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Two ways to perform spin-polarized relativistic linear muffin-tin-orbital calculations
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Two spin-polarized relativistic versions of the linear muffin-tin-orbital method of band-structure
calculations are presented. The first one is a pseudoperturbational method taking the effect of spin

splitting only into account within the variational step. The second one treats spin polarization and
spin-orbit coupling on the same level by making use of the proper solutions to the Dirac equation
for a spin-dependent potential. Both approaches permit a detailed theoretical study of magneto-

crystalline anisotropy effects. Results for the band structure, the spin and orbital magnetic mo-

ments and the conduction-band contribution to the hyperfine fields of Fe, Co, and Ni obtained by
these methods are presented and compared to data obtained by an application of the spin-polarized
version of the relativistic Korringa-Kohn-Rostoker method.

I. INTRODUCTION

There are quite a large number of interesting physical
effects, such as, for example, the magnetooptic Kerr
effect, which are caused by the simultaneous occurrence
of spin polarization and spin-orbit coupling. As shown

by the work of Brooks and other authors (see, for exam-

ple, Ref. 1 and references therein), for systems containing
heavy elements, even ground-state properties, such as the
lattice constant or the bulk modulus, are obviously deter-
mined by a subtle interplay of relativistic effects and spin
ordering. To allow a detailed description of the electron-
ic structure for such situations, a number of band-
structure methods has been extended during the last
years. Besides the perturbational approaches, ' one pri-
marily has to mention the generalization of the
Korringa-Kohn-Rostoker (KKR) formalism (SPR KKR)
developed independently by Feder et al. and Strange
et al. that permits one to treat spin polarization and all
relativistic effects on the same footing.

Quite recently, also the linear rigorous cellular (LRC)
method has been extended in a perturbational way ' to
deal with spin-polarized systems containing heavy ele-
ments. The most appealing property of the LRC method
and of a11 other linear band-structure methods is that it is
orders of magnitude faster than, for example, the highly
accurate KKR method, while, in general, retaining
sufficient numerical accuracy. In this paper a very simple
way of incorporating spin-polarization effects in a con-
ventional relativistic linear muffin-tin-orbital (RLMTO)
calculation by perturbation theory is presented. A more
accurate resulting band structure can, of course, be ex-
pected if the muffin-tin orbitals (MTO's) used in the vari-
ational step are set up by using proper solutions to the
Dirac equation for a single-site, spin-dependent potential.
A way to set up such spin-polarized relativistic MTO s is
presented, leading to a spin-polarized fully-relativistic
version of the LMTO method (SPR LMTO).

The paper is organized as follows. In the next section a
brief discussion of the problem of treating spin-polarized

systems within local-spin-density theory is given. For the
sake of completeness, a short derivation of the RLMTO
equations is summarized in the following section. A
description of the perturbation RLMTO approach to the
problem of spin polarization is given in Sec. II C, and in
Sec. IID the SPR LMTO method is presented. A way of
dealing with magnetocrystalline anisotropy within these
both band-structure methods is outlined in Sec. II E. Re-
sults which have been obtained for the band structure,
the magnetic moments, and hyperfine fields for ferromag-
netic Fe, Co, and Ni are presented in Sec. III, together
with a comparison to SPR KRR results.

II. SPIN-POLARIZED RELATIVISTIC
LINEAR MUFFIN-TIN-ORBITAL CALCULATIONS

A. Dirac equation for a spin-dependent potential

The problem of dealing with magnetic systems in a
completely relativistic way within density-functional
theory has been discussed in the past by a number of au-
thors (see, e.g., Ref. 10, and references therein). Quite
analogously to the nonrelativistic case, a set of coupled
Kohn-Sham-Dirac equations have been derived which de-
scribe the ground state of a relativistic many-electron sys-
tem. This approach leads, strictly speaking, to a current
density-functional theory with the electronic four-current
density J" as the central quantity. The corresponding
Hamiltonian is of the form

0 =~ —.V+ AH( J")+A„,(J")

+ ,'(p I )+ VH+—V„,—,

where the matrices a, (i=1,2,3) and P are the standard
Dirac matrices. " The indices H, x, and c indicate the
Hartree, exchange, and correlation contributions, respec-
tively, to the vector and scalar potentials V and A, re-
spectively.
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Because of the great diSculties in dealing with this
Hamiltonian, an alternative approach has been suggest-
ed' which is analogous to the nonrelativistic spin-
density-functional formalism in assuming a hypothetic
magnetic and/or exchange-correlation field coupling only
to the spin of the electrons.

In the following sections two methods are presented
which allow one to deal in a very efFicient way with the
corresponding Hamiltonian,

H =—~ V+ —,'(p —I)+ V(r),
l

for an ordered array of finite-ranged potential wells V(r)
of the form

V(r) = VH(r}+ V„,(r)+ V,~;„(r)

= V (r)+ V,p,„(r) . (3)

Here, V„,(r) stands for the spin-averaged part of the
exchange-correlation potential, while V»,„(r) represents
the spin-dependent part of V(r):

BE„,
V,z,„(r)=P~ B,„,+ Bm r

=P~B,s, (4)

B. The RLMTO method

with 8,„, an external fie1d and ~ the vector of the 4&4
Pauli matrices. While the first of the methods discussed
below takes V»,„(r) into account only in a perturbational
way, the second one treats spin polarization due to
V,„;„(r)and all relativistic effects on the same level by
making use of the proper solutions to the Hamiltonian in
Eq. (2) for a single potential well.

(H —E}$„(E,r) =0,
(H E)P—A(E, r) =P„(E,r),
(q„(E,r }

~ q, (E, r) & =1,
(P~(E, r)

~
P„(E,r)) =0 . (10)

To match solutions to Eq. (2) inside the sphere to solu-
tions outside the sphere, one introduces, analogously to
the nonrelativistic case, the logarithmic derivative of
P,A(r) and P„A(r),

cf„„(S)D„=S —v —1,
g„„(S)

cf„„(S)
D. =S —]c—1,

g„,(S)
(12)

where the index v indicates that the energy has been fixed
to some value E„. A trial function 4„(D,r) for r &S
with an arbitrary logarithmic derivative D at r =S is
within Andersen s linear energy approximation (see, e.g.,
Ref. 16) given by an appropriate combination of P,A(r)
and P„„(r),

4~(D, r) =P,A(r ) +co„(D)$„„(r),
where the coefficient co„(D),

g„„(S)D D„—
~,(D)=-

g (S) D D, —

(13)

(14)

X"„(r)= g C(I—,'j; p —m„m, )&,
" '(r)X

m =+1/2
S

Normalization of P„(E,r) to 1 within the sphere of radius
S results, for P„(E,r) and its energy derivative PA(E, r),
in the following relations:

The relativistic LMTO method is a straightforward
generalization of Andersen's nonrelativistic band-
structure technique that permits one to deal with
paramagnetic systems containing heavy elements. It has
been derived independently during the last few years by
Christensen, ' Godreche, ' and Nemoshkalenko et al. '

For the sake of completeness, the most important steps of
this derivation are repeated here, adopting the notation
and normalization convention as used by Skriver' in his
monograph on the nonrelativistic LMTO method. For
further details, see especially Refs. 15 and 16.

The starting points for the derivation of the RLMTO
equations are the solutions PA(E, r) to the single-site
Dirac equation [Eq. (2)] for a non-spin-dependent spheri-
cally symmetric potential V(r)= V (r) of range S, where
A stands for the set (a.,p) of the relativistic quantum
numbers ~ and p. The functions PA(E, r) are convention-
al bispinors, "

g (E, r)X"„(r)
Er =i'

with the radial functions g„(E,r) and f,(E,r) and the
spin-angular functions

X~(r) = g e'" X„(r—R),
R

(15)

can be expressed by a one-center expansion for the sphere
centered at the origin

ensures that 4A(D, r) is continuous and differentiable at
r =S. Within the atomic-sphere approximation (ASA)
(see, e.g. , Ref. 16), the potential in the interstitial region
of a crystal can be chosen arbitrarily. The most con-
venient choice is to set E —V(r)=0, resulting in the de-
caying and diverging free-electron solutions nA(r) and
jA(r). The functions nA(r) and jA(r) are the "relativis-
tic" von Neumann and spherical Bessel functions for the
wave number a.=&E —V =0 with the logarithmic
derivative —l —1 and + l, respectively. '

A so-called muffin-tin orbital XA(r —R) is now defined
as a function centered at the lattice site R, which is ob-
tained if the decaying interstitial solution n„(r R}is-
augmented in the sphere centered at R by
4A( —I —1, r —R) and by a linear combination of func-
tions 4A.(+I', r —R') in all other spheres centered at R'
in such a way that XA(r —R) is continuous everywhere.
The 81och sum of such MTO's,



9392 H. EBERT 38

@A( —I —1, r)
XA(r) =

&S/2g, ( —I —1)

@~(I', r)

A, 2(21'+ 1)VS/2g„, (l') (16)

to the conventional nonrelativistic structure constants
gk 15

1'mt', lmt
'

Using the Bloch sum of MTO's as basis functions for
an application of the Rayleigh-Ritz variational principle,
one ends up with the generalized eigenvalue problem

g (H" E'"0"„—)a'"=0
A

(18)

for the eigenvalues E " and the eigenvectors a„",specify-
ing the corresponding Bloch wave functions. Because the
matrix elements of the operators (H E) and —1 for the
functions 4~(D, r) have the simple form

(4~.(D', r } (H E)
l
4„(D—, r) & =co„(D)5A A,

(4„.(D', r)
l
4A(D, r) & =[1+co„(D')co„(D)(P„,&]5„~,

(19)

(20)

the elements of the Hamilton and overlap matrices in Eq.
I

Here, g„(D) is the upper component of 4„(D,r) for r =S
and the o.A.& are the so-called structure constants, which
are related by

o"„„= g C(l' ,'j ', p—'—m„m, )
m =+1/2

S

XS~"„~„C(l—,'j; }u—m„m, ) (17)

C. Perturbational approach to the spin-polarized
relativistic band-structure problem

The easiest way to deal with the full Hamiltonian
operator for a spin-dependent potential is to apply per-
turbation theory or, in other words, take account of the
spin-dependent part V, ;„(r)of V(r) only within the vari-
ational step. This means that an approximate RLMTO
Hamiltonian matrix HA. A for a spin-dependent potential
is the sum of the matrix 0"„A, which is evaluated for
V (r) = V(r) —V,z,„(r) as for the non-spin-polarized case,
and the matrix

VA ~ = &&A
l Vp. (r)

I &~ & (21)

As for H~ A, this matrix can easily be expressed by ma-
trix elements of V, ;„(r) for the functions 4„(D,r}.
These, in turn, are given by

(18), H~.A and 0"„A, respectively, can be expressed by the
elements of the structure-constant matrix 0.

AA and the
four so-called potential parameters: co( —}, 4( —),
4( —) /4( + ), and ( P &, where + and —stand for + I
and —I —1, respectively.

Explicit formulas for HA. A and OA. A can simply be ob-
tained from their nonrelativistic counterparts' by the
substitutions L =(I,m)~A=(~, p) and 41(D)~g„(D),
resulting, of course, in a doubling of the size of the ma-
trices. Finally, one should mention that the relativistic
so-called combined-correction terms, ' which "cure" the
errors introduced by the ASA to some extent, are related
to their nonrelativistic counterparts by a relation analo-
gous to Eq. (17).

(4„.(D', r)
l V, ;„(r) l

4„(D,r) & =G(K', K IJ)[8{g„,g„I+co„(D)B{g„,g„I+co„(D')8{g„,g„I+co„(D')co„(D)B{g„.,g„])]
+G( —&', ir, p)[8{f„,f—„]+co„(D)8{f„,f„){+co„(D')8{f„)f„]

+co„(D')co„(D)B{f„,f„}], (22)

with

(23)

0, otherwise

and

8 {g,g„ l J dr r B,s(r)g„„(r)g„„(r), (24)

and analogously for all other functions 8{a„.,P„] with
a, l3=(g, g f,f }

Due to the properties of the angular part
(X"„

l
cr,

l
X"„&,the matrix elements

(, 4„(D',r)
l V,p,„(r) l

4A(D, r) &

are only diagonal in I and p, which means, apart from the

coupling between functions with K=K, there is a cou-
pling for K= —K' —1. However, this coupling produces
no remarkable dif5culties to setting up the matrix V~ A.
Because all further steps within this perturbational ap-
proach are completely identical to a conventional
RLMTO calculation, this method provides a very simple
way to perform spin-polarized relativistic band-structure
calculations. Furthermore, ignoring the spin dependence
of the potential in the interstitial region, one can go, just
as within the RLMTO method, beyond the ASA by using
the combined-correction terms.
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Obviously, the perturbational approach outlined above
is quite similar to the method suggested by Andersen to
take spin-orbit coupling within a nonrelativistic LMTO
calculation into account by adding to the LMTO Hamil-
tonian in the (I, mr, m, ) representation the matrix of the
spin-orbit operator gl s. Relativistic effects, other than
spin-orbit coupling, are taken into account within that
method by performing a scalar-relativistic calculation of
the wave functions.

D. The SPR LMTO method

tial solutions n „(r ) within the central cell by
N~( —I —1, r) and in all other spheres by linear combina-
tions of 4„(+I',r). These functions C&„(D,r) are now
found by smoothly matching linear combinations of the
solutions P„;(r) and their energy derivatives P;(r) con-
taining functions of spin-angular character A [see Eq.
(25)] to n„(r) for D = —I —1 or j~(r) for D =+1, re-
spectively, where again the index v specifies a fixed ener-
gy E . The corresponding matching condition in the
case of n~(r} for r =S then reads

A more accurate solution to the spin-polarized relativ-
istic band-structure problem than the perturbational
methods allow will, of course, be obtained by setting up
the relativistic MTO's by using proper solutions to the
single-site Dirac equation for a spin-dependent potential
V(r}. Such an approach will be described in the follow-
ing.

As shown by Feder et al. , Strange et al. , and also
Cortona et al. ,

' the spin-dependent potential in the
Dirac equation, in principle, results in sets of an infinite
number of coupled equations for the radial functions.
However, one can give arguments that it is allowed to
neglect the coupling between all radial functions apart
from that between those with El=0 and Ay=0. As
pointed out by Cortona et al. ,

' and as can be seen from
the discussion above, this simplifying step can also be
justified by perturbational arguments. It is, however, not
necessary for the further derivation, which could also in-
clude more complicated coupling mechanisms. Restrict-
ing the coupling to Al =0 and b p =0, a proper solution
to Eq. (2) has the form

P;(E,r) =P„,(E,r)+P„,(E,r), —. (25)

where A=(a, p), A=( —a.—l, p), and i numbers the vari-
ous independent solutions to Eq. (2). In contrast to the
Dirac equation for a spin-dependent potential, the func-
tions P;(E,r) have no unique spin-angular character—
apart from the cases

~ p ~

=j, j =I+—,', where there is
only one term on the right-hand side of Eq. (25). Obvi-
ously, there are two solutions —P;(E,r) and P; (E,r)
which contain functions of a given spin-angular charac-
ter A.

Normalizing p;(E, r) to 1 within the sphere of radius S,
P;(E,r) and its energy derivative P;(E,r) satisfy, analo-
gously to Eqs. (7)—(10), the relations

(30)

O=g„~,a, „(—)+P„~,, a, „(—)

(31)

(32)

+4„~;P;p( —)+P'„~., P; p( —) . (33)

~( —) =P( —}/a( —), (34)

4( —) = I /a( —), (35)

4( —)/4(~)=a(+)/a( —) . (36)

In Eqs. (30)—(33), ( —) indicates the logarithmic deriva-
tive —I —1 of n ~(r) and the prime indicates the radial
derivation 8/Br. Analogous equations are obtained for
j„(r) (D =+I), which can easily be solved for the new
potential parameters a;~(D) and P;„(D). For a vanishing
spin-dependent potential V,„;„(r},the label i can obvious-
ly be replaced by A because the functions with spin-
angular character A will not occur in Eq. (25) (no cou-
pling). In that special case the new potential parameters
a;~(D) and P,„(D)are simply a different way to write the
conventional potential parameters,

(H —E)P;(E,r) =0,
(H E}$,(E,r) =P, (E—, r),
(P;(E,r)

~
P;(E,r)) =1,

(P, (E,r)
~ P, (E,r)) =0 .

(26)

(27)

(28}

(29)

In principle, one could go on completely analogously to
the conventional LMTO method' to construct spin-
polarized relativistic MTO's. This approach results,
however, in a very inconvenient form of the Hamiltonian
and overlap matrix elements. An alternative way to set
up the MTO's is simply to augment smoothly the intersti-

As for the perturbational approach, all further steps to
set up the SPR LMTO equations are completely analo-
gous to the non-spin-polarized case. The structure of the
corresponding new Hamiltonian and overlap matrices,
Hz z and Oz z, respectively, is identical to that of the
matrix Vz z occurring within the perturbational ap-
proach [see Eq. (21)]. This stems from the fact that the
matrix elements of (H E) for the functio—ns 4&(D, r)
and their overlap matrix elements are only diagonal in l
and p but not in ~. Expressed by the potential parame-
ters a, ~(D) and P,~(D), these matrix elements are given
by
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+P; „(D')a;~(D)(P;
~ P; ) +P; & (D')13;~(D)(ltl;

~ P; ) ],
(Cll (D')

~

(H E—)
~

4p(D)) = g [lz;~(D')P&(D)(p;
~
p;)+P; ~(D'N~(D)&W;

I 0; &] .

(37)

(38)

To evaluate expectation values of physical operators, it is,
of course, more convenient to express the occurring ma-
trix elements in terms of the single-site solutions P; [Eq.
(25)] and their energy derivatives P, instead of using the
one-center expansions of the Bloch sum of MTO's, X"„(r),
which have the same form as in Eq. (16) for the non-
spin-polarized case. This means that one should write
the Bloch wave functions W"(r) as the expansion

W"(r)= g [A,~"ltl;(r)+Bj"p,(r)], (39)

and not in terms of the eigenvectors az", i.e., as

W"(r)= pa~"X"„(r) . (40)

Although it is a bit tedious, it is straightforward to ex-
press the expansion coefficients A,~" and B,~" in terms of
the eigenvectors, just as it is done in the non-spin-
polarized case [see Ref. 16, Eq. (6.30)].

Finally, one should mention, again, that one can go
beyond the ASA by using the combined-correction terms,
just as within the conventional RLMTO method.

E. Treatment of magnetocrystalline
anisotropy

~~"~"= g D~~-«» r)~n'V-"D~-~ (rz» 7'» (41)

where (a,P, y) are the Euler angles which specify the ro-
tation of the crystal frame of reference to the local one.

It is well known that the simultaneous occurrence of
spin polarization and spin-orbit coupling gives rise to the
magnetocrystalline anisotropy in the electron band struc-
ture. In the case of a cubic lattice this means, for exam-
ple, that the dispersion relations for the wave vector k
along the x axis are different from those along the z axis if
the magnetization points along the z axis. So far, this
special orientation of the magnetization, which enters the
Dirac equation (2), has tacitly used in the above formal-
ism. To fix the magnetization along the z axis of the crys-
tal frame of reference is, however, an unnecessary restric-
tion. The direction of the magnetization inside an atomic
sphere specifies a local frame of reference (or at least its z
axis) which might diff'er from that of the crystal. The
conventional way to deal with this case within the KKR
method' ' is to transform the single-site t matrix t~~.
(see, e.g., Ref. 7) by an unitary transformation from the
local frame of reference to the crystal frame. Of course,
one can also go the opposite way. This means one can
transform the structure constants by performing the
transformation

From a practical point of view, it is more convenient to
transform the nonrelativistic structure constants
S,",

, and to set up the relativistic ones according toI' —m(', Imi

Eq. (17) only after this transformation. Explicit formulas
for the "nonrelativistic" rotation matrices Dri (a,P, y)
[L =(1,m& )] can be found in Ref. 20.

The local structure constants o ~"~" have to be used to
set up the MTO's or the Hamiltonian and overlap ma-
trices H~.~ and O~~, respectively. This holds for using
the perturbational RLMTO as well as for the SPR
LMTO method in calculating a spin-polarized relativistic
band structure. If for a many-atom unit cell the direction
of the magnetization differs for the various atoms of the
cell, ' one can take this additional complication into ac-
count by constructing different sets of "local" structure
constants.

III. RESULTS AND DISCUSSION

p,„,„=p,,y &
e~"

~
P ~,

~

e~"&e(E E„), —
j,k

p,,„=p g ('W"
~

P1
~

'W")B(E E„), —

(42)

(43)

Bh„~ p,„„,' g ( W"
~
e~ A——„„,~

'W") 8(EF—E z),
j,k

(44)

where EF is the Fermi energy and A„„, is the vector po-
tential due to the nuclear magnetic dipole moment. Be-
cause our calculations have been performed non-self-
consistently, the orbital magnetic moment is only a

In this section results for the ferromagnetic metals Fe,
Co, and Ni are presented, which have been obtained by
the perturbational RLMTO as well as the SPR LMTO
method within the atomic-sphere approximation (ASA).
Both methods have been implemented by making use of
Skriver's nonrelativistic LMTO program package, ' to-
gether with the radial differential equation solver taken
from Loucks's monograph on the augmented-plane-wave
(APW) method or supplied by Strange, respectively.
All calculations were performed non-self-consistently us-

ing the potentials tabulated by Moruzzi et aI. Prelirni-
nary results of these calculations have been published
elsewhere.

Of course, the overall features of the band structure of
the relatively light elements Fe, Co, and Ni do not
change dramatically when all relativistic effects are taken
into account within a calculation. Nevertheless, as
shown below there are non-negligible effects on the mag-
netic properties for these metals. To calculate the spin
and orbital moments and the hyperfine field, we use the
following formulas:
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FIG. 1. Band structure of Ni for k~~[100] and the magnetiza-
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[001] as obtained by the perturbational RLMTO

( ~ ) and SPR LMTO ( ) methods. Here, as in Figs. 2
and 3, only the
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consequence of the unquenching of the orbital magnetic
momentum by the spin-orbit coupling. Within a nonrela-
tivistic calculation p„b would be zero. One should, how-
ever, mention that the formula for p, „b in Eq. (43) is only
an approximation to the full relativistic orbital moment
(see, e.g., Refs. 25 and 26). In contrast to a nonrelativis-
tic treatment of the hyperfine interaction, Eq. (44) also re-
sults in contributions stemming from non-s electrons—
again as a consequence of the spin-orbit coupling.
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TABLE I. Magnetic moments in ps for M~~[001] for Fe, Co,
and Ni as calculated by the perturbational RLMTO and SPR
LMTO methods.

FIG. 2. Band structure of Ni for k()[100], M(([001] ( )

and (a) M)[[100] ( ) and (b) M(([111] ( ), respectively,
as obtained by the SPR LMTO method.
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FIG. 3. Band structure of Ni for k~~[100] and M~~ [001] as ob-
tained by the SPR LMTO ( ) and the SPR KKR (- . )

methods.
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TABLE II. Angular-momentum-decomposed spin and orbital magnetic moments in p~ and
hyperfinefields in kG (only conduction band) for M~~[001] for Fe, Co, and Ni as calculated by the (a)
SPR LMTO, (b) SPR KKR (Ref. 24), and (c) the nonrelativistic KKR (Ref. 23) method.

(a)

Fe

(b) (c) (a)

Co

(b) (c) (a)

Ni

(b) (c)

Psptn
P

Psptn
d

Psptn

P'sptn

Port
p

d
Porb

Porb

2.185

2.123

0.000

0.041

0.041

2.140

2.083 2.150

0.000

0.056

0.056

—0.011 —0.010
—0.050 —0.047

1.607

1.537

1.578

1.510 1.560

0.001

0.067

0.068

0.000
0.069
0.069

—0.014 —0.015
—0.056 —0.053

0.604

0.572

0.622

0.598 0.590

0.000

0.048

0.049

0.000

0.046

0.046

—0.005 —0.002
—0.026 —0.022

Bhyp 50 3

Bhyp 14 3

Bhyp 35 3

—42. 1

0.7
23.9

—17.4

—70.3
1.6

40.7
—28.0

—72.0
1.7

47.6
—22.7

—24.8

0.8
40.3
16.2

—5.9
0.6

36.9
31.7

Results for the band structure of Ni using the pertur-
bational RLMTO and the SPR LMTO methods are
shown together in Fig. 1. Obviously, the agreement of
both sets of bands is surprisingly good. This holds also
for the corresponding magnetic moments, which have
been decomposed into their angular-momentum contribu-
tions and are summarized in Table I. From these results
one can conclude that the perturbational RLMTO
method guarantees, for a wide range of applications,
sufficient numerical accuracy. The results in columns 1

and 2 of Table I have been obtained using only one ener-

gy panel and fixing E to 0.4 Ry independent of the quan-
tum number ~. The moments in column 3 emerged from
calculations using four energy panels with E, fixed to 0.1,
0.3, 0.5, and 0.7 Ry, respectively. Obviously, in calculat-
ing energy-integrated quantities it seems to be sufficient
to use only one energy panel.

The inhuence of the magnetocrystalline anisotropy on
the band structure of Ni is demonstrated in Figs. 2(a) and
2(b), where the dispersion relations for three different
orientations of the magnetization are shown. As can be
seen, the hybridization and crossing of bands strongly de-
pends on the orientation of the magnetization. Neverthe-
less, in the case of Ni the anisotropy energy is, of course,
rather small. '

To check the accuracy of the SPR LMTO method, the
results for Ni obtained with the SPR LMTO method are
compared to SPR KKR results in Fig. 3. Obviously, all
qualitative features for the two sets of bands, such as lift-
ing of degeneracies, crossing, and avoiding of bands,
completely agree. This has also been found for all other

cases studied, ensuring the reliability of the SPR LMTO
method. Also, the quantitative agreement of the both
sets of bands in Fig. 3 is quite satisfying. The most pro-
nounced discrepancies occur at higher energies. This
finding does not result from the fixing of E,, at 0.4 Ry,
but should be ascribed to the neglection of the
combined-correction terms. In Table II the magnetic
moments and the hyperfine fields for Fe, Co, and Ni ob-
tained by the SPR LMTO and SPR KKR methods are
summarized. For the magnetic moments, which have
again been decomposed into their I contributions, the
agreement is very satisfying. This does not hold, howev-
er, for the hyperfine fields, which in some cases differ
rather strongly. Because the energy-dependent integrand
that occurs in a calculation of the hyperfine fields by the
SPR KKR method is rather "spiky, " even if one works
with an energy contour far in the complex plane, it is as-
sumed that the SPR LMTO results for B„„aremore re-
liable than the SPR KKR data.
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