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Superconductivity in the dilute electron gas
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We determine the effective interaction of quasiparticles on the Fermi surface for the electron

gas in a rigid positive background. The quasiparticle scattering amplitude is calculated from the
two coupled Bethe-Salpeter equations for the two-particle vertex functions in the particle-hole
(p-h) channels for densities from r, 1 to r, 37. The density and spin-density mean fields are
fitted to the compressibility and spin susceptibility of Green's-function Monte Carlo calculations
and the local-field factors G(q) of microscopic models. We find p-wave superconductivity for
10 & r, & 35 and s-wave superconductivity for r, & 35.

The recent discovery'2 of a new class of high-T, super-
conductors has triggered intensive research for unconven-
tional mechanisms of superconductivity. On a phenome-
nological level, two outstanding properties of high-T,
compounds are (i) the unusual lattice structure and ensu-

ing electronic structure and (ii) the low density of car-
riers. While most investigations concentrate on the nature
of electronic correlations for the quasi-two-dimensional
Cu02 lattice, it may be also worthwhile to focus on the
changes in electronic correlation as a function of decreas-
ing carrier density. The simplest model, which should
contain some of the relevant physics, is the electron gas
moving in a rigid positive background. Does the electron
gas become unstable against formation of a pair-
correlated state as the density is lowered?

In a Letter as early as 1965, Kohn and Luttinger ad-
dressed this problem and concluded that there should al-
ways occur a superconducting transition, into a state of
nonzero angular momentum pairing. Their conclusions
were based on second-order perturbation theory, the qual-
itative feature being an attractive interaction piece for
forward or backward scattering as a consequence of the
discontinuities at the Fermi surface. In real space the at-
traction manifests itself in the negative parts of Friedel or
Ruderman-Kittel-Kasuya- Yosida (RKKY) oscillations
associated with the electric potential of a test charge or
spin in the Fermi liquid.

In a series of papers, Sham, Rietschel, and Grabowski
have investigated the possibility of Cooper pair formation
by exchange of plasmons (for a review, see Ref. 4). Solv-
ing the Eliashberg equations with a dynamically screened
Coulomb potential, these authors found sizable transition
temperatures even in the metallic density range. Howev-
er, these high T,'s were found to be suppressed to zero (at
least in the density range r, -2-5 considered) upon in-
clusion of the lowest-order vertex corrections. A similar
conclusion was drawn by Shirron and Ruvalds. The total
effect of vertex corrections as well as the behavior at low
density (r, & 5) remained unclear.

In this Rapid Communication we approach the problem
of calculating T, from a different direction. We concen-
trate on the effective interactions of quasiparticles on the
Fermi surface. The Cooper pair interaction is approxi-
mately given by the scattering amplitude A for two parti-

cles in states (p, —p) going into states (p', —p'). s For
quasiparticles on the Fermi surface A is a function of spin
and two angular variables, chosen as q and (t k k',
where p1 k+q/2, p2 k' —q/2 and p3 k —q/2, p4 k'
+q/2 are the momenta of the incoming and outgoing par-
ticles, respectively. The pair coupling parameters for an-
gular momentum states I are then obtained as

Akk (q) =Fkk (q)+ (F)kk (9) Ikk (q)-
(2)

(3)

Here, A is the scattering amplitude, F is the generalized
Landau interaction function, and I is the so-called direct
interaction (s,a refers to the spin symmetric/antisym-
metric components). The overbar on F in (3) indicates
the exchanged quantity, i.e., the variables are correspond-
ing to the interchange of the two in-going (or out-going)
particles. Equation (2) may be solved in good approxima-
tion by separating the energy and angle integrations in the
intermediate state as described in Ref. 8, and expanding

A,( —,', dz P((z)A (Q,(t —1),

where z Q2/2 —1, the total spin is J 0 or 1 for even or
odd I and P((z) are the Legendre polynomials. For nega-
tive (attractive) )l,( there is a transition into a supercon-
ducting state below a critical temperature T,' eo
x exp( —1/~ A,( ~ ) where ep is a cutoff energy of order Fer-
mi eF describing the width of the attractive interaction re-
gime in energy.

As a guiding principle in calculating A we assume that
single particle-hole excitations are responsible for most of
the momentum dependence of A, whereas multi-particle-
hole excitations yield a smooth dependence, which can be
modeled by a few parameters only. These parameters in
turn can be adjusted to reproduce virtually exact results
on the ground-state energy and the structure factor known
from Green's-function Monte Carlo (GFMC) calcula-
tions. The effect of simple particle-hole excitations on A
is described by the two coupled Bethe-Salpeter equations
for the vertex functions in the two particle-hole channels:s

Fkk'(q) +ZFkk' (q)&kn(e)Aknk'(q)
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in angular momentum components,

Akk (q) -ZF((k k')AI(q),
I 0

with the result

A (q)= Ft(q)
I+z,(q)F)(q)/(2l+1) ', Z=s, a, (4)

where Zo(q) is the unscreened p-lt susceptibility for elec-
trons with effective mass m*, which we replace by the
Lindhard function. In the limit q 0, the Ff'(q) reduce
to the normal Landau parameters. It is useful to split off
the direct Coulomb interaction V, q)F/q, where
qrF (4rre NF) ' is the screening wave number in
the charge response channel (i.e., l O, s) as FII(q)

V, (q)+Fo(q) [note that V, (kF) rcr, ]. The quantity
Fo(q) determines the local-field correction factor G(q), 9

usually introduced in the mean field of charge response, as
Fo(q) —V, (q)G(q). It follows from (3) that Af~ 1

for q 0, as a consequence of the long-range Coulomb
force. 'o The density of states at the Fermi surface is given
by NF m*kF/rr2. The effective mass m is determined
self-consistently from the relation m /m 1+F[l3.

The important input quantity in the system of Eqs. (2)
and (3) is the direct interaction I. Since I does not con-
tain any contributions from particle-hole excitation pro-
cesses (which are known to generate complex momentum
dependence of the scattering amplitude) one may hope
that it is a smooth function of the momenta. We approxi-
mate If;z (q), (i) by the effective potential form

If;f, (q) V"(q) —
—,
' [V'(k —k')+m"V'(k —k')],

with m' 3 and m' —1, and (ii) by choosing V"(q)
such as to reproduce the data for the compressibility and
the spin susceptibility. In order to further pin down V'
and V' we require that the resulting local-field corrections
factor G(q) is given by a monotonircally increasing func-
tion of q leveling off at high q at values between 2 and
1." Such a behavior was obtained for the choices
V(q) q$r/(q2+q ) and V'(q) Vfq2, with the param-
eters q and Vf fitted to charge and spin susceptibility ex-
tracted from GFMC calculations. While the values for
the charge susceptibility were taken from Ref. 12, in order
to determine the spin susceptibility we used the interpola-
tion formula

Xo/X 1 —ar, /n+ 2 a r, f"(0;y)(e, —e, ),

similar to expressions proposed in Ref. 13, with the energy
difference of the ferro- and paramagnetic states (e, —e, )
in Ry taken from Ref. 7, and the polarization function

f(z;y) [(1+z)'+ + (1 —z) '+ —2]l[2(2 —1)]

appropriate for a correlation energy of density dependence
e, ~r, . Here f" is the second derivative of f with
respect to the relative polarization z and exponent is
determined from the tables given in Ref. 13 by
y(r, ) din—e, /dlrtr, . Xo is the susceptibility of the
noninteracting system and the constant a (4/9x)'/3.
Note that Xo/X (1+FBI)(m/m*), such that F$ is not
completely determined by Xo/X, but has to be calculated
self-consistently with the effective mass ratio m */m.

The system of Eqs. (2) and (3) for given I is solved for
A and F by expanding all quantities in terms of the poly-
nomial eigenfunctions of the exchange operator on the
Fermi surface Xik(p, Q), where p k k' and Q q/kF
(see Refs. 8 and 14 for details). Polynomials up to order 5
in p and Q were found to be sufficient to insure conver-
gence. The system of nonlinear equations for the expan-
sion coefficients was solved iteratively.

The results for the Landau parameters Fo and F$, the
effective-mass ratio m /m, the components of the scatter-
ing amplitude A f, A$, and the pair coupling constants A,o
and X~ for r, values from 1 to -40 are shown in Table I.
The input parameter FJ is seen to grow large and nega-
tive, approximately as Fo = —0.2r, (m /m), whereas F$
is slowly approaching the ferromagnetic instability point
where Ff —l. In the region considered, both AII and A f
increase approximately linearly with r, to large negative
values, whereas A f increases to positive values as does the
effective-mass ratio m /m 1/(1 —

3 A[). For still
larger values of r„Af is expected to slowly approach the
limit A[ 3, where m* ee. Whether or not this point
coincides with the ferromagnetic transition or the transi-
tion to the Wigner lattice, found7 to occur at r, =80 and
r, =120, respectively, cannot be decided on the basis of
our results. We observe, however, a tendency towards a
charge-density wave instability at q 2kF, where the
denominator in Eq. (4) for l 0, A, s vanishes. On the
other hand, the exchange interaction parameter FI[(q) is
found to decrease in magnitude with q for r, & 5, render-
ing a spin-density wave instability unlikely. In the limit of
high density (r, & 5), ~ FII(q) ~

increases with q such that
at r, 1 FII(2kF)= —0.9, and the system is close to a

TABLE I. Landau parameters Fo and F$, effective-mass ratio m /m, components of the scattering
amplitude Af', and pair-interaction constants A,I for various densities.

2
5

10
15
20
30
35
37

F'
—0.41
—0.95
—2.1
—3.51
—6.2

—15
—23
—26

—0.30
—0.43
—0.48
—0.53
—0.61
—0.71
—0.72
—0.74

m'/m

0.91
1.02
1.08
1.17
1.53
2.44
3.05
3.29

—0.03
—0.25
—0.30
—0.40
—0.79
—1.30
—1.46
—1.52

—0.06
—0.04
—0.02

0.05
0.33
0.76
0.8&

0.94

0.51
0.59
0.68
0.68
0.46
0.1 1

—0.03
—0.09

0.05
0.03
0.01

—0.01
—0.04
—0.06
—0.06
—0.06
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SDW state. The values of the components Af' for
l & 2(s) and l & 1(a) have been found tobe small.

As seen from Table I, the p-wave coupling constant 1,1

goes negative at r, =10, but stays at a small negative
value -0.06 as r, is increased. This implies p-wave super-
conductivity below a critical temperature of order T,
=10 5 K. The s-wave coupling constant, on the other
hand, decreases rapidly from a large positive value at
small r, and becomes negative for r, & 30. At r, =37, the
largest r, value at which we were able to calculate, we
found Xp= —0.09. The corresponding value of the transi-
tion temperature is hard to determine without further in-
formation on the cutoff energy ep in the T, formula. An
upper bound of T, ( 10 ' K is obtained by taking ep —eF.

This is still a rather low transition temperature, but in
contrast with A, t, the interaction parameter Xp decreases
rapidly with increasing r„ the slope at r, 37 being as
large as Ap/dr, ~ —0.03. If this trend were to continue

up to r, -50-60, the coupling would be of order —1. The
transition

temperature
would be increased by as much as

a factor of e ' compared to the value at r, =37, but the
cutoff energy ep would be smaller, partially offsetting the
gain.

It is instructive to analyze the different contributions to
in the subspace of s- and p-wave components, when

—,
'

(AIL
—3A)-Af+3Af) and Xl ——,

' (A[+A[).
We find that (i) Af and A f nearly compensate each other,
rendering A, l small [note that A$ is non-negligible and
hence A/+A[ is not equal to —(A$+AtI)l, and (ii) the
spin-density fluctuation contribution -3ANI to A,p is nearly
compensated by the spin-current-density fluctuation con-
tribution +3A1, leaving as the major attractive term

—Al. Note that the parity of a fluctuation vertex —odd
parity for current-density fluctuations versus even parity
for density fluctuations —determines the sign of the
respective pair interaction contributions (k, —k~ V~k',
—k'), since the total particle-hole momentum of the fluc-
tuation changes from k+ k' to —(k+ k') in the exchange
process.

As one approaches the ferromagnetic transition more
closely, i.e., for values of F$ lower than about —0.74, the
assumption of a smooth momentum dependence of the
direct interaction breaks down. Preliminary investigation
indicates that the singular behavior of I necessary to drive
a ferromagnetic transition is generated in the particle-
particle channel and that multi-particle-hole excitations
start to generate pronounced momentum dependence.

In conclusion, we have shown that the low-density elec-
tron gas is unstable against Cooper pairing. The attrac-
tive interaction necessary to bind the pairs is provided for
the main part by exchange of transverse current fluctua-
tions and to a lesser extent by exchange of spin-density
fluctuations, leading to s-wave and p-wave pairing, respec-
tively.
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