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We report Monte Carlo simulation results for the susceptibility and specific heat of the one-
dimensional plane rotator system with 1/n2 interaction. The data confirm the previously conjec-
tured transition to a phase with infinite susceptibility. For the equivalent model of a tunnel junc-
tion, the Monte Carlo transition temperature implies that a transition from activated to metallic
behavior takes place when the normal conductance of the junction exceeds h/2 ett2 0.65 kti.

It is well known that long-range attractive interactions
can induce critical behavior in low-dimensional spin sys-
tems. ' ' For example, it has been proven rigorously'
that the one-dimensional Ising chain with a power-law in-
teraction (1/n) '+ exhibits a phase transition for
0& e& 1. The borderline case of o 1 has received a
particular attention because of its relation to the Kondo
problem. s The Monte Carlo study of the 1/n 2 Ising-spin
chain confirms the existence of a transition with a finite
discontinuity of the magnetization predicted in previous
theoretical works. ' Relatively little attention has been
given to Heisenberg or planar-rotator systems with long-
range interactions in one dimensions. Using the classical
version of the Bogoliubov inequality, derived by Mermin
and Wagner, Joyce has proven rigorously that the one-
dimensional isotropic Heisenberg model cannot be fer-
romagnetic for tt & 1. The one-dimensional planar-
rotator model with 1/n interaction has recently received
attention through its relation to the problem of mesoscop-
ic tunnel junctions. Using the functional-integral formu-
lation of Ben-Jacob, Mottola, and Schon' we have point-
ed out9 that the effective action of the junction is, at
T 0, equivalent to the Hamiltonian of the one-
dimensional planar-rotor model with 1/n interaction.
Treating the action in Ref. 10 in the self-consistent har-
monic approximation we have calculated the effective con-
ductance of the tunnel junction as a function of nominal
tunnel conductance. When T 0, the effective dc con-
ductance shows a precipitous transition from the activated
to the ohmic regime when the nominal tunnel conductance
exceeds a critical value of order e /h. Since the effective
dc conductance is proportional to an integral of the phase
correlator (over imaginary time) and since the nominal
tunnel conductance corresponds to the temperature of the
1/n model, the numerical results of Ref. 9 indicate a pos-

sibility of some kind of a phase transition in the 1/n pla-
nar rotator chain. Subsequently, one of us" has applied
the Mermin inequality'2 to establish rigorously the ab-
sence of ferromagnetic order in this model. Consequently,
the nature of the phase transition in the planar-rotator
model is quite different from the 1/n2 Ising spin chain.
Employing the low-temperature (harmonic) approxima-
tion, it has been shown that the spin correlation function
shows a power-law decay and the susceptibility diverges
below a critical temperature To tt Jo/ktt, where Jo is the
coupling constant.

Both of these properties are reminiscent of the behavior
of the two-dimensional planar-rotator model with short-
range interactions. ' According to Kosterlitz and Thou-
less' the low-temperature phase of the latter model is
characterized by a power-law decay of the correlation
function modified by the presence of pairs of tightly bound
pairs of topological defects (vortices) of opposite sign. At
the transition temperature the vortices unbind and create
a new phase in which the correlations decay exponentially.
It has been conjectured" that an analogous crossover in

the decay law takes place in the spin correlation of the
1/n planar-rotator chain. The transition to ohmic con-
duction shown in our recent self-consistent harmonic cal-
culations on tunnel junction and the divergence of the
susceptibility derived in the low-temperature approxima-
tion" provided initial support of this conjecture. Theoret-
ical progress in this model is somewhat hampered by the
fact that it does not possess a topologically stable defect.
In fact, if the argument of Toulouse and Kleman' is ap-
plied to the (d 1, n 2) case, n being the order-
parameter dimensionality, we find that the defect in the
planar-rotator chain has an anomalous dimensionality
d n —1. T—his is in contrast to the 1/n Ising-spin
chain (d 1, n 1) and the two-dimensional Kosterlitz-
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Thouless model (d 2, n 2) both of which involve zero-
dimensional defects. The phase transition in the latter
models can be regarded as a condensation of such stable
topological defects for which a renormalization-group
analysis is available. '

In the absence of a similar type of analysis for the I/tt
planar-rotator chain, it seems natural to investigate the
phase transition in this model by the Monte Carlo simula-
tion method. In this paper, we report calculations of the
susceptibility and the specific heat for this model using a
Monte Carlo technique. The calculation involves a finite
number N of rotators with the periodic boundary condi-
tions described by a Hamiltonian H with periodic interac-
tion J(n n—'):

PH —g J(n n'—) cos(8„—8„.),
n, n'

where

J( )
Jo rt/N

ktt T sin[(x/N)n]

2

(2)

We deviated from the traditional Metropolis Monte
Carlo procedure' in that the angles 8„were calculated
directly from the probability distribution. It is easy to
show that the probability distribution for angle 8„of rota-
tor n is proportional to

p(8„) exp[a [cos(8„—p) —1]],
where

a-(E,',.+E' )'"

and

Esin
tan E~

E„„gJ(n —n') sin(8„.),

E, g J(n n')cos(—8„.) .
n'

(3)

(4)

(5)

The subtraction of one in Eq. (3) was needed to keep the
exponent small for calculation purposes. Random devi-
ates 8„of the distribution (3) were calculated directly by
the rejection method, ' where the comparison function is
given by

the first 1000 passes were used for equilibration followed

by 2000 passes for calculating averages. A test run for 10
and 100 rotators indicated that 10000 passes for averag-
ing gave no significant change to the curves, other than
the expected smoothing. Cooling runs for 10 and 100 ro-
tators with random initial configurations agreed with the
heating runs. The 1000 passes for equilibration were
found to be more than sufficient.

In Fig. 1 we plot the reduced susceptibility X defined as

where M is the magnetization of the chain. The data
confirm the crossover from the finite susceptibility to a
diverging one as the temperature decreases through the
transition temperature. In fact the temperature depen-
dence of X for N large is qualitatively similar to that for
the Kosterlitz-Thouless transition. ' ' According to the
theory of this transition' the susceptibility diverges as T
approaches T, from above as exp[1.5/(T —T, )'t ]. In
this case the transition temperature can be determined by
fitting this function to the Monte Carlo data. ' At present
there is no theory of the I/n planar-rotator chain for
T( T, and thus we estimate T, qualitatively from the po-
sition of the precipitous onset of X with decreasing temper-
ature. For N 1000 this yields T,-(0.8 ~0.1)Jo/ktt.
The true transition to infinite susceptibility for N ee is
probably close to this value as suggested by the specific-
heat data discussed below.

The specific heat was obtained by differentiation of the
energy (E) with respect to the temperature. Another
method, in which the specific heat was obtained from the
energy fluctuations (E ) —(E), gave the same results, but
with slightly larger error. The plots of the specific heat
for the three different values of N are shown in Fig. 2.
The peak of the specific heat exhibits an interesting be-
havior as a function of ¹ The temperature T~ (N) of the
maximum decreases with N and tends to level off to a con-
stant value for N ) 100. It should be pointed out that a

1 fora &1,
(8.)- I/[1+0.5a(8 —p) ] for a~ 1. (6)

The "bell-shaped" nature of the Lorentzian distribution in
Eq. (6) makes it an excellent comparison function for Eq.
(3) when a 1. It gives a rejection ratio (ratio of number
of rejected points to the total) of about 10-42% for
a 1-. Reference 18 also gives a very fast algorithm
for calculating random deviates of the Lorentzian distri-
bution. The comparison function for a & 1 gives a rejec-
tion ratio of 0% to 53% for a 0 to 1.

Monte Carlo runs were made for N 10, 100, and 1000
rotators. The initial configuration was set to 8„0for all
n The syste. m was then heated from k&T/J0-0. 1 to 1.5
in steps of 0.1. Each point was made with 3000 passes;

0.5
BT/Jo

I.Q l.5

FIG. 1. The reduced susceptibility X &M &/N vs tempera-
ture for diferent lattice sizes. &, 0, and & denote the suscepti-
bility for lV 10, 100, and 1000, respectively. The solid lines are
a guide to the eye.
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l.2 sistent with this trend.
It should be noted that the Gaussian approximation of

Ref. 11, yields a transition temperature To rr Jo/kz
which is an order of magnitude larger than the present
Monte Carlo value. This leads to interesting implications
for the transition to ohmic conduction in tunnel junctions.
Comparing the partition function for the model (1) with
the path integral for the junction partition function, the
transition temperature T, is found to be related to the
critical value of nominal junction conductance R„as fol-
lows:

I I I I I I I I I I I I I I

ft Jo
2' R„kaT, (8)

0,5

k8 T/Jo
I.Q I.5

FIG. 2. The temperature and size dependence of specific
heat. &, 0, and & denote the specific heat for N 10, 100, and

1000, respectively. The solid lines are a guide to the eye.

decrease of T~(N) with N is also exhibited in the data of
Ref. 4 for the I/n2 Ising-spin chain, although less pro-
nounced. Similar to the latter work, the maximum of the
specific heat C, '"(N) also increases with N but, as seen in

Fig. 2, a saturation of the specific-heat peak takes place
for N&100. Once saturation is reached C„'"(N) be-
comes independent of N. It should be noted that the
simulations of the Kosterlitz-Thouless model exhibit such
an independence for all values of N considered. The N
dependence of the specific-heat data obtained in the
present work and also in the I/n Ising-spin model is

presumably due to the long-range interactions.
It should also be noted that even for the size N 1000

the specific heat is rounded. This is similar to the non-

divergent specific heat of the Kosterlitz-Thouless transi-
tion. The rounding of the specific heat is not inconsistent
with the divergence of the susceptibility since the energy,
involving local correlations, is given by integration of fluc-
tuations over all length scales which tends to wash out the
diverging contribution at the infinite scale.

The transition temperature T~(N) for N 1000 is
(0.9 ~ 0.1)Jo/ka and is presumably close to the transition
temperature in the N ~ chain. In the Monte Carlo
simulation of the Kosterlitz-Thouless transition, ' the
specific-heat peak is about 15% above the susceptibility
transition. In view of this, the present estimate of suscep-
tibility transition at T, —(0.8+ O. l)Jo/kp seems con-

For T, To x~Jo/ka, as given by Ref. 11, the critical
resistance is, according to Eq. (8), equal to R~ zh/2e .
This is close to the estimate by Imry and Strongin pre-
dicting a metallic behavior in a single tunnel junction if its
resistance falls below ft/e =4.1 kQ. On the other hand,
from the present Monte Carlo work we deduce T, =Jo/kn
which yields for the critical resistance a considerably
lower value of h/2' =0.65 kQ. The latter value is not
inconsistent with some data on the normal-sheet film
resistance at which the normal-state activation energy
vanishes. In contrast with the onset of metallic behavior
in normal junctions, the onset of phase coherence in a su-
perconducting junction seems to take place at the univer-
sal resistance R~ 5/e, the latter value being relatively
firmly established both theoretically and experimental-
ly. 2s Hence the present work suggests that a supercon-
ducting coherence may take place in junctions and their
arrays which would, in the absence of local superconduc-
tivity, be in an insulating state.

While the present work was in progress we were made
aware of unpublished work by Romano describing a
Monte Carlo simulation of the 1/n chain of planar rota-
tors. The latter work confines itself to temperatures above
the transition temperature which is found to be 1.15Jo/kn.
The saturation of the specific-heat data at N & 1000 ob-
served by Romano is also in agreement with the present
work.
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able discussions, S. Romano for sending us his results be-
fore publication, and D. Scharffenberg for computational
assistance. The computations were done on a VAX 8700,
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Computing Center at the University of California, River-
side.
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