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We introduce a model of coagulation with single-particle breakoff, described by the kernels
Kij=ij and Fij=a((j+1)8;+(i+1)8;1). For a above a critical value a., the system either gels
or reaches a steady-state size distribution, depending upon initial conditions. Below a, gelation
always occurs. At a=a,, the scaling exponent 7, which describes the large-size behavior of the
steady-state size distribution, is 7 rather than the usual value 3, indicating that this process be-

longs to a new universality class of gelation.

Irreversibly coagulating systems have long been at the
center of experimental and theoretical study of colloidal
phenomena, aerosol dynamics, and polymerization. More
recently, the more general problem of coagulation with
fragmentation has begun to receive attention. The intro-
duction of breakup into a system makes the attainment of
steady-state size distributions possible and recent work
has concentrated on describing reversible systems as they
approach these steady states.! > Aizenman and Bak?
have studied the approach to equilibrium of the Blatz-
Tobolsky® model, which describes reversible kinetics of
linear polymerization, while van Dongen and Ernst? stud-
ied the reversible kinetics for branched polymers. Family,
Meakin, and Deutch* have introduced a scaling exponent
to relate the breakup strength to the steady-state size dis-
tribution and have performed computer simulations to
verify this result. Very recently, Sorensen, Zhang, and
Taylor® have developed a general stability criterion for
reaching steady-state size distributions for reversible co-
agulation, assuming homogeneous coagulation and frag-
mentation rate kernels.

In this Rapid Communication we introduce a coag-
ulation-fragmentation model which does not fall into pre-
viously studied classes: it does not satisfy detailed bal-
ance, and does not have a homogeneous fragmentation
kernel. Yet this system can reach a steady state, depend-
ing upon the relative strength of fragmentation to coagu-
lation and, in some cases, also upon the initial conditions.
At a critical value of this relative strength, we find a scal-
ing exponent r whose value 7 indicates a new universality
class of gelation.

We consider a system where the fragmentation involves
the breakoff of only a single particle at a time. This pro-
cess is described by a coagulation matrix K;;, which gives
the rate of combination of i-mers and j-mers, and frag-
mentation function fj, which gives the rate of breakoff of
single particles from k-mers (f, =0):

Ky Je
c1+cj——-*c,-+j, C|+ck—1‘—-0k, ¢))

where ¢ is the concentration of k-mers (k> 0). The
fragmentation process considered here is a special case of
the general binary fragmentation,’ described by a break-
up matrix Fj;, which gives the intrinsic rate that (i +j)-
mers break into an i-mer and j-mer. In our model, F;; has
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nonzero terms in only the first row and column (ie.,
Fij=fi+18j1% fj+18i1). The kinetics of this process are
described by the equation

dey -
— =1 ¥ Kijcici—cx X Kijej+ fr+1ck+1
dt itj=k =1

= frcx + 8k 1j§_:lf}cj , )

which is a generalization of Smoluchowski’s coagulation
equation. The last term in Eq. (2) reflects the special
treatment that monomers must be given, since they are
formed from the breakup of any cluster. One can easily
verify that the mass M| =Y k¢ is conserved by Eq. (2).

This coagulation-fragmentation process is of interest in
situations where particles are broken off one at a time,
such as by mechanical grinding, or where particles are
held by many bonds and the only breakoff possible is a
single particle. Equation (2) has also been written to rep-
resent an aerosol undergoing simultaneous coagulation
and evaporation.® It also serves as an interesting example
of a coagulation-fragmentation process in which detailed
balance at the steady state is not possible. That is, if ¢ is
the steady-state value of the concentrations, then detailed
balance requires K;;c;Cj =Fi;jCi+;. Detailed balance is
clearly not possible here because of the zero elements in
F,'j.

Here we consider specifically the model with K;;=ij
and fx =ak (k > 1). This coagulation kernel corresponds
to the reaction limited growth of cross-linked or branched
polymers, and is known to lead to a gelation transition
(growth of infinite particles) in a finite period of time,
when there is no fragmentation. The breakup function f;
corresponds to a monomer loss rate proportional to the
particle size. The parameter a gives the relative strength
of this fragmentation process over the coagulation process.
Equation (2) then becomes

dcy

1 ..
—_— lc.c._kc
at 2i+jz_k]tj k

+al(k+1)ck+1—kex +6r1], 3)

where we have assumed that the concentrations have been
scaled such that the conserved mass M;=Xkcy =1 (be-
fore gelation, if it occurs).
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The equations for the moments M, =Xk"c; are found
by multiplying Eq. (3) by k" and summing over all k. We
find

dM .
-:——+ —_
= r+all—cy), (4a)
d—gf—z =M3%—2Ma+2a, (4b)
aMm
_dt_1=3M3(M2—a)+3aM2’ (40)
dM n—2n
~=nM,(Mr—a)++ Y [1}M1+1Mn—l+l
dt (=2
noIn
+a M1+122 / (=D'My—141| #>3).
(4d)

Note M cannot be determined by solving Eq. (4a) since
it depends upon ¢, which in turn depends upon all other
¢k, which cannot be determined. However, M, is soluble
and M3 and higher moments can, in principle, be found.
From these the long-time behavior of the size distribution
can be deduced, and it is not necessary to have a solution
for M.

Three regimes of the breakup strength a lead to a
different long-time behavior in this system. These regimes
may be deduced from the steady-state solution M5, which
follows from Eq. (4b):

My;=a—+a’—2a. (5)

Only the negative root is applicable since M,— 1 as
a— oo. Equation (5) requires that a?>—2a =0, leading
to the following necessary condition for steady-state be-
havior to result:

(6)

It follows that a. is a critical value, above which steady-
state solutions are possible and below which no steady-
state solution exists and (as will be shown) gelation
occurs. The borderline case a =a, will be shown to lead
to a new universality class of gelation.

0 < a < a,. In this case Eq. (4b) becomes

dx
dt

where y=+2a—a?>0and x=a—M,. A solution for x
is immediate:

a=2=aq,.

2

xt=u?, @)

x(0) —ptan(ut)
1+ [x(0)/ultan(us) -
Equation (8) implies gelation since x always diverges at a
finite time 7, given by t; = —1/parctan[u/x(0)]. When
x(0) <0, 0<ty <n/2u, and when x(0) >0, n/2u <t,
< n/u. Furthermore, it may be shown that the moments
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FIG. 1. Phase portrait of x for the case a > a, where we have
taken B=1. The shaded area shows all values of x that will lead
to gelation. For all other values of x the system will reach the
stable steady state x =g =1.

in general diverge as
B,
(tg—1)2 3

where the constants B, are recursively determined. As-
suming the scaling form cx~k ~*¢(|t,—1|k°) for
t— tg, which implies M, ~ (g —1) *~"+17¢ we find the
usua} result for the ij coagulation kernel,>!® '=$ and
o=7.

a=a.. For this case Eq. (4b) becomes dx/dt = —x
which has the solution

x(0)
1+x(0)¢’

whose behavior depends upon the initial condition x(0).
If x(0) <0 then x diverges (gelation) at tg = -x(0) 7!
and we have the scaling behavior ¢, ~k& ~5/2 gt t=tg. If
x(0)=0, we find that x— 0 as r— oo, indicating a
steady-state solution.

o> a.. Equation (4b) becomes

M,~ (n=2), )

2

’

(10)

A% g2 2 (1
FTRILANREE

where B=+a’?—2a > 0. Solution for x is given by
_ __ Btanh(Bt) +x(0) (12)

1+ [x(0)/ltanh(Br) * )
As for the case a =a., the long-time behavior of Eq. (12)

depends upon the initial condition x(0). If x(0) < —p
gelation occurs at t,=(1/B)arctanh[p/x(0)] and the
asymptotic size distribution ¢y ~k 32, k— oo, 1 =1, re-
sults. If, however, x(0) > —pB, then x— B as t— oo,
Figure 1 shows a phase portrait of x(z) for this regime of
values for a.

When steady-state solutions are possible [i.e., M,(0)
<a++a?—2a and a= a.], the higher moments M, fol-
low from Egs. (4):

(13)

n —
1}(—1)’M,,_,+1]} (n=3).
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It may be seen from the above that all M, for n>2
diverge as a— aZ" with the asymptotic behavior

Mn~Ane—(n—5/2) (6-’0), (14)

where e=a — a. and the A, satisfy a recursive relation. If
we assume a two-parameter scaling form for the steady-
state concentrations ¢y ~k ~*f(ek®) for k— o, ¢— 0,
€k® =const, then the moments will diverge as

M,~e ("m0 () (15)

valid for n> t—1. Comparing Eq. (14) with Eq. (15),
wefind o=1land r=1%.

In most previously studied gelling models®'® with
Kij~ij, ©', which describes the asymptotlc size behavior
at t=t,, is given by 3. The value 7=7 found here
(which applies for ¢t =o0 and a=a.) indicates that this
process belongs to a new universality class of gelation.
Note that 7 cannot be 3 and must be > 3 because M is
finite. The other exception is the model of Hendriks and
Ziff,"! in which feed and withdrawal terms are added to
the coagulation equation with a resulting 7 differing from
2 .

We are interested i in the scalmg behavior for large times
and for e— 0 (a— o). It is convenient to use B, which
goes to zero as 2¥4¢'/2 as ¢— 0. Then, in the scaling limit
t— oo, B— O such that Bt =const, we find, from Eq. (12),

_—B
tanh(Bt) (16)

independent of x(0). The scaling laws for small ¢ at
t=oo and large ¢ at e=0 follow from Eq. (16) and are
given by

2346112 (¢— 0, t =00),

_M- —~
e {1/: (t— o0, €=0).

amn
The above scaling behavior may also be derived directly
from the exact solution, Eq. (12).

The scaling function for M3 can be deduced by rewrit-
ing Eq. (4¢) as

B 3xyty? (18)
it 3xy+7r°,

where y=M3+a and y=3a?.
Eq. (18) and solving for y gives

Substituting Eq. (16) into

___v Icosh(Br) —11%[cosh(Br) +2]
3B sinh3(8t) )

The scaling behavior follows directly from Eq. (19) and is
given by

(19)

Yo/ (3% 2346112) (¢— 0, t =o0),
M3~y~ 7ct/4 (t—»oo, ego)’ (20)

where yc'='3a3. We note that the exact solution of y can
also be found from Egs. (12) and (18), and it leads to Eqs.
(19) and (20) in the scaling limit.

For conditions in which steady-state size distributions
are possible, the explicit solution for the size concentra-
tions, ck, may be found from the generatmg function
g—Zkz cx. Multiplying Eq. (3) by z¥, summing over all

k, and taking the derivative equal to 0, we find

18+ (—1—a+a/z)g+(F —a+za) =0, @1
which gives

g=1—(a/z)(1—2z)(1—V1-2z/a). (22)

Expanding Eq. (22) for a series in powers of z implies

G Q)'l(e—2)k+(a+1)]

kxk!(k+1)1Qa) 2k —1) @
Using the Stirling approximation for large k gives
gL [__]k(a—Z)k+(a+l). (24)
2 | a Jr
When a =2, Eq. (24) becomes cx ~ (3/2vx)k ~7/2, which

gives the power-law dependence on k derived earlier from
the scaling of the moments. The scaling function for ¢ as
€— 0 and k— oo such that ek =const follows from Eq.
(24):

G~k T2 f(ek), fx)= 1+X e %2, (25)

3

2\/;

In conclusion, we find that the long-time behavior of
this system is dependent upon the value of the breakup
constant a. In the regime 0 < a < a,, the system always
gels and the size distribution has the asymptotic behavior
cx~k ™57 at t=¢.. For the regime a > a., the system

reaches one of two states: (i) If M,(0) > a++Va?—2a
gelation occurs and the asymptotic behavior of the size
distribution at the gel point is described by the usual ex-

ponent 7'=3; (i) if M1(0) <a++Va?—2a, a steady-
state size dlstnbutlon is reached in which detailed balance
cannot be satisfied. When a=a, the behavior also de-
pends upon the initial conditions. When M,(0) > a, gela-
tion occurs at £, =1/ [A,(0) —a] and the asymptotic be-
havior of the size distribution is again described by the ex-
ponent 7'=3. When M,(0) < a, the system undergoes a
new kind of gelatlon in which the third and higher mo-
ments are infinite and ¢ ~k ~ "/~

The scaling results for M,, M3, and ¢, are consistent
with a three-parameter scaling relation for the cy:

cx=k F(k/t?,ek®), a>a., M,00)<a+Va’—2a,
(26)

with 7=7%, z=2, w=1, and where F(0,y)=1(p),
F(x,0) =g(x), and F(x,y)— 0 for either x>>1 or y>>1.
However, we have only verified this scaling form for the
limiting cases #— o0 and ¢— 0.

We have also studied the system described by Eq. (2)
with fix =ak and the more general coagulation kernel
Kij=Aij+B(i+j)+C, where A>0, B,C=0. The
long-time behavior of this system is the same as for the ij
kernel presented in this paper, except that the critical
value below which gelation always occurs and above
which steady state is possible is given by a.=A+B

+vVAZ+ A2B+C) .

We have also deduced the long-time behavior of the
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system described by the kernels K;; =ij and fx =a(k —1).
In this case M may be found exactly, and is given by

Mo=(1—1/2a)+[M0) —1+1/2ale ~*.

However, M, is coupled to M, and cannot be solved for
general initial conditions other than Mo(0) =M. Still, it
may be shown that both M, and M3 satisfy the scaling
relations given by Egs. (16) and (19) except that
=va?—2a—1and a. =1+/2.

Finally, we note that the dependence of the long-time
behavior of this system upon a breakup constant contrasts
with the recent results of Sorensen, Zhang, and Taylor.?

They have shown that the stability of solutions of a
coagulation-fragmentation system obeying the homo-
geneity relationships Ko =a*K;; and F, .j=a’F;; de-
pends only upon the homogeneity exponents A and &, and
not upon a constant coefficient. In contrast, for our sys-
tem, in which F;; does not obey the homogeneity relation
and therefore is not in the class of models considered in
Ref. 5, we have shown that the stability of the system de-
pends upon the constant coefficient a.
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dation Grant No. DMR-8619731 for this research.
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FIG. 1. Phase portrait of x for the case a > a. where we have
taken f=1. The shaded area shows all values of x that will lead
to gelation. For all other values of x the system will reach the
stable steady state x =p=1.



