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Superconductivity in correlated wave functions
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We describe a new method to numerically evaluate the properties of correlated superconducting
wave functions. We have applied it to the resonating-valence-bond (RVB) wave function for the
Hubbard model on the square lattice. For the half-filled case we find that the d-wave RVB state
and the antiferromagnetic ordered state have the same energy within numerical accuracy. At
10% doping we find d-wave superconductivity, consistent with previous studies. We show that the
superconducting order parameter is proportional to the number of holes, for small hole concentra-
tions.

Soon after the discovery of high-T, superconductivity
by Bednorz and Miiller, ' Anderson2 proposed that the
two-dimensional (2D) Hubbard Hamiltonian in the limit
of large on-site repulsion U, transformed to an effective
Hamiltonian, should be appropriate for modeling these
compounds. Recent calculations by Zhang and Rice 3 give
additional support to this proposal. Anderson furthermore
suggested2 that a resonating-valence-bond (RVB)-type
state may be the ground state, leading to superconductivi-
ty (SC) for finite doping and to performed pairs in the
half-filled case.

The question whether the 2D Hubbard model has SC
ground state is highly controversial. Several mean-field
theories have been proposed and indicate various kinds of
SC, especially the d and extended (ext) s wave. But the
approximations used up to now for the decoupling are not
yet under control and therefore the validity of these
theories is unclear.

Recently, Lin, Hirsch, and Scalapinos exactly dia onal-
ized small systems and Hirsch and Lin and Imada have
done quantum Monte Carlo (MC) simulations on finite
lattices at quite high temperatures. Their results indicate
no tendency towards SC.

In contrast with these results, Gros, Joynt, and Rice
examined the two-hole Cooper problem within the
Gutzwiller formalism and found a d-wave pairing instabil-
ity. As an extension of their work, we develop in this pa-
per a new method which makes it possible to evaluate nu-
merically the properties of RVB wave functions for gen-
eral parameters. The results for the 2D square lattice
confirm the qualitative findings of the previous work.
Furthermore, these new quantitative results establish the
d-wave RVB state as a candidate for the ground state of
the antiferromagnetic Heisenberg Hamiltonian in the
half-filled case.

Independently, Shiba and Yokoyamas have developed a
different approach to numerically evaluate RVB wave
functions. They use a mixed-band representation for the
RVB wave function. Bouchard and Lhuiller ' have ex-
amined, in connection with liquid He, a triplet Jastrow-
BCS (Bardeen-Cooper-Schrieffer) wave function with
equal-spin pairing. They find ~ that for this special case
the amplitudes are given by the square root of deter-

minants.
We define the RVB wave function as2

~
RVB) const&Pg p~ BCS)

const xPq-pQ(tt 1,+vt ct, tc —gj ) ( 0) .

constxPq-p ga(k)cttfc —Qt ~0),
, k

(2)

with a(k) vs/ut, . PN projects onto the subspace of N
particles. With a(r) I/Lgt, a(k)exp(ikr), L being the
number of lattice sites, ( N& takes the following form:

~
N) const&Pq-p

' g a(R; RI)ck, tc)—, t

'

R],Rg

(3)

where {R;}and {RJ}denote the positions of the up (down)
spins. For singlet (triplet) pairing a( —r) ~ a(r).
Note, that in the half-filled case ( N L)

~
RVB).

Furthermore, in the thermodynamic limit, one can work
either with ) RVB) or with

~
N).

The key quantity for a numerical evaluation of (3) is
the amplitude of a given spin configuration {R;},{RJ}.By
careful inspection of (3), one can show that this ampli-
tude, apart form a normalization factor, is given by a
N XN determinant (N is the number of up and down

spins, assumed to be equal) with elements a(R; —RI).
Therefore (N) has the same functional form as the
Gutzwiller wave function (GWF), but with different ele-
ments in the determinants. For the numerical evaluation
of ) N) for finite systems, one can then use the same tech-
niques as for the GWF, as described in Refs. 10 and 11.
Note that it is possible to work either with fixed particle
number or with a fixed phase, since the amplitudes are
known for all spin configurations and particle numbers.
The results we present in this paper will be mostly for

Here
~
BCS) is the usual BCS wave function, with vq and

ttq as variational parameters. Pq-p projects on the sub-
space of no doubly occupied sites and cttt, are creation
operators for fermions. ~0) denotes the vacuum. The N-
particle component of

~
RVB) has the following form: 2

) N) constxPN
~
RVB)
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wave functions with fixed particle number.
Furthermore, this method is not restricted to lattices

and the operator Pd p. It is straightforward to go to the
continuum limit and replace Pd-p by a Jastrow weighting
factor. Equation (1) becomes then a generalized Jastrow
trial wave function for the ground state of superfluid He
or nuclei (see, e.g., Ref. 9).

In the limit of large on site repulsion U, the Hubbard
Hamiltonian transforms' into the following effective
Hamiltonian, valid in the subspace of no doubly occupied
sites (n N/L ~ 1):

(b)

-0.2—

-03—

-04—

005-

H, ff T+HQ +HQ, T —t g a;t~j +H c.
(i,j&,a

HQ =4t /Ug(S; $ —n;n„/4),

(4)
HQ = —t /U g (a;+,,~i, —Ai, —A;+, , ~

with

a(k) -&(k)/[&i, +Qg+a'(k)]

h(k)=h (s wave),

h(k) =A[cos(k„) —cos(k~)1 (d wave),

h(k) h[cos(k„)+cos(k~)] —p (ext s wave) .

Note that 6 is a variation parameter and not the order pa-
rameter. The true SC order parameter vanishes like
1 n, as n —1, as will be discussed below.

For the half-filled case, the extended s wave is identical
with the GWF, since then A(k)-(i, and the two functions
a(k) are equivalent by means of a linear transformation.
Similar arguments can be used to show that the d wave
for n = 1 approaches asymptotically the GWF as 6

We discuss first the results for the half-filled case. We
find that the s wave has its energy minimum at h, 0
which is' (S; SJ)&-o —0.267+ 0.003. The d wave
gains about 20% with respect to the value at h, 0. It has
a broad minimum between 0.3t &6&3.0t. (S; S1) is
practically size independent. For 4 t its value is
—0.319~ 0.01 [see Fig. 1(a)]. For the antiferroma neti-
cally ordered Gutzwiller state Yokoyama and Shiba ob-
tained —0.321+ 0.001. By diagonalization of small sys-
tems and extrapolation to the thermodynamic limit, Oit-
maa and Betts' estimated for the ground state of the

+ aj +1&,i.&i.-&i+ i', e)

Here S; are the spin operators on site i,
a t (1 n; —)c;t— with n; n; 1 +n;, 1, n; ~ c;,g;,~.
(i,j ) are pairs of nearest-neighbor (NN) sites and i+i
denotes a NN site of i Tis .the kinetic energy of the holes
and HQ'31 the two- and three-site contributions, respec-
tively. In the half-filled case, H, ff reduces to the antiferro-
magnetic Heisenberg Hamiltonian.

To examine the ground state, we have investigated a set
of trial wave functions of the form of (2). The normal
state is the GWF and has a(gi, &0) 1, a(gq&0) 0,
with gi,

—2t[cos(k, )+cos(k~)] —tt. Here p is the
chemical potential. For the SC state we used the stan-
dard BCS parametrization:

0.0 I

0.0 I I I I I

L= L= 50 ( I/L) ~'~L = I70

FIG. 1. Data for the half-611ed case (n 1) and the d-wave

RVB state with 6 t. The NN spin-spin correlation (a) and the
squared staggered magnetization (b) are plotted as a function of
(1/L) ~3 for lattices with a total number of sites L 26, 50, 82,
122, 170. Typical error bars are shown. The arrows indicate the
estimates of Oitmaa and Betts (Ref. 14) for the ground state of
the 2D antiferromagnetic Heisenberg Hamiltonian. Between
7 & 10 and 7 x 10 MC steps per site have been used.

antiferromagnetic Heisenberg Hamiltonian —0.328
~ 0.003, within the numerical accuracy of our result. We
therefore conclude that further numerical work is re-
quired to definitively establish the nature of the ground
state of the model.

We have examined the size dependence the staggered
magnetization' squared (N ) ((I/Lg;e;S;) ) and
found that it scales with (1/L) ~ 3. Figure 1(b) shows that
(N, ) extrapolates to zero in the thermodynamic limit.
We conclude therefore that this RVB state has no long-
range magnetic order.

We also did calculations for n 0 9, -L .82, and

Ns L —N 8 holes. The results for the s and d waves
are shown in Fig. 2. We show all contributions to (H,ff)

separately in units appropiate to their physical
significance. We do not show the results for the extended
s waves, which lie in between that of the s and the d
waves. In particular, we find no energy gain for (S; SJ) or
for (H,ff) for the extended s wave.

We choose a reasonable value, for the high-T, com-
pounds, of U/t 16, to show that for the d wave, the gain
in (S;.SJ) [Fig. 2(c)] is enough to overcome the loss in ki-
netic energy [Fig. 2(b)]. The total energy [Fig. 2(a)]
shows a clear minimum at 6-0.55t. To show that this is
the case, despite the large error bars of Fig. 2(a), we have
calculated for A 0, 6 0.55t, and d-wave pairing, (H,ff)
with higher accuracy. The results (H,ff)i, -c —0.484
+ 0 002t and (H. ,ff)&-ass, —0.494~0 006t show c. lear-
ly that the energy minimum is at finite 6,.

In Fig. 2(e) we see that the s wave gains from the
three-site contributions, but this gain does not compensate
the loss in kinetic energy [Fig. 2(b)] since (H,P)
-(1 n)t2/U and —is therefore one order of magnitude
smaller than (T)—(1 —n)t.

In Fig. 2(d) the NN hole-hole correlation is plotted.
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TABLE I. The x component of the SC order-parameter for
d-wave pairing. Shown are the values for (1 —n/2)/(1 —n)
&(e~.~g-~)ava and the statistical errors. (cr~wj, -~)acs are given
with parentheses. The wave functions have, on the average, one
hole on L sites [i.e., (1 —n) I/Ll. 6 is in units of t
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FIG. 2. Data for L 82 sites and Np, 8 holes, for the d wave
(squares) and the s waves (circles), as a function of 5 in units of
t. Typical error bars are shown, all points have been calculated
with the same accuracy. In (a) the total energy per site for
U 16t is shown, in (b) the kinetic energy per hole, in (c) the
NN spin-spin correlation, in (d) the NN hole-hole correlation
g~ (1 n) ((1——n; ~)(1 —;. )n(1t—nj;t)(l —nj t)), and in (e)
the three-site contribution per hole. Note that the d wave gains
about 35% in (S; S~) for 6 t About -3x. 103 MC steps per site
have been used.

To show that (6) holds for small 1 nwe—have calculated

+ff (L ( c;t~g (L —2)/—v'(&L —2 ( L —2&&L ( L))

for wave functions with, on the average, one hole (i.e.,
1 n 1/L—) In T. able I the x component of
(1 —n/2)/(1 n)&—tr is given for d-wave pairing. The y
component has the opposite sign. Also shown (in
parentheses) are the corresponding BCS values. We see
that Eq. (6) is qualitatively well fulfilled for a wide range
of 6 and hole densities. Therefore 6& is truly a SC order
parameter, since it vanishes for a Fermi liquid, which is a
incoherent superposition of states with diff'erent particle
numbers, in a grand canonical ensemble.

In summary, we have developed a new algorithm to
evaluate numerically RVB and generalized Jastrow wave
functions. It is very fast and not restricted to a special
choice of parameters. We applied this algorithm to the
RVB wave function on the 2D square lattice. Qur result
support Anderson's suggestion that even for the half-
filled case an RVB-type wave function might be the
ground state or very close in energy to the ground state,
since we find that the energy for a d-wave RVB wave
function agrees within numerical accuracy with the other
estimates for the ground-state energy of the 2D antiferro-
magnetic Heisenberg model. We also showed that this
RVB state has no magnetic long-range order in the ther-
modynamic limit. For finite doping we find d-wave super-
conductivity in agreement with previous results. 7 We
have shown that the superconducting order parameter is
proportional to 1 —n as n approaches 1.

Consistent with previous findings at the optimal value of
/1. -0.55t, it is not greatly enhanced for this lattice size
with respect to 6 0.

We now discuss the SC order parameter, as defined
in the recent mean-field calculations: ht 1/Lg;
x&c;t~;tj., ) where i, i+r are NN sites. The general-
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