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A scaling framework is developed for the emergence of the universal finite-size correction
(uInL)/L?, recently found by Cardy and Peschel in the free-energy density of the two-
dimensional (2D) conformally invariant models at 7T.. Our approach applies in the critical region
T=T,, and accounts for the universality of u, but not its value. We predict a similar universal
term, (uInL)/L3, in 3D. We also find that the “corner” free energy in the bulk (L =o0) has the

leading singular behavior (—vuln|t|).

Effects of system size L and boundaries on critical be-
havior have been subject to active investigations in recent
years. The finite-size scaling theory,! ~® introduced by
Fisher,! finds extensive applications in the analysis of ex-
perimental, Monte Carlo, and transfer-matrix data, 273 as
well as in recent theoretical developments related to con-
formal invariance.® For systems with periodic boundary
conditions, the finite-size scaling is now well understood
both in the phenomenological scaling theory!® and the
field-theoretical (FT) e-expansion formulation.”® For
other boundary conditions, the progress has been more
limited. In particular, for an important case of free
boundary conditions,® ~'! corresponding to the Dirichlet
boundary conditions in the continuum FT description,®
the s-expansion approach'® needs further development
especially for T<T,.. The scaling formulations!>!%!!
and general renormalization-group (RG) considerations'?
have been proposed and tested.! ~*

However, some unexplored questions remain unan-
swered for systems with free boundaries, especially in con-
nection with the precise form and definition>'® of the
“nonsingular background” contribution fps corresponding
to the additive FT counterterms. Thus, for the free-
energy density f measured in units of kg T, we expect

f(t,L)"fs(t,L)+fns(t,L), (1)

for small t+=(T—T.)/T;. Here the “singular” (as
L — o) part f; develops the thermodynamic singularities
in the L — oo limit.

Recently, Cardy and Peschel!® discovered that the
critical-point free energy f(0,L) of the two-dimensional
(2D) conformally invariant models with free boundaries
that are curved or have corners, contains the term
(uInL)/L?, with a universal coefficient u. Note that in
the finite-size systems, the universal amplitudes generally
depend on the sample shape and boundary conditions ™'
but not on the microscopic lattice structure and intérac-
tion details within a given RG universality class. In this
work, we propose a scaling mechanism which accounts for
the universality of . We will mostly use the 2D notation.
However, a discussion of the possible universal term
(uInL)/L* in 3D can be formulated along similar lines.

We consider systems with critical points with no loga-
rithmic bulk singularities, i.e., a noninteger,15 and below
their upper critical dimension which is, e.g., D =4 for the
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ferromagnetic Ising spin model, etc.!® Then the singular
part of the free energy can be described by the hy-
peruniversal scaling form?®

[, L) =L 2Yle(L/M) )+ - - - | )

where A is the only nonuniversal constant entering (it can
be assumed positive without loss of generality). This
length scale (A) is comparable to the microscopic lattice
spacing (inverse momentum cutoff). Corrections to scal-
ing in (2) are proportional to higher negative powers of
L>'" As long as the dimensionality D can be regarded as
a continuous variable, e.g., in the framework of the ¢ ex-
pansion, '? it is natural to assume that for general D, the
nonsingular part of the free energy can be expanded in the
inverse powers of L.>>!%12 For D near 2, we consider
terms to order L ~2,

Sas(,L) =wo(t) +y (1) /L + (1) /L*+0(L 72). @3)

Here, the successive terms can be associated with the bulk
(interior), surfaces, corners and/or surface-curvature con-
tributions.®!® Similar decomposition of the full free ener-
gy f(t,L) away from T, is well established' (see below).
The functions Y (7), with

=1LV, @)

and yo(1),y, (1), y,(¢) are regular at the origin and can be
expanded in the Taylor series in 7 or ¢, respectively. All
these functions depend implicitly on D.

When the dimensionality passes through an integer
value, D =2 here, the singular (~L ~?) and nonsingular
(~L 7?) terms in the free energy may have divergent am-
plitudes yielding additional logarithmic factors. A famil-
iar example of this effect is the emergence of the bulk log-
arithmic specific-heat singularity!>'® as a— 0. Such a
mechanism arises naturally in the RG framework for the
bulk'®!? and finite-size'>%° properties. Thus, we assume
the D dependence

Y(r;D)-—Eli—z-+y(r)+0(D—2), (5)
2-D
v(D) = — + 5 +0(D -2). 6)

The choice of the length scale factor A in the singular term

in (6), is arbitrary. Indeed, if we use A instead, the
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difference is finite in the D— 2 limit [it is «In(A/A)
+0(D —2)], and can be absorbed in the definition of
w,(2). [One can also replace A in Eq. (6) by 1. This, how-
ever, obscures the units of the quantities involved.] The
singular terms must have constant coefficients, of opposite
signs, as shown in (5) and (6), because Y and y, depend
on different variables. The key observation, however, is
that since Y(r;D) is universal, both u and y(z) in (5)
must be universal. Assuming that wo and y, in (3) have
finite limits as D— 2, we get*!

S, L) =ywo(t)+y,(t)/L+§,()/L?
+ye @MYL+ uln@W/A)/L2+ -, (T)

Note that the choice of the identical factors u in the
singular terms in (5) and (6) ensures that the free energy
(7) is regular as D— 2. Similar expression for the 3D
case is

f3p(t,L) =yo () +y (1) /L+y (1) /L2 + 53 (1)/L 3
+yle (/ML 3+uln(@WA)/L3+ -+, (8)

where the notation is self-explanatory. Obviously, the
scaling considerations alone cannot predict the values of
the universal and nonuniversal quantities in (7) and (8).
For example, for the periodic boundary conditions, we
have yx>0=0 and ¥ =0. For further results in 2D, in-
cluding the values of the universal critical point coef-
ficients Y(0) and u in some geometries, consult literature
on conformal invariance. %!3-2223

Consider now the behavior away from critically.! To
simplify the notation, we assume D=2 and >0 (.e.,
T > T.). The bulk, surface, corner/curvature decomposi-
tion of the free energy (and other thermodynamic func-
tions, which can be accommodated in the present formula-
tion, e.g., by adding a magnetic field in a standard
manner°) applies, in the form

f@,L) =fo@)+f£1()/L+f2(0)/L2+ - - -, 9)

where one may conjecture! exponentially small correc-
tions for the case of the straight line boundaries with
sharp corners. For curved boundaries, L ~3 etc., terms
cannot be excluded. The expansion (9) is defined for
L— oo at fixed t > 0. However, one can consider the ¢
dependence of the functions f (¢) as t— 07, and the way
it matches"'® with the asymptotic form of (7) for
L/A>t ™Y, ie., for > 1.

There is no reason to expect a contribution ~InL/L?
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away from criticality.?* Following the standard line of ar-
gument, ' the large-r behavior of the scaling function

y(z>0) in (7) must, therefore, take the form
yi(r) =yt +y 1tV —vulnt+yo+ - - -, (10)

where all the coefficients are universal. A similar result in
3D reads

yip(r>> 1) =373 4y +y 12" —vulnr+yo+ - - - .
an

By using relations (7) and (10), we can identify the lead-
ing t— O singular behavior of the 2D free-energy con-
tributions in (9),

fos(8) =yt /A2, (12)
Sis@) =y t*/A, (13)
f2s(t) = —vulnt (14)

Extension to 3D is straightforward. Relation f;
~1"®~ 1D has been considered, e.g., in Ref. 1. Note that A
is the only nonuniversal parameter entering; it can be con-
veniently normalized via the coefficient of the ¢2V=¢2~¢
bulk-free energy singularity (12), for t— 0%. While the
universal coefficients y; in (10) and (11) will generally
change for ¢ <0, the leading “corner” free-energy singu-
larity will remain —vuln|¢|. Note that for systems with
sharp corners (no curvature), the universal coefficient « in
(7), (8), and (14) can be represented as a sum of individu-
al corner contributions. In 2D, these are known exactly. !

In summary, we have developed a scaling description of
the finite-size effects for systems with free boundaries,?’
with corners (and/or curvature). The “corner” terms in
the free energy are particularly interesting, involving loga-
rithmic factors and a universal constant u.
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