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Possible spin-liquid state at large S for the frustrated square Heisenberg lattice
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We present conventional spin-wave calculations for a frustrated antiferromagnetic Hamiltonian

on a square lattice.

We find that quantum fluctuations can destabilize the classical ordered

ground state, even at large S, for large enough values of frustration. This instability is likely to
generate a spin liquid, providing the first example of a resonating-valence-bond ground state in

two dimensions.

The recent discovery of the layered oxide high-tem-
perature superconductors has stimulated considerable in-
terest in two-dimensional antiferromagnetic systems.'
Anderson? has proposed that for small spin values, strong
quantum fluctuations may generate a novel spin-liquid
ground state with no long-range order. The relevant
geometry for the Cu-O planes is the square lattice; many
studies indicate that there exists a finite zero-temperature
staggered magnetization.>~® However, it has also been
shown’ that the energy difference between ordered and
disordered states in this configuration is very small
(~0.2%); therefore, it is of great interest to test the sta-
bility of the long-range Néel order.® In this Rapid Com-
munication we introduce frustration as a perturbation and
use conventional spin-wave theory to study the first quan-
tum corrections to the ground-state staggered magnetiza-
tion. We find that there exists a small but finite region in
parameter space (spin and frustration) where zero-point
fluctuations are strong enough to melt any ordered state.
Though this approach cannot lead to a rigorous existence
proof for a spin liquid, in analogy with the Ginzburg cri-
terion, it does indicate that the assumption of an ordered
ground state is no longer consistent for large values of the
frustration parameter a.

We consider the square-diagonal Heisenberg lattice

H=J, Y S:Sj+J, X SiS;+J2 X S;S;., (1)
G, j) (XD Gt

shown in Fig. 1 where J; and J; correspond to the nearest-
and next-nearest-neighbor bonds, respectively. Here the
subscript i(j) denotes sites on the sublattice 4(B). The
advantage of such a model is that it retains the square lat-
tice symmetry while simultaneously exhibiting frustration.
If we take a=J,/J; then classically (§— o) for a < 3
the ground state has the conventional Néel order with two
sublattices. When a> 1, the same classical limit yields a
ground state where the previous sublattices are decoupled
and each has antiferromagnetic order as shown in Fig. 1.
At a= 1 any state with total spin equal zero for an ele-
mentary square is a ground state; this includes the two
configurations discussed above as well as many others
with no long-range order.

We can study zero-point fluctuations about the two pos-
sible ordered states in the large S limit using conventional
spin-wave theory.? 1/ corrections to states 1 and 2 yield
the following sublattice magnetization per spin, respec-
tively:
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where  yix =coskxa,  yi, =cosk,a, Y= 1 (cosk,a Based on this result, it is reasonable to speculate that the

+cosk,a), ni =cosk.acosk,a, and L=1/2a. We note
that for @ =0, (2) and (3) lead to the Anderson result? for
the square lattice, as expected. The O(1/S) spin-wave
theory predicts a vanishing order parameter along two
lines in the 1/S vs a phase diagram as shown in Fig. 2.
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ground state in the intermediary region will be nonmag-
netic and will therefore be a spin liquid even at large
values of S. Corrections to O(1/S3) for a < % indicate
that this liquid state is preserved,® and therefore we have
reason to believe that this will be the case for all orders in
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FIG. 1. The frustrated square lattice with couplings J, and J
shown with classical ground states 1 and 2 as defined in text.

1/S. Furthermore, the quantum fluctuations diverge for

a— 1;the asymptotic behavior for states 1 and 2 is
1 1
——— 4
S In|l%—a @
and
1
E~(a—i-)‘/2, )

respectively. For values far from a = 7, the liquid region
is wider for @ < § than for @ > % ; this asymmetry corre-
sponds to the fact that only quantum fluctuations melt
state 2, whereas state 1 is already destabilized by frustra-
tion at the classical level. We emphasize that both the
continuous symmetry and the low dimensionality of this
system are crucial to the presence of the liquid state at
large S; soft modes contribute to the large amplitude of
the zero-point motion at long wavelengths and yield an in-
frared divergence for dimensions d < 2.
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FIG. 2. Phase diagram obtained by comparison of the classi-
cal sublattice magnetization and the first quantum corrections.
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We would like to stress the important fact that classi-
cally (S=o0) the system at a= 3 is not strictly disor-
dered; the constraint that each square has total spin zero
induces a sort of rigidity. In particular, a generic ground
state may be written as

olx,y)=e(y)(—1)*, e(p)==x1 6)

(or x+>y), where o(x,y) =1 is the projection of the
classical spin along the z direction, and ¢(y) is an arbi-
trary function. This shows that there is no residual finite
entropy at T =0 for a=%. However, our claim here is
that as a— 7, leading quantum fluctuations become very
soft, driving the system away from the classical fixed
point. We emphasize that the conjectured spin-liquid
phase is then quite different from the classical (S =e0)
system at a=+. From our previous calculations, we ex-
pect that for any of the possible classical ground states,
the relevant order parameter is also destroyed by the lead-
ing infrared fluctuations.

In order to give further support to the existence of a
spin-liquid ground state, we need to show explicitly that
an order state with uniform twist (Fig. 3) cannot be stabi-
lized by quantum fluctuations in the vicinity of a= 3.
Such a modulated phase exists, for example, near the frus-
trated point in both the asymmetric p = 3 clock'° and an-
isotropic nearest-neighbor Ising (ANNI)'! models, and
one might speculate that thermal fluctuations in these
classical discrete Hamiltonians could have some analogy
with the zero-point motion in our quantum Heisenberg
system.

We have calculated 1/S corrections to the ground-state
energy for an ordered state of arbitrary twist. We recall
that for <  and a> § there exists only one twist vec-
tor Q in the ground state of the classical system (Q =0
and Q =, respectively). Spin-wave theory indicates that
twisted states with Q other than the relevant classical
value are all unstable; fluctuations about these states lead
to the presence of modes with negative energy. At a= %
all twisted states are allowed, though there exists only one
global energy minimum at Q =0. This reflects the classi-

(a)

(b)

(c)

FIG. 3. An example of an ordered state with a twist along the
x axis; here Q =n/6. (a) A sublattice; (b) B sublattice; (c) A
and B sublattices.
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cal degeneracy at @ = % . In order to check our result that
the quantum fluctuations do not select Q states different
from those expected classically, we have investigated an
extension of this model where a twisted ground state may
occur at the classical level. Specifically, we introduce
next-nearest-neighbor couplings 8J; along the x axis. The
classical phase diagram at T =0 for this model is shown in
Fig. 4. We note the presence of a twisted ground state for

|2a—ll ~1—2a
= 2 cosQ ————413 .

Spin-wave theory can also be applied in this af model,
and yields the following frequencies:
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FIG. 4. Classical phase diagram for the a8 model.

W) 2=[14+(1—2a)cos(Q) — Bcos(2Q) + vk x + 7k, +2ank + Byar <]
x[1+4(1 —2a)cos(Q) — Bcos(2Q) — vk x cos(Q) — vk, +2ani cos(Q) + Bcos2Qyx ;)] , (7a)
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where the notation is the same as before. Again, for
a= 5, the only stable states correspond to the classical
values of Q. At a=7%, the two states Q=n/2 and
Q =3r/2 are stable and degenerate for > 0; the degen-
eracy reflects a discrete symmetry of the twisted state
Q— — Q. Though both thermal and quantum fluctua-
tions lift degeneracies which may occur in their absence, 2
these results indicate an important difference between
these phenomena. Because of entropy considerations,
finite-temperature effects may modify the symmetry of
the 7 =0 ground state and may even create a new length
scale in the system.!! It appears, however, that quantum
fluctuations will not select a state that is classically not
permitted since they act to restore the rotational invari-
ance of the system.

In conclusion, it seems very likely that a spin liquid ex-
ists at zero temperature in a finite region of the phase dia-
gram (even at large S) for the frustrated square Heisen-
berg model. If the ground state does not break transla-
tional invariance (dimerized case), this would provide the
first example of a resonating-valence-bond (RVB) ground
state for a two-dimensional isotropic Hamiltonian. At
this stage, it is not possible to distinguish between the
“long bond” RVB discussed by Anderson,? and the “short
bond” RVB of Kivelson, Rokhsar, and Sethna.!> Numer-
ical studies for the spin- case are now in progress to in-
vestigate this new phase.'*!> Naturally, there remain
many open questions including, for example, the order of
the transition, the nature of elementary excitations in the

(7v)

[

liquid state, and the behavior of the spin-spin correlation
functions. It would also be interesting to investigate the
continuum limit in this model and to determine whether
or not it can be described by the disordered fixed point in
the O(3) o model discussed by Chakravarty, Halperin,
and Nelson.

Note added. After completion of this work, we received
a preprint by Ioffe and Larkin'® where they derived an
effective action to describe the low-energy behavior of the
same frustrated model as studied here. Their conclusions
are consistent with ours; in particular, they find a spin-
liquid phase, even at large S, for large values of the frus-
tration parameter a.
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