formation,
liquid-crystal structure, ' adsorption, liquid-solid in-
terface, ' crystal defects, ' elastic properties of crys-
tals and liquid crystals, etc. In particular, the theory
was extended to describe icosahedral quasicrystals. We
shall generalize this work here and derive a RY theory of
incommensurate structures.

A detailed derivation of the RY theory was presented
in I and will not be repeated here. The result is that for a
given chemical potential p, volume V, and temperature
T, the difference between the grand-canonical potentials
G, or pressures P, of a ("solid" ) state s and a reference
("liquid" ) state 1 is given by

—V(P, P, ) =—G, [p„V,T) Gi[p—, , V, T)
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direct pair correlation function is available only at a sin-

gle density. On the other hand, for hard-sphere or
Lennard-Jones systems, for which approximate function-
al dependence on n& is available, we do not find

icosahedral quasicrystalline equilibria.
It is important to emphasize that the RY theory de-

scribed above can be generalized to the cases where the
reference state or the chemical potentials are not uni-
form. Similarly, it is not necessary to assume that the
equilibrium state is periodic. In principle, the functional
minimization should give the functiona1 form for the
equilibrium solid density irrespective of whether or not it
is periodic. In practice, however, one must assume a par-
ticular, sufFiciently simple form and parametrization of
n (x ). For example, one can assume that n (x ) is either
periodic or incommensurate. If for both assumptions a
minimum is found, then the structure with the lower
minimum is the more stable one.

It is well known that an incommensurate structure
given by a density n (x } can always be represented as a
cut through a higher, D-dimensional (D & 3) periodic den-
sity n(x),

n (x)ln
n(x)

U U nl
—b,n(x) —n(x)bp d x

g C((n(, Q)
~

b, n(Q)
~2' )

(2.10)

C((n('Q): C((n(', Q"), (2.1 1)

or, equivalently,

C', '(n, ;x)—= C,' '(n, ;x")5 (x ) . (2. 12)

The expression Eq. (2.10) has the same analogous form as
the expression Eq. (2.2) would have for a periodic density
in the physical space,

where v, denotes the unit hypercell. As we prove in Ap-
pendix B, the first equality in Eq. (2.8) (in the limit
V~ao and V ~ ~) requires that the chemical poten-
tials and the liquid density in the hyperspace are equal to
the corresponding quantities in the physical space. Also,
the pair correlation function C((Q) must be defined in
terms of the physical C((Q) as

n(x)=n(x} ~, , :—n(x=x", x =0 ), (2.6) bW 1
1

n(x)nxln —hn (x ) n(x )hp—d x

n (XII) g n(Q)e'~ '"

Q

(2.7)

where the sum is over the reciprocal hyperlattice, and
n(Q) is the Qth Fourier coefficient of n(x). However, in
this case it is more convenient to rewrite Eq. (2.1} in
terms of an equivalent minimization in the hyperspace,

AG AG =min .
V V

b, W[n(x);hp, V, T]
V

(2.8)

where

hW 1 n(x)
n x)ln

V v n,
—bn(x) —n(x)b(M d x

J J C ( '(n(, x, x2)bn(x, )—
v v

)& bn (xi}d x,d xi+ . (2.9)

or, using the Fourier-series decomposition of n (x),

where we use either no superscripts or we use the super-
script

~~
to indicate functions or variables in the three-

dimensional physical space, while we use the superscript
l in its complement. Functions or variables in the hyper-
space are denoted by an overbar and carry no super-
scripts. Vectors in the physical space will also be denoted
using the usual x notation. Thus x =—x . This one-to-one
correspondence between the periodic densities in the hy-
perspace and the incommensurate densities in the physi-
cal space is proved in Appendix A.

Minimization in Eq. (2. 1) can be carried out assuming
a quasiperiodic density defined by Eq. (2.6}, or by its
Fourier-series expansion [cf. Appendix A, Eqs. (Al) and
(AS)]

g C ((n (Q }~
b n ( Q )

~

'+
271 t Q

(2.13)

Either in the case of a periodic or an incommensurate
structure, one may truncate the Fourier series at a finite
number of terms and consider the corresponding Fouiier
coefficients as variational parameters. However, even
near the melting temperature, atoms in a solid are fairly
well localized, to within several percent of the typical in-
teratomic separation, so that a large number ( —10 —10 )

of the Fourier coeScients must be kept. Therefore, in

periodic structures it is often more accurate and much
simpler to expand the density into a sum of Gaussians
centered at the ideal atomic positions. For example, an
arbitrary monatomic crystal structure, with X, sites per
primitive lattice cell and with an equilibrium density of
vacancies, can be parametrized by 3N, + 10 parameters.

In the case of incommensurate quasicrystals, a finite-
temperature Gaussian smearing of the ideal atomic posi-
tions may not be sufficient. Following Eq. (2.6), the ideal
atomic sites of a three-dimensional incommensurate crys-
tal can be represented by (D —3)-dimensional noninter-
secting atomic surfaces periodically decorating the hyper-
crystal. Smearing of these surfaces in the physical, paral-
lel directions reflects, as in the case of ordinary crystals,
low-energy, long-wavelength phonon excitations. How-
ever, incommensurate crystals may also have low-energy,
long-wavelength phason excitations which would, at
suKciently high temperature, smear the surfaces also in
the complementary, perpendicular directions. Such
smearing corresponds to introducing partial occupancy
of atomic sites in the physical space.

For example, the surfaces for the usual, modulated in-
commensurate crystals are continuous and unbounded in
the complementary space, and gapless phason excitations
exist at q =0. Note that although the displacement field
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no(Q } —() t4)Q (A i
() A) Qn(Q)=n, e

no,
(2.14)

where I 0 is the Gaussian width matrix and no(Q) is the
Fourier amplitude for the ideal, unsmeared hypercrystal
with the average density no: r70(0—) and the hyperlattice-
constant matrix A (see Appendix B). The prefactor must
also be determined by the minimization because an equi-
librium density of vacancies (or interstitials) is possible.
Note that in the case of a primitive, monatomic crystal,
no(Q ) is independent of Q so that no(Q)/no, =1. This is
not true for quasicrystals. However, following Ref. 8, we
shall absorb the prefactor n()(Q)/no, into an e effticve

Gaussian factor I,

—(1/4)Q (A I A) Q (2.15)

associated with the phasons can be obviously described as
a linear combination of the phonons, such a representa-
tion would require phonons with arbitrarily large q. Con-
sequently, phonons and phasons can be considered as in-

dependent excitations at small q.
On the other hand, if the atomic surfaces are bounded,

as in the case of quasicrystals, then small fluctuations in
the x directions do not correspond to small atomic dis-
placements in the real space. Instead, atomic rearrange-
ments, possibly at arbitrarily large scale, are necessary.
Such rearrangements may involve large energy barriers.
In this case, phasons are pinned at low temperatures and
the smearing is not dynamic but due to quenched random
distribution of phasons. Quasicrystals, such as
icosahedral quasicrystals, are a special class of pinned in-
commensurate crystals in which the atomic surfaces are
bounded (discontinuous) due to the symmetry-imposed
constraints. Nevertheless, one expects that phasons are
unpinned at suSciently high temperatures. Therefore,
the atomic surfaces are smeared in the x directions at
any temperature due to either quenched or thermalized
phasons. As we shall see in the following section, this
conclusion is at least self consistent in the sense that the
elastic energy calculated using it is indeed quadratic in
the phonon and phason strains.

In analogy to the Gaussian expansion of crystal densi-
ty, a hypercrystal density can be expanded in terms of
Gaussian-smeared surfaces. In the simplest case, with a
single Gaussian, analogous to the case of a primitive
monatomic crystal, this amounts to the ansatz

hW
=hi()G(g, B,I;Ap)

n)V

D/2det

D
2

L

——,'C, (0)(1—2g) ——,'g g C, (
l
B M

l
)h (I ),

MEZD

(2.17}

where g=n, /n(,

r r a —2m M I M —(1/2)Q (A I A).Q=e (2.18)

the reciprocal quasilattice matrix B, which generates the
reciprocal quasilattice vectors Q =8 M, and the recipro-
cal hyperlattice matrix B, which generates the reciprocal
hyperlattice vectors Q=B M, MEZ, are defined in Ap-
pendix A, Eqs. (A2) and (A4).

The physical and the complementary space will gen-
erally transform under different symmetry groups so that
the Gaussian width matrix will split into two independent
components. For icosahedral symmetry each of these
components as well as A and B are proportional to the
identity. That is, detI =(I ~(I' ) and

(g IIMII&+P~M 2) —(a /2)(PIIQii2+P Q=e

III. ELASTIC MODULI

We derived in I a theory for calculating elastic rnoduli
of periodic crystals. This theory took into account a re-
laxation on the unit-cell scale of the strained density as
well as a change in the equilibrium density of vacancies.
In this paper we shall assume to be in the regime where
the microscopic strain is equal to the macroscopic strain,
and we shall assume that no relaxation occurs. The latter
assumption is justified by our observation that the correc-
tions due to relaxation are negligible in fcc and bcc crys-
tal structures obtained from the DRP correlation func-
tion.

In principle, density of the strained quasicrystal should
be obtained by the functional minimization over the den-
sities whose average is restricted to the average density

(2.19)

where I ll, I are scalars. Results obtained using this
equation and the DRP direct pair correlation function
will be described in Sec. IV.

(x K) (A.r.%)-).(r—R)
(m detl )

ns

det(1+ e)

and with the reciprocal lattice

8,=(T+'r) —' B—Q, =(l+'s)-' Q,

(3.1)

(3.2)

A more general case is straightforward but tedious.
Assuming narrow Gaussians, the entropy term in Eqs.

(2.9}and (2.10) can now be easily evaluated by neglecting
the overlaps between different Gaussians (see Appendix
B). Therefore, the variational potential Eq. (2.10) be-
comes

where the strain matrix c has the following form:

(3.3)

As we show in Appendix C, a quasicrystal structure is in-
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dependent of the E and E'I components so that they
have been taken equal to zero.

In practice, however, we shall assume that the strained
quasicrystal density has a more restricted form,

1 cqi~-x

n, (x")= g n(Q)e
det(1+E) &

(3.4)

Therefore, a strained quasicrystal can also be viewed as
the original x =0 cut, now taken through the strained
hypercrystal. Consequently, by using a formulation of
the theory in the hyperspace, cf. Eq. (2.17), we can apply
the formulas derived in I for the elastic moduli of crys-
tals. For example, the elastic energy is quadratic in the
strain c,

E, E, =—,'K:C:a+0(K ),
y 2

where the elastic modulus tensor is

(3.5)

Cij kl

k Ta

~q'+2 AP

Q2 C)

q(~o~ . ~& ~

xhM(l )Q, Q, Q„Q, . (3.6)

This expression follows from Eq. (I.4.29) where ha=A, l
is set equal to zero, and Eqs. (I.4.30) and (I.C18)—(I.C21).
Clearly, only Cl'I"I'", Cll'I" '"='C I"II'I, and C "' ll com-
ponents of the tensor C are the physically relevant ones.

In analogy to the dynamical situation investigated in
Ref. 42, it is interesting to examine the effect of phase de-
grees of freedom on the usual elastic response of a quasi-
crystal measured, for example, by applying a constant
stress o. If the phase degrees of freedom are sluggish,
having long-response times, then at short times the quasi-
crystal distorts like an ordinary solid with the elastic-
modulus tensor C=CII'll'll'll. However, at long times, after
the phase strain has adjusted to follow the usual strain,
the correct strain-stress relationship is

tT =C~tr.'E (3.7)

—CII II'll II CII II'j- Il.(C~ II'~ II)
—&.C411'll li (3.8)

In the following section we shall apply Eqs. (3.6) and
(3.8) to icosahedral quasicrystals. Presence of such a high
symmetry considerably simplifies the sum in Eq. (3.6).
The resulting expressions have been derived elsewhere.
However, for the sake of completeness we summarize
them in Appendix D.

IV. ICOSAHEDRAL QUASICRYSTALS

Short-range icosahedral orientational ordering is par-
ticularly prominent in metallic glasses. The characteris-
tic split second peak in the structure factor is considered

so that the quasicrystal responds as an ordinary solid
with the elastic-modulus tensor

—CII)'ll II

a signature of this ordering. ' On the other hand, as
we mentioned in the introduction, short-range orienta-
tional ordering can become long range and even trigger a
long-range positional ordering. Since amorphous cobalt
and amorphous iron both show strong signs of short-
range icosahedral ordering, they are good candidates for
exploring the interplay between local icosahedral cluster-
ing and icosahedral quasicrystalline ordering.

Experimental data for the structure factor of amor-
phous cobalt and iron (modeled by a DRP structure)'
were recent1y used in a RY calculation of fcc and bcc
crystal structures and simple icosahedral (si), body-
centered icosahedral (bci), and face-centered icosahedral
(fci) quasicrystal structures. The structure factor of the
amorphous phase was assumed weakly temperature
dependent and equal to the structure factor of the refer-
ence supercooled liquid at the glass transition. The su-
percooled liquid was also assumed incompressible and the
structure factors at small q were linearly extrapolated to
zero. As a result, it was found that bci and fci quasicrys-
tal structures are never more stable than the reference
liquid. The si, bcc, and fcc structures were found pro-
gressively more stable than the liquid, with fcc the most
stable and si the least stable of the three.

In this paper we focused our attention on the DRP
model of the supercooled reference liquid. The DRP
structure factor is in very good agreement with experi-
mental results for amorphous iron. The agreement is
somewhat worse but still very good for amorphous nick-
el. We obtained SI(q) by digitizing the curve given in
Fig. 8(a) of Ref. 38. Since in this paper we are interested
in calculating the elastic moduli, we cannot use the as-
sumption of incompressible liquid, that is $&(0)=0,
which would lead to an incompressible solid. As a conse-
quence, we used the linear extrapolation of the DRP
structure factor to the value

S,(0)=~rntk~ T=0.004 . (4.1)

Compressibility xz of the supercooled liquid at the glass
transition (Tg =600 K) (Ref. 50) was estimated using the
bulk modulus of crystalline Fe at this temperature,
8=1.5)&10' ergs/cm, while the density was similarly
estimated to nI =8.0)& 10 cm

As in Ref. 8, our calculations were done for p, =@I.
We first repeated the calculations of Ref. 8 using our digi-
tized S(q) and Eq. (4.1). We found the same relative sta-
bility of phases as in Ref. 8, although a small difference in
the equilibrium values of the parameters, and a somewhat
larger difference in the equilibrium values of the grand
potential was present. For example, for fcc iron (DRP)
we find 66 = —4.74n, k~ T, a =3.46 A, and I
=2.96)& 10,while hG = —4.84n, k~ T, a =3.48 A, and
I =2.82&&10 are quoted in Ref. 8. This difference is
unrelated to a change in $&(0) since g is assumed equal to
one. We ascribe them to small differences in digitizing
the SI(q) curve and in different interpolation schemes for
the values between the digitized points. We used quadra-
tic, symmetrized interpolation.

We also performed calculations where we relaxed the
condition g:n, /ni ——1. We foun—d the equilibrium fcc
and bcc structures with b, G = —5.8n, ka T, g= 1.09,
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TABLE I. All entries are in units 10 kz Tn, . Rows one and two give the elastic rnoduli for fcc and bcc structures (Voigt notation).

The numbers in parentheses give the reduction caused by the relaxation of the Gaussian widths under the strain. Third row gives the

eigen moduli for the icosahedral quasicrystal. The first three moduli give the short-time response of the phonon strain to the usual

stress. The numbers in parentheses give the reduction due to the long-time phason relaxation. The last row gives the eigenmodulus

of the reference supercooled liquid molded by the dense random packing. The eigenmoduli of cubic iron and nickel near 600 K are

given in parentheses as a reference since DRP is an excellent model for the structure of amorphous iron and nickel. The second

column gives the pressure relative to the pressure of the reference liquid.

fcc
bcc
S1

DRP{Fe,Ni}

S.SX 10-'
1.6X 10
9.5 X 10-4
O.OX10-"

11+2 12 A1

8.27(0.02}
3.33(0.03)
1.30
0.75(0.75)

C11 C12

1.53(0.01)
1.35(0.08)
0.52{0.04)
(0.13)

&44

2.00
0.42
0.26(0.02)
(0.17)

0.14 0.54 0.16

a =3.47 A, I =1.62X10, and hG = —1.7n, k&T,
/=1. 05, a =2.92 A, I'=2. 60&&10 4, respectively. Re-
sults quoted in Table I correspond to these values.

Among the icosahedral structures, we only examined
the vertex, simple icosahedral (si) quasicrystalline struc-
ture. We found an equilibrium AG= —0.95n, k&T at
a=1.36 A, I =2.8X10, and I =4.9X10 which
are again close to g = 1 values EG = —1 26n,.k~ T,
a =1.36 A, I ~~=2.3X10,and I =4.7X10 reported
in Ref. 8.

The results of our calculations of the elastic moduli for
structures described above are summarized in Table I.
Using the Voigt notation, we list for cubic crystals the
three eigen moduli: 3B =C»+2C&z, C» —C&z, and C~,
where B is the bulk modulus. These rnoduli can be also
defined for short-time and long-time response of the
icosahedral quasicrystal to externally applied stress.
However, of these three moduli, only 3B remains an
eigenmodulus also in the quasicrystal. The four eigenmo-
duli of the quasicrystal are defined in Appendix D and
listed in Table I.

For crystalline structures, we calculated the elastic
moduli with and without relaxation of the Gaussians. It
is evident from Table I that the relaxation affects the
moduli by only a few percent. This justifies neglecting
such relaxation in more complicated calculations for
icosahedral quasicrystals.

V. CONCLUSION

Besides developing a theory for calculating elastic
moduli of incommensurate crystals, an important objec-
tive of this paper was to gain insights into differences and
similarities between related crystalline and quasicrystal-
line structures. Therefore, a quick glance at Table I re-
veals that the usual elastic rnoduli of quasicrystals are
significantly lower than the same moduli in crystals for
either short- or long-time response. However, this result
might be largely a manifestation of the fact that in our
example the icosahedral structure was less stable than the
crystal structure, so that elastic moduli were evaluated at
a lower pressure.

Indeed, crystalline moduli calculated here are almost a
factor of 10 greater than the moduli measured in cubic
iron and nickel. We believe that this large difference
reflects less inaccuracy of the elastic moduli at hP =0

than incorrect prediction of their pressure dependencies,
not withstanding indications that higher-order correla-
tions which are usually neglected in Eq. (2.2) can be im-
portant. Therefore, it is important that a future work
repeats our calculations with nonzero values of hp, so
that the elastic moduli at hP =0 can be determined.

A future work should also examine the role of the re-
laxation of I on the values of the elastic moduli. Al-
though such relaxation has a small effect in crystal struc-
tures, indicating a small contribution from I ~~ relaxation,
it is possible that a relaxation of I would have a larger
effect.

Clearly, the four icosahedral eigenmoduli shown in
Table I are positive and, consequently, the examined
icosahedral structure is locally stable with respect to ei-
ther small elastic displacive or phase distortions. Howev-
er, it is important to emphasize that stability of quasi-
crystalline structures is very sensitive on the small-q ex-
trapolation of the reference structure factor. Unfor-
tunately, a quasicrystalline density necessarily has com-
ponents at arbitrarily small values of q, precisely where
the contribution to the variational potential is the least
favorable, and where the experimental data are not avail-
able. For example, if we want to mimic flatness of the
structure factor at small q, we can extrapolate the struc-
ture factor smoothly to the line S&(q) =S&(0). Such an ex-
trapolation is particularly unfavorable for a quasicrystal
structure and we find that the icosahedral structure be-
comes elastically unstable for cobalt, while it cannot be
found at all for iron.

Therefore, for a successful application of the above
theory it is essential that the compressibility and the
small-q behavior of the structure factor are well known
for the reference liquid. Lack of this knowledge is one of
the main reasons the theory has not been applied to real
quasicrystals. An additional reason is that the conver-
gence of the reciprocal space sum in Eq. (2.17) is usually
slow, requiring SI(q) at rather large q's, often beyond ex-
perimentally introduced truncations. The data for amor-
phous cobalt also suffer from this drawback and corre-
sponding results are consequently omitted from this pa-
per.

In view of the above cautionary remarks, it is natural
to consider formation of the icosahedral structure from
the hard-sphere or Lennard-Jones liquids for which the
structure factor is known with a high degree of accuracy.
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Unfortunately, we could not find any icosahedral quasi-
crystalline solutions of Eq. (2.8). However, it might be
helpful to add a degree of realism by considering a mul-
ticomponent system. A judiciously chosen mixture, with
a strong tendency for icosahedral clustering, could pro-
mote a long-range icosahedral positional ordering. The
theory presented here can be easily generalized to deal
with such multicomponent systems.

In this paper we were mainly interested in a compar-
ison between the elastic moduli of crystals and quasicrys-
tals. Therefore, it was important that the calculations for
both types of structures were done with the identical set
of assumptions, while a possible inAuence of the higher-
order terms neglected in Eq. (2.2) was of secondary im-

portance. Clearly, there are no obstacles in extending our
theory to include arbitrary higher-order terms.

We have circumvented the question of phason pinning
and phason dynamics by defining the elastic energy as the
difference between the thermodynamic potentials of the
static equilibrium strained and unstrained quasicrystals.
To consider the strained structure as resulting from an
actual "continuous" distortion of the unstrained struc-
ture it is necessary to assume a sufficiently slow rate of
distortion and a sufficiently high temperature. Plausibili-
ty of this assumption and a more microscopic analysis of
the phase degrees of freedom at low temperatures will be
presented elsewhere. '

In summary, we presented a method for calculating
elastic moduli of incommensurate crystals. The method
can be easily generalized to include higher-order correla-
tions as well s multicomponent structures. A comparison
with existing experimental results for crystals indicate
that additional calculations with by&0, and including
some higher-order correlations, will have to be carried
out. Elastic mod uli of icosahedral quasicrystals are
found to be smaller than the related moduli of crystals,
but again additional calculations are necessary. Values of
the elastic moduli and the elastic stability of the quasi-
crystals are very sensitive to both the small-q extrapola-
tion and the large-q cutoff of the reference structure fac-
tor C&(q). Generally, a sufficiently strong phonon-phason
interaction A. , will destabilize the quasicrystalline struc-
ture. The instability occurs precisely at the same point,
A, ; =A,P,&, where the effective, long-time shear modulus of
the quasicrystal becomes equal to zero. Measurements of
the short- and long-time bulk and shear moduli of the
quasicrystal are not sufficient to determine all the moduli
of the quasicrystal. Debye-Wailer factors and diffuse
scattering offer an indirect means of measuring these
moduli.
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APPENDIX A: HYPERCRYSTALS
AND INCOMMENSURATE CRYSTALS

Q=B M, MEZ (A2)

where RankB=3 and B=(bi, . . . , bn). Clearly, for a
given basis Ib I i, the Fourier coefficient n(Q) is a
function of M only, n (Q) =n~ There. fore, if a basis b
of a D-dimensional reciprocal hyperlattice is also fixed, a
one-to-one correspondence between the incommensurate
density n (x ) and a hypercrystal density

n(x)= gn(g)e'~"
Q

(A3)

can also be established using the one-to-one correspon-
dence

1-1

Q=B M~Q=B M, MEZ (A4)

where B=(b„.. . , bn ), and the consequent identification

n(Q) =n ( Q)=n (A5)

Therefore, in the direct space, the two densities are relat-
ed by

n (x ) =n [x(x )] (A6)

provided the three-dimensional hyperplane x(x ) is
defined by

x= 4, . 'B ~+c, 'B.c
277

(A7)

where the basis A =—( A, , . . . , AL, ) of the direct-space hy-
perlattice is defined by

' A=fB-~
2' (A8)

The basis B is completely arbitrary except for the condi-

In this section we shall establish a connection between
incommensurate crystals in three dimensions and period-
ic structures (hypercrystals) in higher-dimensional spaces.

By definition, density of an incommensurate quasicrys-
tal n(x), although not periodic, has a discrete Fourier
transform. In other words,

n (x)= g n (Q)e'~ ", (A 1)
Q

where the summation is over a lattice I Q I of rank D ~ 3
(D = 3 corresponds to the case of ordinary crystals).
Therefore, there exists the smallest set of basis vectors
b, a=1,2, . . . , D, such that every scattering vector Q is
an integral linear combination of these basis vectors,
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B, =B;, i=1,2, 3 (A9)

while B;, i =4, 5, . . . , D, is still arbitrary, ensuring that
the three-plane Eq. (A7), identified by the superscript ~~,

has the identical basis as the physical space. That is, Eq.
(A7) can be replaced by

tion detB&0. However, certain metric considerations
can be used to restrict the choice of B. For example,
since RankB =3, it is always possible to choose

a =ae, e =e&——5&, (A14)

(A15)
Qo

Its orientation with respect to the parallel and perpendic-
ular spaces is given by Eqs. (A12) and (A13), which are
proportional to the projections of the vectors e on the
two spaces.

x:—(x",x )=(x,O ), (A 10)
APPENDIX B: RY FUNCTIONAL

FOR HYPERCRYSTALS
where l. denotes the (D —3)-dimensional subspace or-
thogonal to the physical space, and the quasicrystal den-
sity is explicitly a cut through the hypercrystal density
[cf. Eq. (A6)],

n(x)=n(x, O ) . (Al 1)

It is often useful to impose additional metric restric-
tions on the choice of the reciprocal hyperlattice. For ex-
ample, one might require that the orthogonal symmetry
operations which leave the set [ Q ] invariant, be
represented by orthogonal symmetry operations in the
hyperspace.

In the case of experimentally observed icosahedral
quasicrystals, the basis 8 is formed by D =6 vectors b
along the six fivefold axes (vertices) of an icosahedron.
We shall choose the orientation

=—f F(n(x))d x .
V V v

(81)

For a quasiperiodic density given by Eq. (2.6) this expres-
sion can be rewritten

=—f F(n(x))5 (x )d x .
V V y

By substituting

(82)

In this appendix we prove that the RY variational en-
ergy per unit volume of an incommensurate crystal
equals the RY variational energy per unit volume of the
associated hypercrystal.

The RY functional is a sum of local and nonlocal
terms. The local term has the form [cf. Eq. (2.2)]

B; =B; = Qo
0

v+2

1 0 0 1

0 v 1 —1

—1 0 w w 0

x~x —R, (83)

where R is a hyperlattice vector and the new x is restrict-
ed to the unit hypercell U„Eq. (B2) can be replaced by

i =1,2, 3 (A12)

where Qp is the magnitude of the vectors in the basis, and
r =—,'(1+&5). Since the rows of B are mutually orthogo-
nal and of the same magnitude Qp:Qp&2, one can im-
mediately choose B to generate a hypercubic lattice. This
choice is also dictated by the fact that an action G of the
icosahedral group on the physical, parallel space spanned
by 8, [Eq. (A12)] is equivalent to an action 6 which per-
mutes and changes the signs of the vectors b, that is, to
an action of a subgroup of the hypercubic group. There-
fore, B is proportional to a rotation which rotates a coor-
dinate system aligned with the hypercubic axes into one
aligned with the parallel and perpendicular spaces. The
basis of the perpendicular space can be chosen by observ-
ing that G is reducible with its perpendicular block al-
though inequivalent to G, related to it by an outer auto-
morphism of the icosahedral group. Therefore, the per-
pendicular components of the vectors b can also be
aligned with the fivefold axes of an icosahedron.
Specifically, we choose

1 1 —w 0 0
Qo

B; = 0 0 1 —w w —1&r+2
0 1 1 0

i =4, 5, 6 (A13)

to span the three-dimensional perpendicular space.
In summary, the hypercubic lattice is generated by

F n x 'x' —R' ~x
V V U,

(84)

The sum over the 5 functions is nothing but the density
of R points in the perpendicular space, which, by virtue
of incommensurability, is uniform and equal to V/U„

lim +5 (x —R )~—.
v~ oo

R U
C

Consequently,

(85)

f F(n(x))d X= (86)

m

5zM,i=1 M +ZD
I

(87)

where 5M =—g+
& 5M o is a generalized Kronecker delta.

a'
Clearly, since Q, is in one-to-one correspondence with the

where nl —=nl and hp=hp.
The nonlocal terms in the RY functional are most easi-

ly evaluated using the explicit Fourier decomposition of
the density [Eq. (Al)]. The typical nonlocal term has the
form
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reciprocal hyperlattice vector Q;, such nonlocal terms

can be expressed also as

6W„„'1

n, v
1

/
—1 M +XD

I

m Qn(Q. )xC' '(Q, , . . . ,Q, ) g
i=1

(m)
nonl

n
(88)

where we exploited Eq. (A5) and defined

g 5(x; —x ). (810)

Therefore, term-by-term, we see that minimization of the
RY density functional in the subspace of quasiperiodic
densities defined by Eq. (Al) is equivalent to minimiza-
tion of the D-dimensional RY density functional in the
subspace of periodic densities defined by Eq. (A3), provid-
ed that the direct m-point correlations of a reference
liquid in the hyperspace are defined by Eqs. (89) and
(810).

As described in Sec. II and in Ref. 44, a thermal disor-
dering of an incommensurate crystal can be described in
terms of a Gaussian smearing of the atomic hypersur-
faces decorating the hypercell. That is, the atomic sur-
faces are convoluted with a Gaussian and Eqs.
(2.14)—(2.16) follow. Normalization of the Gaussian is
n, /n Owhere n, and no, are the densities of the disor-
dered and undisordered quasicrystals, respectively. The
cases n, /no, &1 and n, /no, &1 correspond to the pres-
ence of intersitials or vacancies, respectively.

If the overlap between the Gaussians in different unit
hypercells is small, the first term in the nonlocal part of
the grand-canonical thermodynamic potential, Eqs. (2.10)
and (86) can be approximated by

U, , (m detI )' (~ detI )'~

—x-r —'-- dD- (811)

where I „—=A I 'A, g=n, lnl, and U, =detA. Since the
Gaussians are assumed well localized, the integral in Eq.
(811) can be extended over the entire hyperspace and
thus reduced to trivial Gaussian integrations. Therefore,
we find

Q,
—=Qll (89)

or, in the direct space, using translational invariance,

C' '(x, —X, . . . , X,—x )

=C' '(x, —x, . . . ,x,—x )

m —1

5W'1„
ln

ntV (~DdetI )»'

—(g —1)—(hp, (812)

(813)

In this paper we consider only the situation where the
Gaussians can be assumed narrow so that Eq. (812) ap-
plies. This might not be the case for incommensurate
crystals with continuous atomic hypersurfaces.

In conclusion to this section we would like to recall the
exact inflation symmetry of icosahedral quasicrys-
tals. ' A detailed analysis of the inflation symmetry
and its application to the RY theory and Gaussian ansatz
will be presented elsewhere. Briefly, the inflation sym-
metry is a discrete symmetry

a ~3 a (814)

(815)

(816)

which is related to the invariance of Z under

Mlles Ml

M~w M

(817)

(Big)

where M G Z and m is any integer. Clearly, because of
the invariance of Z under Eqs. (817) and (818), the vari-
ational potential Eq. (2.17) is invariant under transforma-
tion [Eqs. (814)—(816)]. Consequently, if a minimum is
found at a, I l, and I, then an infinite family of minima
related by Eqs. (814)—(816) must be also found. We used
this as a check to our numerical minimization.

APPENDIX C: DISTORTIONS
OF INCOMMENSURATE CRYSTALS

A uniform translation u changes the density n (x ) into
n (x + u ), or equivalently, n (Q ) into e'& "n (g ). I't is
clear from Eqs. (Bl) and (87) that, just as for crystals,
this transformation does not change the RY variational
potential. However, the density n (x ) can also be
changed by translating the hypercrystal density n(x) into
n(x+u ), or equivalently, n(Q) into e'~ '" n(Q). It is
clear from Eqs. (86) and (Bg) that this transformation
does not change the RY functional since the correspond-
ing D-dimensional RY functional is invariant under any
D-dimensional uniform displacement, including the pure

which is precisely the term given in Eq. (2.17).
In the opposite limiting case where the Gaussians are

broad, n (x)=n, and the local term of Eq. (2.9) can be ex-
panded in the small quantity n(x) —n, . Then, Eq. (812)
is replaced by

6 W1„ =g In/ —(g —1)—g b,p
nI V

21 —1
+& X I(I 1) H X

l
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u(x ) Ell Il.x (CI)

and

phonon displacexnent ul=u and the pure phason dis-
placement u .

Since the RY functional of the incommensurate crystal
is invariant under the uniform displacement u, it is natu-
ral to de6ne a uniform elastic distortion of the incom-
mensurate crystal by

C]) =m
T I Pr8nl

™
where

~T+2 hP
mp —— +1—g,

k~ Tn(
A. pf -p.5=&-Py5

(D 1)

(D2)

(D3)

u'(x)=E'~'x .
and for )u&0

(C2)

More generally, the density of the distorted incommensu-
rate crystal is characterized by the distorted reciprocal
hyperlattice

&M(I )f "(Q),
IgI3 M

Qll ~E)l II.QII iE). II.Q).
(C3)

(D4)

In other words, phonon and phason strained incommens-
urate crystal is equivalent to the strained hypercrystal
with the strain matrix

while

f"«)=f".py5Q—QpOyQ5 (D5)

(C4)

bll

ba~ bg fll J bll gJ g
a —& ' a —& ' a

(C6)

In the main text we shall assume that the equilibrium-
strained density corresponds to the uniformly strained
density at all scales including the unit hypercell scale.
That is,

n (Q) iq, .x
e

det(1+E)

or

(Q )= n(Q)
det(1+ E)

(C8)

APPENDIX D: ICOSAHEDRAL ELASTIC MODULI

In a previous publication we derived a group-
theoretical result which can be used to evaluate the sum
in Eq. (3.6),

Note, although c, must be symmetric by virtue of the
rotational invariance of the variational functional, a is
not symmetric. Indeed, c, and c. components of e. are
not present since the RY functional is invariant under
these distortions. They correspond to

Qll Ql
Q). Q) i ll).QII & j.).Q) (C5)

However, since according to Eq. (B9) C' ' depends only
on the Q)) =Q component of Q, which is unchanged under
this strain, the equilibrium strained density n, (x ) is ex-
actly equal to the strained density n(x). In fact, this is
precisely a manifestation of the arbitrariness in the choice
of the perpendicular components of the reciprocal hyper-
lattice:

are the basic quartic polynomials invariant under the
symmetry of the incommensurate crystal. They are
orthonormal in the sense that

f apysf apys='tv (D6)

In the case of icosahedral quasicrystals D =6, the per-
pendicular space is three-dimensional, p =0, 1, . . . , 4,
and using the orientation established in Eqs. (Al 1) and
(A13) we determine

f '(Q)=(les)
I
Q"

I

f '(Q)=&2/3
I
Q' I'

I
Q'I'

f (Q) 3/3/40( I gI2 [Ql2 v 5(g)2 Ql2 )]

g(gtgz I+c.p. )

IQ I' IQ'I'
&120

(D7)

(D8)

(D9)

and

f'(Q)= —Q'QI Qi' —3 QV+ —QP + p.

(D10)

where c.p. denotes cyclic permutations. Since D =6 for
icosahedral symmetry, the generalized strain c has fifteen
independent components: the six components of the usu-
al symmetric strain all'll and the nine components of the
phason strain c. 'll. We shall denote the 15 independent
strai~ components by E, =El j, E2 =—E('J, E3=E)I
E4—= (1/3/2)(E)l )/+E( )I), E,=(1/&2)(EII Ij)+~( )))

=(1/~2)(E(' )+EI')), E7= E)'I, Es —=E2'(, E9:E3 )Iy E)0
=~1,2& ~11=2, i& ~12=~2, 3& 13=~3, 2& ~14=~3, i& ~15=1, 3

Using this notation the elastic energy Eq. (3.5) can be
written as
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k~ TnI V
=—'E C pEp, aP=1, 2, . . . , 15 . (Dl 1)

5

C= gc, C, , (D12)

With this notation we have, for example, Ci i
——CI'I". i'"&

and C4 4=2CI'J. "
z, which is different from the Voigt no-

tation.
The 15&(15 elastic-modulus matrix C & has, by sym-

metry, five independent parameters. For example,

C;:C,=5;, ,

and given by

(D13)

where the five basic matrices C; are orthonormalized,

(D14)

C Jl

1 2 2

2 1 2

2 2 1

03x3

03x3

—1 0 0
0 —1 0
0 0 —1

(D15)

3 T 7 (D16)

C„"
4&S

2

2 2

2

1 0 0
010g
0 0 1

03' 6

I +i/5

(D17)

v'60

—7
—1

1
—1

1
—1

03~3

0
—1 0

0
0

(D18)

06x3
0 —s 0

v'2
0 ~-' 0
0 0

0 0

Only the nonzero blocks are shown and I denotes the ap-
propriate identity. The coefficients c, can be related to
the coefficients m„by

c i
——(&5m

&
+3m o )/i/6,

A, = —(c, +&5c~),v'6 (D20)

symmetry it is possible to evaluate these eigenvalues
analytically. They are the nondegenerate eigenvalue

c2 ——(m, + 3i/5mo )/i/6,

ci ——3m 2 /+6

c4 ———m3/&6,

(D19)

the fourfold eigenvalue

v's
A4= C3+ C4

3 2
(D21)

c5 =m4/2

Although the icosahedral symmetry allows for five ar-
bitrary parameters, it restricts the number of distinct ei-
genvalues of C & to four. Moreover, by utilizing this

and the two fivefold eigenvalues

[(XlJ—X', )'+4m']'"
Aq~ ——

2
'+

2

where

(D22)
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and

1
ci — —c2v'6 v'5

1 2
c3 — —c4

5

(D23)

(D24)

C44 ( ii 22 ) P' (D28)

for an isotropic solid.
The long-time response to the stress is given by Eq.

(3.8) which can be diagonalized to give

A, and p are the Lame coefficients. In order to facilitate
comparison with cubic crystals we recall that

C2
5

Ar 5 10
(D25)

and

Aleff +1 (D29)

and

3B =C11+2C12——2A, +3@=A1

2G =C„—C,2=2p, =A,),

(D26)

(D27)

where CJ are the elastic moduli in the Voigt notation and

Note that A, and kI) are the nondegenerate and fivefold-
degenerate eigenvalues of the phonon block C" II'I'I' of the
tensor C, while A4 and A, is are the fourfold-degenerate and
fivefold-degenerate eigenvalues of the phason block
C '"' 'I'. Similarly, A, s is the fivefold-degenerate (and the
only nonzero) eigenvalue of the product, in either order
of the two off-diagonal, interaction blocks of 0 (that is, of
CII, II;i Il.ci II'll II and Ci II'll II.CII II i II )

Since the short-time response to the usual stress is
given by CII'I'I'II the short-time bulk (B) and shear (G)
moduli are simply related to Ai and A, I),

i

5

5

(D30)

(D31)

at which the long-time, effective shear modulus
equals zero.

The corresponding long-time bulk and shear moduli can
be determined from Eqs. (D26) and (D27) with the ap-
propriate substitutions of A, and A,) by AI(, ir and A!),s; re-
spectively.

%'e conclude this section by observing that a
sufficiently strong, either positive or negative, phonon-
phason coupling e5 can make A5 negative and cause an
elastic instability. This happens precisely at the same
point

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys.
Rev. Lett. 53, 1951 (1984).

2M. Widom, K. J. Strandburg, and R. H. Swendsen, Phys. Rev.
Lett. 58, 706 (1987).

3F. I angon, L. Billard, and P. Chaudhari, Europhys. Lett. 2,
625 (1986).

4P. A. Kalugin, A. Yu. Kitaev, and L. S. Levitov, Pis'ma Zh.
Eksp. Teor. Fiz. 41, 119 (1985) [JETP Lett. 41, 145 (1985)].

5P. Bak, Phys. Rev. Lett. 54, 1517 (1985}.
N. D. Mermin and S. Troian, Phys. Rev. Lett. 54, 1524 (1985).
M. V. Jaric, Phys. Rev. Lett. 55, 607 (1985).
S. Sachdev apd D. R. Nelson, Phys. Rev. B 32, 4592 (1985).
For a review, see O. Biham, D. Mukamel, and S, Shtrikman, in

Aperiodicity and Order, Vol. 1 of Introduction to Quasicrys

tais, edited by M. V. Jaric {Academic, Boston, 1988).
'OG. Baym, H. A. Bethe, an/ C. I. Pethick, Nucl. Phys. A175,

225 (1971).
S. Alexander and J. McTague, Phys. Rev. Lett. 41, 702 (1978).

' S. Narasimhan, Ph.D. thesis (Ohio State University, Ohio,
1987); S. Narasimhan and T.-L. Ho, Phys. Rev. 8 37, 800
(1988).

' L. Gronlund and N. D. Mermin, Phys. Rev. B 38, 3699 (1988).
O. Biham, D. Mukamel, and S. Shtrikman, Phys. Rev. Lett.
56, 2191 (1986).

'sM. V. Jaric, Nucl. Phys. 8265 [FS15],647 11986).
T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775
(1979).

7A. D. J. Haymet and D. W. Oxtoby, J. Chem. Phys. 74, 2559
(1981).

' A. D. J. Haymet, J. Chem. Phys. 78, 4641 (1983).
' G. Jones and U. Mohanty, Mol. Phys. 54, 1241 (1985).

P. Tarazona, Mol. Phys. 52, 81 (1984); Phys. Rev. A 31, 2673
(1985).

'A. D. J. Haymet and D. W. Oxtoby, J. Chem. Phys. 84, 1769
(1986).
M. Popovic and M. V. Jaric, Phys. Rev. B 38, 808 (1988).

23C. Marshall, B. B. Laird, and A. D. J. Haymet, Chem. Phys.
Lett. 122, 320 (1985).

24W. A. Curtin and N. W. Aschcroft, Phys. Rev. Lett. 56, 2775
(1985);W. A. Curtin, Ph.D. thesis, Cornell University, 1986.
D. K. Fairbonet, W. F. Saam, and L. M. Sander, Phys. Rev. B
26, 179 (1982); L. M. Sander and J. Hautman, ibid. 29, 2171
(1984).
M. Bauss and J.-L. Colot, J. Phys. C 19, L135 (1986); Y.
Singh, J. Stossel, and P. Wolynes, Phys. Rev. Lett. 54, 1059
(1985).

7T. V. Ramakrishnan, Pramana 22, 365 (1984).
M. R. Lakshmi, H. R. Krishnamurthy, and T. V. Ramakrish-
nan (unpublished).

2 See Ref. 17 and D. W. Oxtoby and A. D. J. Haymet, J. Chem.
Phys. 76, 6262 {1982).

30&. A. Curtin, Phys. Rev. Lett. 59, 1228 (1987).
'J. W. Sellinger and D. R. Nelson (unpublished).
D. R. Squire, A. C. Holt, and W. G. Hoover, Physica 42, 437
(1969).
M. Lipkin, S. A. Rice, and U. Mohanty, J. Chem. Phys. 82,
479 (1985).
M. V. Jaric and U. Mohanty, Phys. Rev. Lett. 58, 230 (1987);



MARKO V. JARIC AND UDAYAN MOHANTY 38

59, 1170 (1987).
~5M. 3'. Jaric and U. Mohanty, Phys. Rev. B 37, ""~1(1988).

G. L. Jones, Mol. Phys. 61, 455 (1987}.
~7P. K. Leung and J. C. Wright, Philos. Mag. 30, 185 (1974).

T. Ichikawa, Phys. Status Solidi A 19, 707 (1973).
S. Sachdev and D. R. Nelson, Phys. Rev. Lett. 53, 1947 (1984);
Phys. Rev. B 32, 1480 (1985), and references therein.

~P. Bak, Phys. Rev. B 32, 5764 ('985), and Ref. 5.
'P. A. Kalugin, A. Yu. Kitayev, and L. S. Levitov, J. Phys.

(Paris) Lett. 46, L601 (1985).
4~D. Levine et al. , Phys. Rev. Lett. 54, 1520 (1985); T. C. Lu-

bensky et al. , Phys. Rev. B 32, 7".~". {1985).
P. A. Bancel and P. A. Heiney, J. Phys. (Paris) Colloq. 47,
C3-341 (1986).

~M. V. Jaric and D. R. Nelson, Phys. Rev. B 37, 4458 (1988).
45Low-energy excitations which correspond to phase degree of

freedom in the pinned regime are likely to exhibit solitonlike
dynamics and, consequently, could not be expressed in terms
of phonons.
P. Bak, Phys. Rev. Lett. 56, 861 (1986);D. Frenkel, C. L. Hen-

ley, and E. Siggia, Phys. Rev. B 34, 3649 (1986};A. Katz (un-

published).
47Because of the partial occupancies caused by the phase degree

of freedom, it is more subtle to identify an equilibrium density
of vacancies for quasicrystals than for ordinary crystals.
Density of vacancies can be consistently defined by relating
experimentally measured density of a quasicrystal n, ( T) to its
reciprocal hyperlattice matrix A(T) measured at different
temperatures T. Change in the vacancy density n, can be
defined by dn, /dT = —n, trL& —dn, /dT, where L& is the ten-
sor of thermal expansion of the hyperlattice, Lz ——d lnA/dT.

~8M. V. Jaric, in Proceedings of the XVth International Colloqui
um on Group Theoretical Methods in Physics, edited by R.
Gilmore (World Scientific, Singapore, 1987).
See, for example, C. Angell, J. H. Clarke, and L. V. Wood-
cock, in Aduances in Physics, edited by I. Prigogine and S. A.
Rice (%'iley, New York, 1981).

50F. Spaepen (private communication).
5~L.-H. Tang and M. V. Jaric (unpublished).
5~D. %'right and S. Ostlund, Phys. Rev. Lett. 56, 2068 (1986).

V. Elser, Phys. Rev. B 32, 4892 (1985).
54C. L. Henley, Phys. Rev. B 34, 797 (1986).
55A. Katz and M. Duneau, J. Phys. (Paris) 47, 181 (1986}.

M. V. Jaric, Phys. Rev. B 34, 4685 (1986)~

M. V. Jaric (unpublished).


