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Absence of backscattering in the quantum Hall effect in multiprobe conductors
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Under certain conditions, high magnetic fields in a two-dimensional conductor lead to a suppres-
sion of both elastic and inelastic backscattering. This, together with the formation of edge states, is
used to develop a picture of the integer quantum Hall effect in open multiprobe conductors. We
consider both ideal contacts without elastic scattering and also disordered contacts. Ideal contacts
populate edge states equally whereas disordered contacts lead to an initial nonequilibrium popula-
tion of the edge states. In Hall samples much larger than an inelastic length, and in the presence of
disordered contacts, the sample edges become equipotential lines only an inelastic scattering length
away from the current source and current drain contacts. Samples so small that the carriers can
travel from one contact to the other without inelastic relaxation do not exhibit exact quantization if
the contacts are disordered. In all cases we find that the quantum Hall effect occurs only if the sam-

ple exhibits at least two sets of equilibrated edge states which do not interact via elastic or inelastic
scattering. The onset of interaction between the two sets of edge states leads to deviations from ex-
act quantization and eventually to a breakdown of the quantum Hall effect.

I. INTRGDUCTIGN

The discovery of the integer quantum Hall effect by
von Klitzing, Dorda, and Pepper' has spurned a consid-
erable effort to understand this phenomenon. An
elegant explanation of this effect was put forth by Laugh-
lin. Laughlin discusses the response of a cylinder to an
Aharonov-Bohm flux along the axis of the cylinder and
explains the quantum Hall effect in terms of a super-
current due to the long-range phase rigidity of the wave
functions around the loop. Halperin supplemented this
picture by discussing edge states which form at the
boundary of the sample. The long-range phase rigidity
has led Imry to propose several flux-sensitive effects. We
do not question these papers, but point out that the rigi-
dity of wave functions is not necessary for the existence
of Hall currents. Arguments which invoke phase-rigid
wave functions, sensitive to an Aharonov-Bohm flux, are,
however, limited to conductors for which the distance a
carrier has to travel to enclose the flux is short compared
to an inelastic-scattering length. Clearly, typical experi-
mental samples, in which the quantum Hall effect is mea-
sured, are many orders of magnitude larger than the
inelastic-scattering length. Moreover, experiments are
performed on open conductors with contacts as shown in
Fig. 1 and not the closed conductors which are the sub-
ject of Refs. 3 and 4. Therefore, it is desirable to supple-
ment the discussions of Laughlin and Halperin with argu-
ments which lead to the quantum Hall effect even in large
open conductors, where we can not expect phase coher-
ence along the entire length of the sample. The need to
establish a closer relationship between these basic
theoretical arguments which apply to special geometries
and the experimental arrangements was also pointed out
by Niu and Thouless.

The explanation leading to the quantum Hall effect put
forth in this paper is based on the suppression of back-

scattering in high magnetic fields: Carriers moving along
the edge of the sample in a high magnetic field cannot
effectively reverse direction if scattered at an impurity or
by an inelastic event. Carriers scattered at an impurity
are, at best, reflected backwards a distance determined by
the diameter of a cyclotron orbit. Under the action of
the driving force provided by the confining potential, the
carriers will continue to move along the edge of the sam-
ple. This picture is correct as long as the impurity poten-
tial varies smoothly over a cyclotron radius, but rapidly
compared to the sample dimensions. It is also correct if
the impurity potential is strong but of short range and
the mean distance between impurities exceeds a cyclotron
radius. Similarly, the inelastic length must exceed the
magnetic length. This has the consequence that edge
states continue to provide current-carrying channels
despite elastic and inelastic scattering.

Experimentally, what is measured are resistances in a
four-terminal configuration: Two of the contacts, k and
I, of the sample in Fig. 1 are used to feed and draw
current, and two contacts, m and n, are used to measure
the voltage difference. The measured resistances obey the

FIG. 1. Conductor with Hall bar geometry.
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reciprocity theorem,

&ki, .(&)=& ., ki( —B) . (1.1)

The resistance measured in a particular configuration of
current contacts k, l and voltage contacts m, n in the pres-
ence of a field B is the same as the resistance measured if
the field 8 is reversed and the current and voltage con-
tacts are exchanged. The reciprocity theorem is closely
related to the Onsager Casimir symmetry relation for the
(global) conductances " (not the symmetry of the local
conductivity tensor). For samples without macroscopic
inhomogeneities, the quantum Hall effect can be con-
sidered to be the following phenomena: Imagine a line in
the interior of the sample which connects the current-
source and current-sink contacts k and l. Then the quan-
tum Hall effect is characterized by a resistance

„——h /e N for all the pairs of voltage contacts m, n

with one member of the pair on each side of the line in-
troduced above. Simultaneously, the resistances for pairs
of voltage probes with both members of the pair on the
same side of this line vanish. The resistances which
characterize the quantum Hall effect are four-probe resis-
tances and the voltage contacts are distinct from the
current-drain contacts. A satisfactory explanation of the
quantum Hall effect has to demonstrate that the four-
probe resistances take these particular values even under
circumstances where the three-terminal resistances

(one voltage measurement is made at the current-
source terminal) and the two-terminal resistances Ak& k&

(the voltage measurements are made at the current source
and drain) are not quantized (or zero. )

In open conductors contacts play a crucial role: We
show that a contact acting as a current source populates
the states of the sample, the edge states, with a nonequili-
brium distribution. Only under ideal conditions can we
expect that the initial population of all the edge states, on
one side of the sample, is the same. The initial popula-
tion of the quantum states hinges on the properties of the
contacts. Thus, typically, the edge states become popu-
lated equally only an inelastic-scattering length away
from a current contact. Our investigation shows that ex-
act quantization of the Hall resistance occurs only if the
Hall probes are at least an inelastic length away from the
current source and current drain. This suggests that in-
elastic scattering plays an important role in establishing
exact quantization of the Hall resistance.

Both the contacts connecting the sample to the current
drain and current source and the contacts connecting the
sample to voltmeters are of importance. At low magnetic
fields voltage probes are dissipative. ' ' Despite the fact
that no net current flows into a voltage probe, the energy
flux between the sample and the voltmeter is, in general,
not zero. ' Thus, a voltage contact, by its very presence,
can cause an additional potential drop along the sample.
However, in the quantum Hall effect this cannot be the
case. We show that the sample edge can become an equi-
potential line regardless of the number of voltage con-
tacts. Again, we find that it is the peculiar nature of
scattering in high magnetic fields which explains the non-
dissipative nature of voltage probes in the quantum Hall
effect. We find that the voltage probes are nondissipative,

but, nevertheless, introduce incoherence into the conduc-
tion process. This is possible since a voltage probe in the
quantum Hall effect is in perfect equilibrium with the
sample edge.

While one of our goals is to address the quantum Hall
effect in macroscopic multiprobe samples, there have ap-
peared a number of both experimental' ' and theoreti-
cal' papers addressing properties of the Hall effect in
small conductors. Since inelastic scattering plays an im-
portant role in establishing the quantum Hall effect in
macroscopic samples, it is interesting to ask what hap-
pens to the Hall effect in open conductors so small that a
carrier can traverse the conductor from one contact to
the other without suffering inelastic events. We investi-
gate four-probe phase-coherent conductors. We find,
indeed, that exact quantization does not occur if two or
more adjacent contacts are disordered. A contact is
termed disordered if a carrier in the conductor approach-
ing the contact leaves the conductor with a probability
less than 1.

Discussions of the quantum Hall effect, typically, in-
vestigate the response of the current to an applied exter-
nal field. A "longitudinal" field cannot exist in the steady
state since it causes carriers to pile up at one edge of the
sample and depletes the other edge. Evidently, the quan-
tum Hall effect is characterized by the fact that over a
large portion of the sample edges become equipotential
lines. Hence, the total electric field component parallel to
the sample edge has to be zero. Therefore, often, the
current is calculated in response to a "transverse" exter-
nal field. This has the consequence that current flows in
the bulk of the sample in contrast to the discussion given
below which leads to carrier flow only along the edges of
the sample. Calculations which do not treat the electric
field self-consistently have only a limited predictive value
and might, in fact, be misleading. To circumvent the
problems associated with this approach, it has been pro-
posed that we apply a longitudinal field for a limited time
only in order to induce current flow. This is possible in
closed conductors, but does not help to understand the
quantum Hall effect in the open conductor of Fig. 1.

It is therefore useful to approach the quantum Hall
effect from a different point of view. Instead of taking the
external field as the causative agent, we follow Lan-
dauer ' and view the currents as the driving forces.
The electric field can be obtained by calculating the
charges which pile up as a consequence of carrier flow.
More precisely, we specify the incident carrier flux as a
function of the chemical potential of all the terminals
The net current is then calculated and, via probabilities
for reflection at the sample and transmission through the
sample, is related to the chemical potentials of the termi-
nals. Using the wave functions at the Fermi energy, a
self-consistent solution of the electrical potential must be
found which matches at the contacts the value of the
chemical potential. This approach has been implemented
in Ref. 8, in which a multiprobe resistance formula is de-
rived, and this is discussed in Ref. 10 in more detail. In
Refs. 8 and 10 it is stressed that it is the Fermi level of a
contact which is measured at a voltage probe. It is this
latter property of this particular implementation of the
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II. THE TWO-TERMINAL CONDUCTANCE

A. Ideal perfect conductor

Consider an ideal two-dimensional conductor without
impurities or inhomogeneities of width w connecting two
electron reservoirs as shown in Fig. 2(a). The electron
reservoirs at chemical potentials p, and pz serve as
source and sink of carriers and of energy. A reservoir
emits carriers into current-carrying states up to its chem-
ical potential ~ Every carrier reaching a reservoir, in-
dependent of phase and of energy, is absorbed.

Let us first brieAy consider the case of zero magnetic
field. The Hamiltonian of the perfect conductor is

(p„'+p,')+ v(y) .
201

(2.1)

Here, x is the coordinate along the strip and y is the coor-
dinate transverse to the strip. The wave functions are se-
parable and of the form

Landauer approach which leads to Eq. (1.1) and thus to
resistances which are compatible with the (global)
Onsager-Casimir symmetry relations. An earlier ap-
proach defined resistance with regard to local electric
potentials in the perfect portions of the conductor away
from the terminals. There is no fundamental reason that
requires a resistance defined by invoking local electric po-
tentials to exhibit a particular symmetry. Indeed, as
shown in Ref. 10, this earlier formulation does not lead to
the reciprocity-symmetry equation (1.1). Experiments on
ultrasmall metallic lines, on macroscopic conductors of
various geometries, ' and on quantum Hall samples all
exhibit reciprocity symmetry. Therefore, it is clearly
necessary to use a formulation which leads to resistances
which are compatible with these fundamental sym-
metries.

A discussion of the quantum Hall effect, invoking Ref.
29 (local potentials away from terminals), has been given
by Streda et al. ' Jain and Kievelson ' '

apply the one-
channel Landauer formula. ' These papers study local
electric potentials in a two-terminal conductor. As in
Ref. 29, the piled-up charges are determined in the per-
fect portions of the conductor to the left and right of a
disordered region only. The role of contacts is not ad-
dressed. In these papers' ' the longitudinal resistance
vanishes only if the two-terminal conductance is also
quantized. The authors of Refs. 19 and 20 obtain a "sum
rule" for the Hall resistance and the longitudinal resis-
tance, which is appropriate for three-terminal resis-
tances. ' In experiments, as pointed out already, the Hall
resistance and the longitudinal resistances are four-
terminal resistances. Four-terminal resistances obey a
more complex sum rule. ' Despite our criticism of the
work of Streda et al. ,

' we emphasize its pioneering
character. Reference 19 has provided a large portion of
the motivation for this paper. Beenakker and van
Houten and Peeters have pointed to the applicability
of the four-terminal formula of Ref. 8 to the quantum
Hall effect and the work presented here proceeds in the
same direction.

FIG. 2. (a) Perfect two-dimensional conductor connected to
reservoirs. The chemical potentials of the reservoirs are p& and

p2. (b) Conductor with a disordered region (shaded part) con-
nected to the left and right to perfect conductors which, in turn,
connect to reservoirs.

I, =(elh)bp, (2.3)

independent of the channel index j. The total current is
I =N(e/h)b, p. Here, as in the remaining part of the pa-
per, we assume that kT is small compared to the separa-
tion of the transverse energy levels. The voltage drop be-
tween the reservoirs is eV=hp. Thus the two-terminal
resistance of a perfect ¹hannel wire is

1

ez N
(2.4)

This result depends on the way current is fed from the
reservoir into the perfect conductor. Later, we shall con-

(2.2)

k is the wave vector along x, and f (y) is a transverse
eigenfunction with energy eigenvalue E . The total ener-

gy of the state is the sum of the transverse energy E and
the energy for longitudinal motion. Thus at the Fermi
energy EF =E +I k /2m, there are 2N states, where N
is the number of transverse energies E below the Fermi
energy. Let us calculate the current through this perfect
conductor assuming p&&pz. Below pz left- and right-
moving states are equally occupied, and the net current is
zero. Thus we need to be concerned only with the energy
interval between pz and p, . The current injected by the
left reservoir in channel j is I =eu (dn/dE)jbp. Here,
uj =A' (dE//dk) is the longitudinal velocity at the Fer-
mi energy of channel j. (dn IdE), is the density of states
at the Fermi energy for this channel and b p=p, —pz. In
one dimension the density of states is dn /dk = I/2m. and
hence (dnldE) = I/2Mu . Therefore, the current fed
into a channel is
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sider more realistic contacts and discuss how that
changes Eq. (2.4). For the remainder of this section we

continue to use this simple model of current-feeding and
current-drawing contacts.

Next, consider the perfect conductor in a magnetic
field. We take the vector potential A=( —By, 0,0). The
Hamiltonian is

0= p„— By—+p +V(y) . (2.5)

The magnetic field induces cyclotron motion of the car-
riers. The wave function is still separable and of the form

PJ k
e'""f——~(y). This leads to an eigenvalue problem for

the function f,

3

o4
~ ISIS/ 3

LLI

2

I

J= 3

J=2

j= I

j=O

Ef= fi 8 m
, +—~,'(y& —y)'+ V(y) f . (2.6)

2m Qy 2 Yo

Yp,

yo=—
m co,

= —klan, (2.7)

where ls=(Pic/~ eB
~

)' is the magnetic length. Con-
sider a range of y for which the confining potential is con-
stant. We take V(y) =—0. The solutions of Eq. (2.6) are
harmonic-oscillator wave functions with a width propor-
tional to the magnetic length l~ with eigenvalues

E,„=A'a), (j+ —,
' ), (2.8)

where j =0, 1,2, . . . ; Eq. (2.8) is independent of the pa-
rameter yo (i.e., independent of k). This picture must

change near the edges of the sample at y& and y2. The
cyclotron motion is affected by the confining potential. '

Classically, the carriers perform motion along skipping
orbits. As a function of yo the eigenvalues depart from
the Landau formula, Eq. (2.8), and increase as the edge is

approached, as shown in Fig. 3. For a hard-wall poten-
tial, near the edges, the energy of a state depends on the
center yo through the distance y&

—yo to the lower edge
and y2 —yo to the upper edge. In general, the energy of a
state is determined by '

E,k E(j,~„yo(——k)) . (2.9)

Using arguments similar to those applied to Bloch func-
tions, one can show that carriers in an edge state acquire
a longitudinal velocity,

dE,, dE,, dy,
(2.10)

which is proportional to the slope of the Landau level.
dE/dyo is negative at the upper edge y2 and positive at
the lower edge y, (see Fig. 3). In a strong magnetic field
pointing out of the page, dyo/dk is negative and, there-
fore, the velocity along the upper edge is positive and
negative along the lower edge. Note that it is only the
edge states which can contribute to carrier flow because
the bulk Landau states (the region in Fig. 3, where E is

««, ~, =
~

eB
~

/mc is the cyclotron frequency and m

the effective mass. In addition, the eigenvalues of Eq.
(2.6) depend on the parameter

FIG. 3. Energy spectrum of a perfect conductor in a high
magnetic field for a rectangular confining potential (walls at y&

and y&). The Landau levels at E, =%co,(j + 2 j are strongly bent

upwards near the edges of the sample. yo is the center of the
harmonic-oscillator wave functions. After Ref. 4.

independent of yo) have no velocity. The magnetic field

quenches the kinetic energy for longitudinal motion. The
density of states along a Landau level E can also be
found from dn /dk =- 1/2n appropriate for one-
dimensional conductors. Since dn /dk = (dn /
dyo) ~

dyo/dk, we find, using Eq. (2.7), that
dn/dyo=2mlz. Away from the edges, the density of
states is determined by a dense packing of cyclotron or-
bits in the plane. Further, the density of states is related
to the velocity as in the conductor at zero field,

T

dn dn dk 1

dE . dk dE . 2m6v&k

The states at the Fermi energy are determined by the
equation EF Ejk, with E/——k given by Eq. (2.9). This
equation determines the values of k at the Fermi energy,
k„(EF). There is a discrete number n=l, . . . , N of
states (N with positive k and N with negative k). As the
Fermi energy changes and passes through a bulk Landau
energy, the number of edge states intercepting the Fermi
energy drops discontinuously from N to N —l. The
current fed into each edge state is

dn eI=eu, (p, —p2)= —Ap .
. 1

Thus, the current fed into an edge state by a reservoir is
the same as the current fed into a quantum channel in a
zero-field perfect conductor. The resulting two-terminal
resistance for a perfect conductor in a high magnetic field
is thus

(2.11)

Here, N is the number of edge states (with positive veloci-
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ty). Equations (2.4) and (2.11) are two-terminal resis-
tances and not Hall resistances. Neither Eq. (2.4) nor Eq.
(2.11) remains unaffected by elastic scattering, as will be
discussed below.

Consider what happens with increasing magnetic field.
From exactly solvable models, for instance, for a quadra-
tic confinement potential, we know that the magnetic
field increases the transverse energies Ej(B))EJ(0).
Thus the number of current-carrying states X is a func-
tion of the magnetic field. With increasing magnetic field
there are fewer quantum channels (edge states) below the
Fermi energy. The conductance drops by e /h as a chan-
nel rises above the Fermi level. This has recently been
observed in experiments by van Wees et al. and by
Thornton et al.

Equations (2.4) and (2.11) are not fundamental; they
describe a very idealized situation where there is no
scattering both along the perfect conductor and in the
way current is fed into the conductor and leaves the con-
ductor. Before these results are applied to a physical situ-
ation, the discussion has to be expanded to include the
scattering events which cause a departure from the ideal
situation treated here. We discuss modifications of the
ideal situations in the following sections of this paper.

Let us discuss the origin of the resistances (2.4) and
(2.11) in some more detail. Why do the perfect conduc-
tors exhibit a resistance at all? Separately, Imry,
Buttiker, ' and Landauer have pointed to the phenome-
na of contact resistances. ' A brief and semiclassical
discussion has been given by Sharvin. In the reservoirs
the carriers are distributed according to an equilibrium
Fermi function. As the carriers enter the perfect conduc-
tor, a redistribution of the population of states with posi-
tive and negative velocity must be achieved such that the
states with positive velocity are occupied to a higher en-

ergy then the states with negative velocity. Such a redis-
tribution has to occur since we have a net flow of carriers
in the perfect conductor. Thus the two-terminal resis-
tance, Eqs. (2.4) and (2.11), are contact resistances.

As emphasized already, these contact resistances are
sensitive to the disorder configuration of the sample and
the geometry of the contact. ' We do not expect con-
tact resistances to be universal, i.e., independent of
geometry and disorder. Below, we show that there is no
fundamental link between these contact resistances and
the quantum Hall effect. A sample, with equipotential
lines along the edges, is completely characterized by con-
tact resistances. However, the contact resistances need
not be quantized. Before addressing this we continue the
discussion of the two-terminal conductor.

B. Conductor with elastic scattering

The conductor in Fig. 2(b) exhibits a disordered sec-
tion, connected at its left and right ends to ideal perfect
conductors. The disordered part of the conductor
mixes the channels of the perfect conductors. Carriers
incident in channel j (edge state j) from the left have
probability amplitude t,- for transmission into channel i
and probability amplitude r,- for reflection into channel i.
The corresponding probabilities for carriers incident

and in the right-hand perfect conductor by

g~ (x,y ) = g (u~ /u, )' t,, e (2.13)

In the disordered region, g is a complicated function of
x and y. The current incident in channel j is given by Eq.
(2.3). The fraction of this current which is transmitted is

I=N
I=—g Tjbp,

i=1

where T, =
~

t,, ~

. Here, we have assumed that the ener-

gy dependence of T; can be neglected in the small energy
range from JM2 to p~. Summing over all incident channels

gives a total transmitted current

The voltage drop is eV=hp, and we thus find a Lan-
dauer resistance,

(2.14)

where T= g,'. =, '. =, TJ is the total transmission proba-
bility through the disordered region. Microreversibility
implies that the total transmission probability is a sym-
metric function of the magnetic field. ' Let us stress that
Eq. (2.14) is valid in the presence of an arbitrary magnetic
field. The validity of Eq. (2.14) rests only on a well-
defined scattering problem, but is independent of the par-
ticular nature of the channels. Whether we deal with
zero-field quantum channels, ' Landau states, or Bloch
states is immaterial. However, since the chemical poten-
tials of the reservoirs are related to the current via Eq.
(2.14), a self-consistent electric potential eU(x, y) which
obeys the boundary condition' eU(x, y)~p, to the left
and eU(x, y)~p2 to the right does not, in general, exist if
the number of quantum channels X in the reservoirs is
not much larger than h/e %. We return to this point
below.

At low magnetic fields elastic scattering at an impurity
leads to transmitted waves and reflected waves in all the
channels, if the impurity and the sample do not have a
particular symmetry. If the disordered region contains
many impurities, such symmetries are certain to be ab-
sent. Thus at low fields elastic scattering completely
mixes the channels and is bound to produce deviations
from Eq. (2.4). What happens as we increase the magnet-
ic field? Let us now investigate elastic scattering due to
disorder in the presence of a high magnetic field. Figure
4 depicts a single impurity near the edge of a sample.
The quasiclassical skipping orbits are scattered by this
impurity, but due to the magnetic field the scattered or-

from the right are denoted with a prime. More
specifically, the wave function describing carriers in-
cident in channel j from the left is in the left-hand perfect
conductor given by

i=N
g (x,y)= g [5; e ' +(u /u, )' r, e'"]f,(y), (2.12)
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UPPER SAMPLE EDGE

IMPU

FIG. 4. Quasiclassical skipping orbits along the upper edge
of the sample in presence of a localized impurity. In a high
magnetic field backscattering over distances large compared to
the cyclotron radius is suppressed.

bits are never further then a cyclotron radius away from
the edge. After scattering (possibly a number of times) by
the impurity, the orbits return to the edge and continue
to follow the edge. Computations of wave functions in
disordered samples do show edge states which extend
only a small distance away from the sample boundary.
If we consider a box larger than a cyclotron radius en-
closing this impurity, we see that every carrier that enters
this box arriving in one of the edge states will leave this
box traveling forward in one of the edge states. The key
point is that an impurity cannot effectively reverse the
direction of motion of a carrier There . is no scattering
backwards against theow of carriers over distances which
are large compared to the cyclotron radius Even in. the
presence of many impurities in the shaded part of Fig.
2(b), backscattering is suppressed as long as the mean dis-
tance between impurities is large compared to the cyclo-
tron radius. It is this property, the suppression of back-
scattering in the presence of a high magnetic field, which
gives rise to the quantum Hall effect. The scattering ma-
trix describing transmission through the box (see Fig. 5)
must have the property that the transmission from all the
edge states into the edge state i,

(2.17)

In a narrow wire, scattering at impurities will not provide
a path from the upper edge to the lower edge as long as
the width of the states is small compared to the mean dis-
tance between impurities, I, . This yields a lower critical
field B„;, for the onset of backscattering. For B &B„;,
the two-terminal resistance is given by Eq. (2.11). For
B & B„;,the two-terminal resistance is not quantized, but
given by Eq. (2.14). Comparison of Eq. (2.17) with the
elastic length yields a critical field B„;, for the observa-
tion of N steps, 2nl, B,n, &Co(N+ —,'). The flux through
a circle with radius given by the mean distance between
impurities must exceed X+—,

' single-charge flux quanta

4o ——hc/e. Similarly, for narrow ballistic wires of width

m, the criterion for the suppression of backscattering is
2mw B„;,& @o(N+ —,

' ). In GaAs the mean elastic length
0

is of the order of up to 10000 A, whereas narrow wires
can be fabricated with a width roughly 10 times smaller.

(a) (b)

full up to the same chemical potential. At low fields elas-
tic scattering typically mixes all the channels. In high
magnetic fields elastic scattering mixes only the channels
of the upper edge and mixes the channels of the lower
edge (see Fig. 5). Only states with either positive velocity
(upper edge) or negative velocity (lower edge) are mixed.

From the quasiclassical considerations [Fig. 2(b)] we
can expect that the carriers cannot be scattered from one
edge of the sample to the other as long as the cyclotron
radius is small compared to the mean distance between
impurities. Denote the distance between impurities by I, .
To obtain a criterion for the strength of the field, we can
make use of the fact that the Landau states are
harmonic-oscillator wave functions. The spatial width of
a state in the jth Landau level is

N

T, =gT„,
j=l

(2.15)

is equal to 1. It is not necessary that each edge state
remains immune to elastic scattering (i.e., that'
TJ =5;, ). Scattering from one edge state to another is
permitted as long as the scattering occurs among edge
states on the same side of the sample. The same con-
sideration for impurities along the lower edge leads to the
conclusion that

j=N
T=QTj

j=1
(2.16)

is equal to 1. Here, the prime denotes transmission prob-
abilities for carriers incident from the right. Thus car-
riers incident in a particular edge state will, as a conse-
quence of impurity scattering, emerge in other edge
states. However, the transmission probabilities are such
that, if all the incident edge states are full up to a chemi-
cal potential p, then all the outgoing edge states are also

FIG. 5. Symbolic representation of the scattering properties
at (a) small magnetic fields and (b) high magnetic fields. The ar-
rows on the box represent the incoming and outcoming quan-
turn channels in the perfect wires adjacent to the disordered re-
gion in Fig. 2(b). A flux incident in one channel gives rise to
outgoing waves in all the channels at low magnetic fields. At
high magnetic fields an incoming flux along the upper edge from
the left gives rise to outgoing currents only to the right along
the upper edge. The scattering matrix can be divided into two
portions, each of which is reflectionless, one for the upper edge
states and one for the lower edge states.
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i=N
X —, 14;(x») I'I i

eU„=eU(x,y2) =
2 i=N

2 —, I
0;(x») I'

i=1 i

(2.19)

Thus, compared to a relatively pure sample a narrow
wire can be more restrictive for the onset of backscatter-
ing. Experiments by Roukes et al. ' show a suppression
of the low-field Hall effect in narrow wires, proportional
to w . In addition, the experiments also indicate that
the Hall effect is not antisymmetric at low fields. '

Theoretical work by Beenaker and van Houten explains
the quenching of the Hall effect by analyzing the trans-
verse extension of the edge states. A detailed explanation
of these experiments also needs to take the dependence of
the confining potential on the wire width into account.
In addition, as we discuss below, the Hall effect and its
properties near breakdown do depend on the properties
of the contacts.

The suppression of backscattering for dilute impurity
concentrations is easy to understand. Interestingly, in
wide enough samples backscattering can be suppressed
even in the limit of a high impurity concentration, i.e.,
when the cyclotron radius is large compared to the mean
distance between impurities. This interesting result was
first obtained from the scaling theory of two-dimensional
electron conduction in high magnetic fields. ' As ex-
plained by Laughlin, with increasing impurity concen-
tration the bulk Landau levels rise in energy. This float-
ing of the bulk Landau levels permits extended states in
the center of the Landau band and localized states be-
tween the Landau levels even in the presence of a high
impurity concentration. The quasiclassical argument dis-
cussed above cannot be applied to this case because the
interference effects of multiple-scattering events are
neglected. In the dilute-impurity-concentration limit
backscattering is suppressed over a distance large com-
pared to the cyclotron radius. In contrast in the high-
concentration limit backscattering is suppressed only
over distances large compared to the localization length,
which, in turn, is large compared Co a cyclotron radius.

The absence of backscattering is decisive for the ap-
pearance of the quantum Hall plateaus. This can be seen
in the following way: The voltage U(x,y) in the conduc-
tor of Fig. 2(b) in the limit of strong screening (see the
Appendix for a derivation and discussion of this result)
and low magnetic fields is given by' '

i=N
X —, l I 0;(x ~) I

'I i+ I K(x ~)
I
'v21

eU(x, y}=
2 —, l I @;( z} I

'+
I K(,v) I

']
i=1 i

(2.18)

Typically, all the wave functions contribute. If, on the
other hand, backscattering is suppressed, and the wave
functions describing carriers incident from the left
remain confined to the upper edge and the wave functions
describing carriers incident from the right (prime) remain
confined to the lower edge, we obtain near the upper edge
(index u)

FIG. 6. Open quantum Hall conductor with a hole penetrat-
ed by an Aharonov-Bohm flux. The flne lines indicate the
current-carrying states.

Similarly, for the lower edge (index 1), we find
e U, =e U(x,y, ) =p2. Thus the upper and lower edges are
equipotential lines.

Using T; = 1 and T,
' = 1 we find a current

I =(e/h)N(p, —p2). The Hall voltage is U„—U, =p, ,—pz, and the Hall resistance is thus A=(h/ e )(1/N)
However, note that the solution eU„=p& and eU& ——p2
independent of x is not compatible with our boundary
condition. eU(x, y) has to be identical to p, , in the left-
hand reservoir and has to be identical to p2 in the right-
hand reservoir. To satisfy these boundary conditions, we
must describe the contacts more carefully.

Let us next briefly discuss the states in the bulk of the
sample. Consideration of the quasiclassical orbits in the
presence of an isolated impurity shows that they give rise
to circulating-current paths. For a single impurity (dilute
limit} the current path is within a cyclotron radius of the

impurity. An example of a circulating-current path is
evident in the geometry of Fig. 6, where a hole has been
introduced into the conductor. In the Aharonov-Bohm
geometry a set of edge states develops along the hole of
the conductor. For the outer edges of the sample to
remain equipotential lines, the inner edge states must be
disconnected from the outer ones. Elastic scattering is
not permitted to transfer carriers from the inner edge

l

I

I

I

I

FIG. 7. Current-carrying states in the conductor of Fig. 2(b)
with the Fermi level equal or near a bulk Landau level for a po-
tential which fluctuates slowly compared to the magnetic
length, but fast compared to the width of the sample. Away
from the edge states (shaded) in the bulk the current-carrying
states form loops.
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states to the outer edge states. If that is the case, it is
easy to see that the two-terminal conductance is not sen-
sitive to the flux through the hole of the conductor, i.e.,
there is no Aharonov-Bohm effect. For the wave func-
tions to be sensitive to the flux through the hole, they
must enclose the flux. The outer edge states, which
determine the conductance through the sample, do not
do that. In order to observe an Aharonov-Bohm effect,
scattering from the inner edge states to the outer edge
states must be permitted. ' That, however, is accom-
panied by a potential drop along the outer edges of the
sample. (In the metallic Aharonov-Bohm effect the hc/e
oscillations ' ' persist to very high fields because car-
rier motion is diffusive. ) Therefore, the reason that the
h/e oscillations in the experments of Ref. 16 decrease
with increasing field and eventually vanish is a direct
consequence of the suppression of backscattering in high
magnetic fields.

Instead of a hole through the conductor as in Fig. 6,
consider a smoothly varying potential with fluctuations
small compared to A~, . Such a potential disturbs the
bulk Landau states of the perfect conductor and gives
rise to circular current-carrying states as shown qualita-
tively in Fig. 7. With perfect leads attached to the disor-
dered region of the sample [compare Fig. 2(b)], the
current-carrying states in the bulk are necessarily circu-
lar: current enters and leaves the sample only through
edge states. Backscattering is suppressed for Fermi ener-
gies for which there are no current paths connecting the
upper and lower edges.

C. Conductor with inelastic scattering

The reservoirs connected to the perfect conductors in
Fig. 2 serve not only as a source and sink of carriers but
also of energy. For a simple description of the effect of
inelastic events, we can therefore also invoke reservoirs as
a means to randomize the phase of the wave function. ' '
We divide the sample into regions over which motion of
carriers is coherent and separate these regions by reser-
voirs. Samples which are many inelastic lengths long can
be built up in this way. Figure 8(a) shows a conductor of
length L =Ml;„divided into M coherent regions of
length l;„. The total resistance of this conductor is ob-
tained by summing the resistances of each segment using
Eq. (2.12). Since the phase is totally randomized between
segments, the resistances add classically. Let T; denote
the total transmission probability through the ith seg-
ment. The resistance of the conductor is

(2.20)

(a)

(b)
)

FIG. 8. Inelastic scattering in conductors long compared to
an inelastic-scattering length. Inelastic scattering is represented

by phase-randomizing reservoirs. {a) At low fields these reser-
voirs connect to all quantum channels. {b) At high fields, when

the Fermi level is in a gap between bulk Landau levels, the
reservoirs disrupt the phase of the upper and lower edge states
separately.

coherent regions, separated by phase-randomizing reser-
voirs, must look as in Fig. 8(b). Each bath acts only on
one set of edge states. Since there are only incoming
states to one side of such a reservoir and only outgoing
states on the other side of the reservoir, there is no drop
in chemical potential associated with the reservoirs in
Fig. 8(b). The upper and lower edges of the sample
remain equipotential lines. This is a crucial point, and we
return to it in the next section. The two-terminal resis-
tance is R=(h/e )(I/N), independent of the length of
the sample.

Let us now discuss inelastic scattering for the case that
the Fermi energy is close to the center of a Landau level.
In Fig. 7 we have depicted the circulating-current paths
in the bulk of the sample. In the absence of inelastic
scattering, these states do not contribute to current trans-
port through the sample. Conduction is along edge states
only. However, if we permit inelastic scattering, transi-
tions from one of the current loops to the next can occur.
Since the states describing circular currents are at slightly
different energies, hopping from one loop to the other has
to be activated. Thus for energies near the center of a
Landau level, we can expect an activated contribution to
the conductance. (Clearly, the edge states at this energy
also contribute to the conductance. ) In the case that no
elastic scattering from the upper edge to the lower edge
occurs, it is only the inelastic contribution to the conduc-
tance which leads to a rounding of the quantum Hall
steps.

where T, is the total transmission probability of the ith
coherent region. Equation (2.20) can be used to discuss
the Thouless approach to one-dimensional localiza-
tion. '

In the presence of a high magnetic field, Fig. 8(a), and
Eq. (2.20), do not apply. Inelastic backscattering is also
suppressed by the magnetic field. For l,„&l, carriers in
the upper edge states cannot be scattered into the lower
edge states. Thus, the division of the sample into

D. Disordered contacts

So far, we have assumed that a reservoir supplies car-
riers to edge states up to the chemical potential of the
reservoir. Thus the edge states are filled completely.
That is strictly correct only if the transition from the
reservoir into perfect conductors occurs without elastic
scattering. In many problems the exact nature of the
boundary conditions is not of primary importance. In



38 ABSENCE OF BACKSCATTERING IN THE QUANTUM HALL. . . 9383

the quantum Hall effect we are, however, interested in the
conditions under which the sample edges become equipo-
tential lines. In the discussion given above, the upper
edge is, under quantum Hall conditions, an equipotential
eU„=p„where p1 is determined by the reservoir to the
left. The lower edge is an equipotential line eU1 deter-
mined by the reservoir to the right, eU, =p2. This pic-
ture has to be revised for two reasons: First, as pointed
out already, a self-consistent solution eU(x, y) must
match the potentials of the reservoirs to the left and
right. Hence, the sample edges cannot be equipotential
lines along the whole conductor. Second, elastic scatter-
ing at the connection of the conductor to the reservoir
can lead to a nonequilibrium population of the edge
states.

Let us investigate a situation where current is fed into
the edge states through a disordered region. Scattering at
the contacts is characterized by total transmission proba-
bilities T„T2 and by total reflection probabilities R1,R2
in the following way: Consider the left-hand-side contact
in Fig. 9. To the right of the disordered region, condi-
tions, are such that edge states are possible. At the con-
tact the two-dimensional electron gas is connected to a
wire in which three-dimensional motion is allowed. Thus
at the terminal two-dimensional Landau quantization is
not effective. We have a large number of states at the
Fermi energy; a large number of available states is what
characterizes a reservoir. For the purpose of this paper,
the precise nature of the states in the reservoir, their sen-
sitivity to the magnetic field, does not matter. In order to
describe the transition from the conductor to the reser-
voir with a scattering matrix, we assume to the left of the
disordered region again a perfect conductor with a large
number of states at the Fermi energy. Assume now that
it is the states to the left which are filled up to the chemi-
cal potential p1. Each of these states has a transmission
probability Tj(B} for transmission into a Landau edge
state to the right. Let the number of edge states be N and
the number of states in the contact be M. The current
fed into the ith Landau level is

If g.Tj & I, the edge is only partially filled, between p2
and p1. The total current fed into the N edge states is
I =(e/h)T(p, —p2), where the total transmission proba-

Ri

FIG. 9. Conductor with disordered contacts which lead to an
initial nonequilibrium population of the edge states. Reservoirs
at chemical potentials p & and pz disrupt the phase of the edge
states.

bility of the contact is

Note, that differing edge states are filled to a different de-
gree,

QTj~+T„) .
J J

From now on we consider only contacts with a large
density of states M. Such contacts can still behave in an
ideal fashion. If every carrier incident from an edge on
the contact leaves the sample, we have T=¹Since
M &&N, most carriers incident from the reservoir on the
two-dimensional region are scattered back into the reser-
voir. It is only the carriers incident from the two-
dimensional region which have probability 1 of reaching
the reservoir. An ideal contact is characterized by the
absence of "internal" reflection, but exhibits "external"
reflection. A contact which is not ideal, i.e., a contact
with T & N, will be called "disordered. " A fraction of the
carriers incident from the lower (upper) edge states on a
disordered contact skips along the contact and reaches
the upper (lower) edge states. A disordered contact ex-
hibits both internal and external reflection.

As carriers move past a disordered contact into the
sample into the edge states, inelastic scattering becomes
effective and starts to equilibrate the populations of the
edge states with each other. Inelastic scattering is
represented in Fig. 9 by reservoirs at a potential p„along
the upper edge. As we have seen by analyzing the con-
ductor of Fig. 8(b), the edge states, once they have been
equilibrated, remain in equilibrium. Similarly, in the
presence of disordered contacts the lower sample edge is
not at the chemical potential of the current drain, but at
a somewhat elevated chemical potential p~.

Let us calculate the potentials p„and p&. The total
transmission probability (if all M incident channels are
full} of the left-hand-side disordered contact is denoted
T, . The total probability for carriers incident in the
lower edge states for reflection into the upper edge states
is denoted R, . The total probability for transmission and
reflections for carriers incident from the left are denoted
T1 and R ', . Current conservation and microreversibility
requires T1 ——T1, N =R1+T1, and M =R1+T1. Simi-
larly, the probability for transmission through the right-
hand-side contact for carriers incident along the upper
edge is denoted T2, and the probability for reflection of
these carriers into the lower edge states is R2. With these
specifications we can calculate the currents I, between
the contact and the first reservoir at potential p~ and the
current I2 between the right-hand-side contact and the
first reservoir at the chemical potential pz. Relative to
the chemical potential p2 of the current drain, the current
I, has two contributions: carriers incident through the
contact give a contribution (e/h)T, (p, —p2). Along the
lower edge a current (e/h)N(ps —pz) is incident on the
contact. A fraction (e/h)R, (ps —p2) is refiected into
the upper edge states. Thus the current along the upper
edge states is
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I, =(elh)N(pA —p2) . (2.22)

This current is incident on the right-hand side contact,
and the portion of the current which is reflected to the
lower edge states is

(2.23)

An inelastic-scattering length away from the contact, this
current is equilibrated. Thus the chemical potential p~ is
determined by

I2 ——( e /h )N (pe —p2) . (2.24)

Equations (2.21)—(2.24), with a little algebra, give the
chemical potentials

NTi
p~ pe+ —

q pi p2
1 2

(2.25)

T)R2»+
1 2

(pi —p2) (2.26)

and the total current from source to drain,

I=(elb) T2(p„—pq)

NT) T2
( — ).

1 2

(2.27)

The two-terminal resistance differs from the ideal value
given by Eq. (2.11) and is given by

R =e(p, p2)/I =— N —R)R2
NT) T2

(2.28)

An inelastic length away from the current source and the
current dr&in the edges of the sample are, however, equi-
potential lines and the difference in chemical potentials,
the Hall voltage, is given by

NTi T2
~UH=p~ —pa = (pi —pz) . (2.29)

N —R)R2
The Hall resistance is found to be

I, =(e/h)T)(p) —p2)+(elh)R)(pe p—2) . (2.21)

The first reservoir equilibrates the differing population of
the edge states. The current leaving this reservoir is
(e/h)N(p„—pz). Thus the chemical potential p„ is
determined by

III. THE QUANTUM HALL EFFECT
IN MACROSCOPIC SAMPLES

Figure 10 shows a Hall bar sample with six contacts.
The contacts are separated by a distance exceedings the
inelastic-scattering length such that, in our symbolic rep-
resentation of inelastic scattering, there is at least one
phase-randomizing reservoir along the edge connecting
two contacts. Suppose contact 1 and contact 4 are the
current source and current drain. Let us now show that
the chemical potentials of the phase-randomizing reser-
voirs are given by p„and pe and are given by Eqs. (2.25)
and (2.26) with Tz and R2 replaced by T& and R4. To
show this, it is sufficient to demonstrate that a voltage
contact does not lead to a potential drop along the edge,
i.e., the voltage contacts measure the chemical potentials
of the phase-randomizing reservoirs. Voltage probes
equilibrate with the sample and there is, therefore, no net
current flow between the sample and the voltage contact.
Consider probe 6 at a chemical potential p6. The carrier
flux from the sample edge at chemical potential p„ to-
ward the voltage contact is N(p„—p~)/h. The fraction
of flux leaving the sample is T6(p„—p2)/h. On the oth-
er hand, the voltage contact injects a flux T6(p6 p2)lh-
into the sample into the edge states leading away from
the contact. Equating these two fluxes yields the mea-
sured chemical potential p6=p~. Thus the chemical po-

T6 R6
I

lf

T5 R5

)(

)(

two contributions: there is a direct current I —I2 along
the upper edge of the sample and a circular current I2
following the sample edges. I2, which is also proportion-
al to Ap, can thus be viewed as a diamagnetic current in-
duced by the applied potential difference. In Ref. 47 the
same phenomenon, in metallic submicron conductors at
low fields, is discussed, where circular patterns can occur
on a length scale small compared to the inelastic length.
In contrast diamagnetic currents in high Pelds, in the ab
sence of backscattering, occur over macroscopic length
scales and do not require rigidity of the phase of the wave
function.

A& ——eUH/I =(hie )(1/N) . (2.30)

These considerations clearly show the stability of the
quantum Hall effect with regard to nonideal contacts and
further highlight that inelastic scattering, which leads to
an equilibrium of the edge states, plays a role in establish-
ing exact quantization. To establish the quantum Hall
effect in macroscopic conductors, we only need to con-
vince ourselves that the probes, used to measure the po-
tential difference between the upper and lower edges of
the sample, do not change the picture developed here ei-
ther.

The current induced by the difference in chemical po-
tentials hp=p, —p2 in the conductor of Fig. 9 consists of

Q C.

[ Tp RPf [
T3 R3[

92 P3
FIG. 10. Macroscopic sample with Hall bar geometry and

disordered contacts. The resistive behavior of the sample in a
Hall plateau is determined by contact resistances characterized
by transmission and reflection probabilities. Coherent carrier
motion from one contact to the other is prevented by phase-
randomizing reservoirs.



38 ABSENCE OF BACKSCATTERING IN THE QUANTUM HALL. . . 9385

tential of the measurement probe is the same as that of
the phase-randomizing reservoirs. Moreover, in addition
to the flux T6(p„—p2)/h injected by the measurement
probe into the sample, the flux incident on the contact
and reflected at the contact R6(p„—pz)/h adds to give a
total flux N(p„—pz)/h. Thus the edge states leading
away from the probe are populated equally and the same
way as the edge states leading up to the voltage contact.
Therefore, the voltage probes in Fig. 10 do change the
geometry of the equipotential lines, but leave the value of
the potential unaffected. We emphasize that this dissipa-
tion free behavior of contacts is special to the quantum
Hall effect.

With contact 1 and contact 4 as current and voltage
source, the resistances A]4 s5 and %]4 23 are zero, and the
resistances J8 ]4 sp —JR ]4 53 J8 ]4 63 are quantized and
given by Eq. (2.30). Clearly, for the conductor of Fig. 10,
we could choose any pair of probes as current sources
and current contacts with results that are equivalent to
those just discussed.

Next, we return to the subject of contact resistances.
Let us keep contact 1 and contact 4 as current source and
current drain. There are four contact resistances which
can be determined. If the voltage difference between the
current source and contact 6 is measured, we obtain

teresting to perform an experiment to see if this predic-
tion is correct. A heat-sensitive device near contact 4
should reveal the production of Joule heat for one polari-
ty of the field, but should be close to the ambient temper-
ature if the field is reversed.

The four resistances given by Eqs. (3.1)—(3.4) contain
four unknown transmission and reflection coefficients.
By measuring these resistances the unknown probabilities
T, and R; can be expressed in terms of the measured con-
tact resistances. Once the T; and R, are known, all the
possible resistance measurements on the conductor of
Fig. 10 can be predicted. For fields 8 in a plateau region,
the resistive behavior of the sample is completely deter
mined by its contact resistances.

The discussion given above applies only if the contacts
are separated by more than an inelastic-scattering length.
There is at least one phase-randomizing reservoir disrupt-
ing the phase of the edge states connecting two probes in
the conductor of Fig. 10. Since, for disordered contacts,
inelastic scattering plays a crucial role in establishing the
quantum Hall effects, the question arises whether small
multiprobe conductors do indeed exhibit a quantum Hall
effect. It is this question which we want to address in the
next section of the paper.

R]4]6——(p, ps)/eI=—(h/e )(R, /NT, ) . (3.1)
IV. QUANTUM HALL EFFECT

IN PHASE-COHERENT CONDUCTORS

Here, we have taken into account that p6 ——p „ is given by
Eq. (2.25) and the current I by Eq. (2.27) with T2 and R2
replaced by T4 and R4. If probe 2 is used to measure the
potential difference to p„we obtain

R]4 ]2——(p, p2)/eI =(h—le )(1/T, ) . (3.2)

%]4 54 (p& p4)leI——=(h/—e )(1/T4) (3.3)

Similarly, for the contact resistances of contact 4, we ob-
tain

To investigate the role of contacts in the quantum Hall
effect in small samples, we start by considering the con-
ductor shown in Fig. 11. We assume that transmission
through the conductor is elastic. Inelastic events occur
only in the reservoir. Thus in the conductor of Fig. 11
phase-coherent transport from one contact to the other is
possible. The relation between the chemical potentials of
the contacts and the currents at the contacts (positive if
carrier flow is from the bath to the conductor) is given
by8, 10

and I; =(elh) (N, —R, )p, —g T,,p,
J+l

(4.1)

A]4 34 (p3 p4)leI =(h /e )(R4/NT4) (3.4)
with i =1, . . . , 4 and j =1, . . . , 4. The coefficients mul-

Experiments indicate that the two-terminal resistance
differs typically not very much from the Hall resistance.
(For specially prepared contacts, quantization of the
two-terminal resistance of better than 1 part in 10 has
been measured. ) Such contacts which exhibit almost no
internal reflection have to be described by total transmis-
sion probabilities close to X. The resistance given by Eq.
(3.1) is then close to zero, whereas the contact resistance
given by Eq. (3.2) is close to the quantized Hall resis-
tance. Thus the potential along the upper edge of the
sample drops slightly as we move along the edge away
from the current source, stays constant along most of the
edge, and starts to drop strongly as the current sink is ap-
proached. Along the lower edge, the situation is re-
versed. Most of the drop of the potential occurs close to
the current source, and a much smaller drop occurs as
the current sink is approached. Since most of the current
is carried along the upper edge the carriers lose most of
the energy p, —p2 near the current sink. It would be in-

FIG. 11. Four-probe phase-coherent conductor with ideal
contacts.
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tiplying the chemical potentials in Eq. (4.1}form a matrix
with the property that the elements of a column and of a
row add up to zero. This is a consequence of current
conservation. If current is fed in at contact m, with-
drawn at contact n, and the voltage difference is mea-
sured between contacts k and I, the resistance is '

(h/e )(Tk T]„—Tk„T] )/D . (4.2)

Here, D is a subdeterminant of rank 3 of the matrix just
discussed. The transmission and reflection probabilities
in Eq. (4.1) obey the symmetry '

T, .(B)=T; ( —B}., R;;(B)=R;,( —B), (4.3)

AH .8]3 4p
—(h /e )( 1 /N) (4.4)

Suppose current flows from contact 1 to contact 4. The
probes 2 and 3 are on the same side of the conductor with
respect to the current source and drain and, hence, A]4 Q3

is a "longitudinal" resistance. Now we have to consider
T~)T34 T]4T3] Since T&& as well as T&& and T&4 are
zero, this expression is zero and, hence,

+L +1423 (4.5)

the "longitudinal" resistance, vanishes. Note that the
outcome of all topologically equivalent resistance mea-

if the Hamiltonian describing the sample is invariant un-
der simultaneous reversal of momenta and magnetic field.
Reference 8 shows that the determinant D is invariant
under field reversal. Hence microreversibility [Eq. (4.3)]
implies for Eq. (4.2) the reciprocity symmetry equation
(1.1). Equations (4.1) and (4.2) have been useful for the
discussion of the symmetry of the magnetoresis-
tance ' ' and the voltage and resistance fluctuations
of submicrometer conductors. The relationship of Eqs.
(4.1)—(4.3) to the Kubo linear-response formalism is so
far understood in some detail only for the case of weak
magnetic fields. For a stimulating discussion of this point
we refer to the paper by Stone and Szafer. As men-
tioned in the Introduction, the relationship of Eqs.
(4. 1)—(4.3) to the quantum Hall effect has independently
from us also been noted by Beenakker and van Houten
and Peeters. Peeters, in his discussion of the experi-
ments of Roukes et al. , considers Hall bars which are
connected to the conductor via tunneling barriers. ' He
assumes from the outset a symmetry which is more spe-
cial than that required by Eq. (1.1) or Eqs. (4.3). Below
we present a general discussion of the role of contacts for
the existence of the quantum Hall effect in phase-
coherence conductors.

Let us start by considering the case of clean contacts.
Figure 11 depicts the case of a magnetic field that points
out of the plane of the paper. The transmission probabili-
ties are T4, ——N, T34 —N TQ3 N, and T~z ——

¹ All other
transmission probabilities vanish The subd. eterminant in

Eq. (4.2) is D =N . Let us consider current fiow from
contact 1 to contact 3, and measure the voltage between
contacts 2 and 4. The four-probe resistance %]34$ is a
Hall-voltage measurement. Using the transmission prob-
abilities as given above, we find T4, TQ3 T43Tq, ——N,
and hence, the Hall voltage is

surements is the same.
The conductor in Fig. 11 exhibits four sets of nonin-

teracting edge states. There are a number of interesting
sample topologies, characterized by ideal contacts,
R;; =M —N, which exhibit only three or two noninteract-
ing sets of edge states. To consider briefly one such ex-
ample, assume that only N —K edge states emanating
from contact 4 in Fig. 11 reach contact 3 and that E edge
states emanating from contact 4 are deflected to contact
1. Similiarly, N —K edge states emanating from contact
2 reach contact 1, whereas K edge states are deflected
into contact 3. All N edge states from contact 1 reach
contact 4 and all N ege states emanating from contact 3
reach contact 2. For K &N the Hall resistance is quan-
tized and given by %» &z

——(h/e )[1/(N —E)]. Some
edges of the conductor are equipotential lines and the
corresponding longitudinal resistance vanishes,
A ]4 p3 0. On the other hand, the longitudinal resistance

]p 43 is not zero, but quantized, and is given by

gg
——(i] /e )[E/N (N —K)]

Since E =N —(N —X) this resistance becomes

%]~ 4~=(h/e )[1/(N —K) —1/N],

i.e., the difference between two two-terminal resistances
for sample regions with N —K and N edge states. A
different derivation of this result has been given by van
Houten et al.

Next, we investigate deviations from the ideal situation
discussed above. It can be shown that, if a single contact
of the conductor of Fig. 11 is disordered, the Hall con-
ductance is still quantized, and the "longitudinal" resis-
tance is zero as for the conductor with ideal contacts. To
make a connection with the discussion of Secs. II and III,
and to show that contacts can be used to introduce in-
elastic scattering into the sample, we discuss the case of
two disordered nonadjoining contacts. We show that we
can use Eq. (4.1) to rederive Eqs. (2.25) and (2.26). The
phase-coherent conductor of Fig. 11 with two ideal con-
tacts is equivalent to the conductor of Fig. 9. Suppose
contacts 1 and 3 are disordered and that contacts 2 and 4
are clean. The clean contacts are used to disrupt the
phase of the edge states along the upper and lower edges
of the sample. The two ideal contacts take the role of the
phase-randomizing reservoirs p~ and p~ in Fig. 9. The
matrices R;; and T; have the following nonvanishing ele-
ments: Carriers incident at contact 1 are reflected with
probability R

&&
and transmitted with probability T4, into

contact 4. Since contact 4 is clean, carriers incident in
contact 1 cannot reach contact 3 and hence cannot reach
contact 2. Since the number of channels of the disor-
dered contact is M, current conservation requires,
M =R

& &
+ T4~ ~ We can introduce the abbreviation

T, = T4, . Carriers incident on contact 2 can reach con-
tact 1 with probability T,z. Both T&& and T,4 are zero,
and current conservation requires R»+ T,~ =M. Thus

T]z ——M —R» ——M —(M —T4, )= T4, and we find

T&z ——T, . Similar considerations determine the whole
matrix of transmission and reflection probabilities. For
clarity, we give all its elements,
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Rii ——M —Ti, T12 —T] T]3 Oy T]4 —0 (4.6a)

T2, =0, R22 —— —, p3
= 2, T24=Rp, (4.6b)

T3) ——0, T3~ ——0, R33 ——M —T2, T34 ——T2, (4.6c)

T4) ——T], T42 =R ), T43 0, R44 ——M —N . (4.6d)

Note that T„T2, R] and R2 have been introduced as
abbreviations and do not restrict the generality of these
considerations. Using Eqs. (4.6) to evaluate Eqs. (4.2),
and keeping in mind that the number of channels for all
the contacts is N; =M, yields

I i
——T].p, —Tip

I2 ——Np2 —T2p3 —R 2p4,

I3 = T2p3 —T2p4,

I4 ———T&p~ —R &p2+Np4

(4.7a)

(4.7b)

(4.7c)

(4.7d)

The ideal contacts are voltage probes and thus I2 ——I4 ——0.
This determines pz and p4 and yields p4 ——p „and
p2 p, tt, give——n by Eqs. (2.25) and (2.26) with p2 replaced
by p3. Using this in Eq. (4.7a) or (4.7c) yields the net
current from contact 1 to contact 3 as given by Eq. (2.27)
with p2 replaced by p3. This demonstrates that we could
have obtained all the results presented in this paper by in-
voking only Eq. (4.1) (respectively, the generalization of
this equation to an arbitrary number of contacts). The
phase-randomizing reservoirs in Figs. 8(b), 9, and 10 can
each be replaced by an ideal contact. Our demonstration
stresses that an ideal contact acts like a phase-
randomizing reservoir. Disordered contacts, on the other
hand, lead only to a partial randomization of the phase. '

Instead of randomizing the phase completely at one loca-
tion, phase randomization can also be achieved through
the action of many disordered contacts in series leading
to spatially distributed inelastic scattering.

The phase-coherent conductor with two disordered
contacts exhibits a quantized value for the Hall resistance
[Eq. (4.4)] and exhibits a vanishing "longitudinal" resis-
tance [Eq. (4.5)]. If two adjoining contacts are disordered
this is typically not the case. Current injected through
one of these contacts populates the edge states in a non-
equilibrium fashion. If the adjoining contact is also
disordered (exhibits internal reflection) it cannot equili-
brate the edge states. As a consequence the Hall voltage-
is in general not quantized. The N = 1 case is exceptional
to the extent that evanescent waves can be neglected. '

In the presence of a single edge state the possibility of
phase coherent interference effects is greatly reduced. All
four contacts need to be disordered (exhibit internal
reflection) to produce deviations from the quantized Hall
voltage. The consequences are the following: To observe
the quantized Hall effect in a tiny sample constructed
over a two-dimensional electron gas, with dimensions of
an inelastic-scattering length, it is necessary to contact
the sample in an ideal fashion. Elastic scattering at the
contacts is detrimental to the quantum Hall effect. Car-

riers in such a small conductor are not subject to energy
relaxation and the population of the edge states is not
equilibrated. This causes deviations from exact quantiza-
tion.

We have found that the Hall resistance is antisym-
metric under field reversal whenever the resistance is
quantized. This is due to the fact that certain transmis-
sion probabilities of the matrix T; are zero. If conditions
for the breakdown of the quantum Hall effect are ap-
proached as in the experiments of Chang et al. ,

' simple
examples discussed in Refs. 52 and 53 show that the mea-
sured Hall resistance is no longer antisymmetric. An ad-
ditional feature of the four-terminal discussion of the
Hall effect presented here is that it permits' ' negative
"longitudinal" resistances. Negative-resistance fluctua-
tions in the "longitudinal" resistance have been observed
in Ref. 18. Clearly, these interesting phenomena deserve
further experimental and theoretical attention.

Note added in proof. In Sec. IIB and Fig. 6 we ad-
dressed the supression of the Aharonov-Bohm oscilla-
tions in high magnetic fields in ring structures. This
effect has now been analyzed experimentally by Timp
et al. To observe Aharonov-Bohm effects, backscatter-
ing, either inside the conductor ' or at the contacts, is
essential. In Sec. IV (see also Ref. 23) we discussed the
quantization of longitudinal four-terminal resistances
(unnumbered equations). This effect, closely related to
the quantization of point contact resistances, has been
observed in multiterminal conductors by Washburn
et al. and Haug et al. " A linear response derivation of
Eqs. (4.1) and (4.2) based on an extension of Refs. 38 and
50 has recently been given by Baranger and Stone. The
linear response kernel relating local current density and
the local electric field also invokes states away from the
Fermi energy. It is only the global transport coeScients
relating chemical potentials of reservoirs and currents
which are defined at the Fermi energy only. That the
resistance formulas of Ref. 8 apply over the whole range
of magnetic fields and invoke only states at the Fermi en-
ergy is very remarkable and will hopefully find further
notice.

APPENDIX: LOCAL ELECTRIC POTENTIALS

The resistance equations (1.1) are determined by
measuring chemical potentials at contacts. These chemi-
cal potentials characterize an electron bath. The chemi-
cal potentials should be distinguished from the local elec-
tric potential eU(x, y) which is defined at every point of
the conductor. ' There exists a potential eU(x, y) which
has the property that it matches the chemical potentials
of the reservoirs and whose gradient determines the elec-
tric field, VU= E(x,y). In the L—andauer approach the
incident current is specified as a function of the chemical
potentials of the reservoirs. The potential U is deter-
mined by calculating the piled-up carriers in the presence
of current flow, and by solving a Poisson equation. Con-
sider a two-terminal conductor connected at the right
and left to electron reservoirs at chemical potentials
p, & p2. The extra charge density brought into the con-
ductor due to the differing chemical potentials and due to
a single quantum channel is
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(A 1)

where it is assumed that we know the wave function [Eqs.
(2.12) and (2.13)] for the whole conductor. In Eq. (Al),
dn /dE=1/2Mv is the density of states at the Fermi
energy of the jth quantum channel in the perfect lead to
the left. The total charge brought into the conductor due
to Xquantum channels is

j=N

v. (A2)

Here the wave functions with a prime describe carriers
incident on the sample from the right-hand-side reser-
voir. Furthermore, we have assumed that the density of
states for the quantum channels in the right- and left-
hand perfect conductors are the same. [For high magnet-
ic fields the upper and lower edge states have the same
density of states only if the confining potential has a sym-
metry V(y +a)= V(a —y), where a is the center position
of the perfect conductor. ] In Eq. (A3), eU —

)Mi multiplies
a local equilibrium density of states. We have assumed
that the left- and right-hand perfect leads are identical
(exhibit the same transverse quantum states). U(x, y) is a
solution of the equation'

A, V eU(x, y)+huo(dn —dn;„d) =0 .

Here we have introduced a screening length

(E /4ire2)i/2(dE/dn )i/2

(A4)

appropriate for the quantum channel j =0 with a density
of states dno/dE =1/hvo. Various perturbation tech-

Here we have used the density of states in the jth quan-
tum channel dn /dE=. 1/hu . Let us use a Thomas-
Fermi approximation to calculate self-consistent screen-
ing. The excess charge dn is screened by the charge den-
sity dn;„d induced by a local potential eU(x, y),

j=N
dn;„d=(eU —p,, )

—g —
(

i p, (x,y) i'+
i 1(,'(x,y) i') .

j=1
(A3)

niques can be used to solve Eq. (A3) for the voltage U.
For simplicity, we proceed as follows: Suppose that
screening is very effective, i.e., that the screening length is
short compared to the variation of the densities hn and
b, n;„d Th. en we can neglect the first term in Eq. (A4) and
the resulting voltage' ' is given by Eq. (2.18). [The local
potentials of Streda et al. ' are obtained by considering
Eq. (2.8) near the upper and lower edges of the sample.
The wave functions, Eq. (2.12) and (2.13), in the perfect
portions of the conductor are invoked. Interference
terms' of the incident wave with the reAected waves are
neglected in Ref. 19 as in Ref. 29. As long as the edge
states are spatially well separated, this is justified. ] Equa-
tions (Al) —(A4) are correct only if there are no localized
states near the Fermi energy. If one wants to calculate
U(x, y) in a quantum Hall sample, away from the edges,
then Eq. (A3) needs to be supplemented by the densities
of the localized states. Such localized states act like an
electron reservoir inside the sample and can affect the lo-
cal potential U. We also note that Eq. (2.18) does not, in
general, without additional conditions, satisfy the bound-
ary condition required for eU; eU has to be equal to p, in
the left-hand reservoir and equal to pz in the right-hand
rservoir. In the calculation of eU, that can only be
achieved if the contact resistances, the spreading out of
the current in the reservoirs, is taken into account. This
requires that the large density of states in the reservoirs is
taken into account. A large density of states can be ob-
tained by considering perfect leads which become much
wider than the conductor as the reservoir is entered. It is
necessary to consider contacts with a large number of
channels M, as in Figs. 9 and 10, to obtain a self-
consistent solution for the potential eU(x, y).
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