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Thermal conductivity of a kinetic Ising model
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Using a novel extension of the microcanonical Monte Carlo algorithm, we have simulated the

behavior of a two-dimensional nearest-neighbor ferromagnetic Ising model in the presence of a
temperature gradient. The technique consists of setting the temperatures of boundary spins, while

allowing "demons" associated with the other sites to control heat transfer. We demonstrate that
our system is in local thermodynamic equilibrium, and compute the thermal conductivity as a
function of temperature.

Large-scale Monte Carlo simulations of systems under-
going complex behavior, such as phase transitions, have
led to important insights into fundamental processes. '
In many applications, the dynamical behavior of strongly
interacting many-body systems is studied by a Monte
Carlo simulation of the master equation. Of course, while
a Monte Carlo approach allows the treatment of much of
the microscopic behavior, important physics is missing in
some problems. For example, in the usual Monte Carlo
algorithm, the temperature is fixed by the prescribed in-
teraction of a dynamical system with a heat bath. This
can be a useful approximation if the time scales over
which thermal diff'usion occurs are very fast, but in other
problems where the dynamical process is controlled by lo-
cal variations in temperature, it is clearly inadequate.
Such problems include the calculation of thermal conduc-
tivities and pattern formation by dendritic growth. In this
Rapid Communication we study such a dynamical Monte
Carlo algorithm which allows the study of the effects of
thermal fields. As an application of the method, we obtain
numerical results for the thermal conductivity as a func-
tion of temperature in a many-body system: the two-
dimensional Ising model.

The method we use is based on the microcanonical algo-
rithm of Creutz and co-workers, which is complementa-
ry to the standard Monte Carlo method. This algorithm
has usually been used to study equilibrium properties.
However, Creutz6 has shown that the method can be used
for dynamical properties, in a qualitative study of thermal
conductivity. Here, we extend and generalize his work,
and investigate transport properties in a nonequilibrium
steady state. Indeed, just as the equilibrium situation per-
mits measurement of thermodynamic quantities, such as
the susceptibility, a nonequilibrium steady state makes
possible the direct measurement of thermal conductivity
and the observation of transport mechanisms.

Our variant of the microcanonical algorithm models the
kinetics by using "demons" (analogous to Maxwell's
demon) to control the distribution of energy throughout
the system. As in the original algorithm, the demons also
allow the measurement of temperature, since their indivi-
dual distributions become Boltzmann type as the Monte
Carlo run proceeds. If one demon is used, in thermo-
dynamic equilibrium with a system of N spins, it has

(1/W)th of the total energy, so that the situation approxi-
mates a microcanonical ensemble with a single tempera-
ture. Here, however, we shall use one demon per spin,
which allows us to monitor local temperature fields. In ei-
ther case, a demon permits flipping of a spin with which it
is in contact either if it receives energy thereby, or if it is
able to provide sufficient energy for the flip to take place.
Thus, the total energy of the spins plus demons is con-
served, but over short length and time scales there can be
local fluctuations of the energy of the spins, which give
rise to thermal diffusion. Thus, the order parameter is
nonconserved, but it is coupled to a conserved field, the en-

ergy. This is called model C in critical dynamics.
To be explicit, the Hamiltonian we have studied is the

two-dimensional ferromagnetic Ising model: 0 —J
x gt;J&o; ctj, where J is the interaction constant, the sums
run over distinct nearest-neighbor pairs and the spins take
on a value of o; ~ l. Our calculations were carried out
on a 96x96 square lattice, which is of sufficient size to
represent well the second-order phase transition. Tests
were also done on lattices of other sizes. A nonequilibri-
um steady state was prepared by fixing the temperatures
of the top and bottom boundaries: demons there permit-
ted flips if they received energy and permitted energetical-
ly unfavorable flips with Boltzmann probabilities. In this
manner, a boundary spin is placed in contact with a heat
bath as if it were part of a canonical ensemble: Its transi-
tion probabilities are those of the Metropolis algorithm. '

Periodic boundary conditions were used in the transverse
direction. We started each run by setting the total energy
of the interior spins to a value corresponding to a tempera-
ture intermediate between those of the boundaries. The
system was then annealed until the temperature profile be-
came stable, before data was taken.

For temperatures above T„ the system was annealed
for 3x10 Monte Carlo steps per spin (MCS's), and then
time averaged over further periods of 10 MCS's. The
particular temperature proile chosen had a high-
temperature boundary at T= 8.8T„while the low-

temperature boundary was at T = 1.05T„where
T, = 2.269J. Figure 1 shows the derivative of the
inverse-temperature (1/T P) profile obtained from the
averages of 10 independent runs. Each data point is also
averaged over the energy distributions of the demons in a
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FIG. 1. d(T, /T)/dx vs x for a system whose boundaries are
kept at T=8.8T, (left-hand side) aud T= 1 05T, (rig. ht-hand
side). Error bars are due to thermodynamic temperature fluc-
tuations, as discussed in the text. The conductivity is calculated
by measuring the heat fiux through the system.

transverse row. The profile in Fig. 1 shows significant cur-
vature, implying that the thermal conductivity varies
strongly with temperature. This result is consistent with

original qualitative results of Creutz. The errors result
from measured fluctuations in P and are discussed in de-
tail below.

To calculate the thermal conductivity x, we monitored
the heat flux Q in the system. This is the average change
in the energy of a boundary spin per MCS. When the sys-
tem had reached local equilibrium, the energies taken up
and released, respectively, at the two boundaries agreed
within Q's measured 5% statistical fluctuation. Results
for Ir as a function of T, using the measured value of the
heat flux and the temperature profile of Fig. 1, are given
in Fig. 2.

Also shown in Fig. 2 are representative values for
T( T,: The data given are for T 0.98T, and
T 0.90T,. Approximately 5x10 MCS's were required
to reach a steady state for boundaries held at T=0.99T,
and T=0.7T, . Following this, 10 runs of the same dura-
tion were done to produce reasonable statistics for the en-

ergy flow. Further discussion of these results is given
below.

The data in the high-T limit can be understood using
the Green-Kubo relation,

where a current j„(r,t) carries energy in the x direction at
position r and at time t. The angular brackets represent
an ensemble average, and Boltzmann's constant has been
set to unity. The expression simpli6es, if the correlation
length and correlation time are small (as is the case at
high or low temperatures), to

4a' &e'&

T2 '

FIG. 2. x/J~ vs T/T, . Solid lines are high- and low-temper-
ature expansion results.

where a is the bond length, z is the time interval for a
MCS (we shall set both a and z to unity hereafter), and e
is the energy transmitted along one nearest-neighbor bond
when a single spin attempts a flip: It has the value +'2J
for a successful flip, but is otherwise zero. The factor of 4
arises because each site adjoins two bonds in the x direc-
tion, and each bond is affected twice during a pass
through the lattice. As T ~, flips are always success-
ful, and &e & is 4J, giving

16Jx'~
T2

Corrections to this expression come about because even at
high T, some demons do not have sufficient energy to al-
low spins to flip. An expansion to lowest order in 1/T
gives

This expression is plotted in Fig. 2; it agrees well with the
high-temperature data. Note that the conductivity actu-
ally vanishes as T ~. This is because there is a limited
capacity for a spin to "hold heat" in the Ising model; the
maximum energy per spin is 2J.

At low temperatures, transport is limited by microscop-
ic activated processes. It is natural to expect that the ma-
jor temperature dependence of any transport coefficient is
given by e ",where A is a microscopic activation ener-

gy. We can straightforwardly calculate A because, when
almost all spins are aligned, the probability that a given
spin will flip is proportional to either the probability that it
is a minority spin, or the probability that a demon has
sufficient energy for the flip of a spin aligned with its
neighbors. Both these possibilities carry factors e
and we find that the conductivity is given by



THERMAL CONDUCTIVITY OF A KINETIC ISING MODEL 9325

for T 0. That is, the activation energy at low tempera-
tures is SJ. This gives the other solid line plotted on the
Fig. 2. The fact that it fits the data close to T, is only for-
tuitous; its relation to the low-temperature data is dis-
cussed below. First, however, we discuss the errors in the
computation of a..

Since tc is obtained from numerical differentiation, its
errors are largely due to the errors in the measurement of
temperature. The theory of thermodynamic fluctuations
gives

where C, is the heat capacity. At high temperatures, the
heat capacity is C„=4J N/T2. Thus, given these fluc-
tuations in T, we expect that the errors in P will be in-
dependent of temperature, at high temperatures, and of
order 1/(2JJL ) where L is the number of spins per row.

Indeed, the value 0.05/J is roughly v10 times the error
bars shown in Fig. 1; recall that the data is averaged over
10 MCS's in each of 10 independent runs. This implies
that our configurations have reached local thermal equi-
librium. Note that the temperature difference across the
sample is substantially greater than the magnitude of the
fluctuations. We found this to be the most efficient way to
generate data over a wide range of temperatures. Smaller
temperature differences required more MCS per run for
comparable accuracy.

Thermodynamic fluctuations in the temperature also
play an important role at temperatures below T,. This
can be seen from Fig. 3, which is a representative
configuration obtained during one of these runs. It is evi-
dent that the local fluctuations in the magnetization are
on the scale of the correlation length, 'o shown in the right
margin of Fig. 3, corresponding to the local temperature.
This is again consistent with local thermodynamic equilib-
rium, so that temperature fluctuations will be given by

((~Z.) 2) esJtry4

4J N

where we have used the form of the heat capacity for
T Q. For L 96, these fluctuations are exceedingly
large for T=0.7 T„so that accurate measurements of the
temperature gradient are difficult (see Fig. 2). Indeed, we
show no estimates for x below 0.9T, since we can extract
no reliable values from the noise.

The expressions we have given above for the conductivi-
ty are the first terms in the high- and low-temperature
series expansions. For other temperatures, in particular

T 0.99 Tc

~ g ~

~ ~

e eQ

~ ~ ~

~ OW

~ ~

~I

~Ie I ~

«'I
~ ~

IP II ~

I ~ o
~ ~
I

Ia
~ ~ r e r r

s ~~ asm
o Qe~0 0 0 N 0

~ ~ ~
~ ~ ~ ~ 4 11',

~
~

+ ~ ~ ~ ilL,
~ I I ~ I

~ ! ~ I ~

~
~ '+ Z ~ & I L ~

~ ~

~ 0 Is tt ~ I $0
~ ~ ~

~ ~

~I~ ~

T = 0.7 Tc

FIG. 3. Typical conaguration for a system at low tempera-
ture whose boundaries are kept at T=0.99T, and T=0.7T, .
In the right-hand margin the "error bars" show the value of the
thermal correlation length for the temperature of a particular
row.
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for the critical region T= T„ the calculation of the con-
ductivity requires a detailed analysis of fluctuations in the
energy density and its associated currents. It should also
be noted that our method of obtaining tc from temperature
gradients is subject to large finite-size effects in the criti-
cal regime. Thus we have obtained no data in this narrow
region. Of course, the conductivity will vanish at T, due
to critical slowing down: there is an exact result for z, the
exponent for critical slowing down, in model C.

In conclusion, we have demonstrated the value of a new
technique for the Monte Carlo simulation of systems
which are not in thermal equilibrium. We have obtained
the thermal conductivity of a two-dimensional kinetic Is-
ing model, and given explanations of the form of its tem-
perature dependence. In the future we shall study the
effect of thermal fields in other nonequilibrium phenome-
na, such as pattern formation during dendritic growth.
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