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Crack arrest by residual bonding in resistor and spring networks
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A propagating crack in a resistor (spring) network may stop because of residual resistance (re-
sidual or ligamentary bonding) behind the crack tip. In breakdown networks containing random

flaws, this leads to failure by microcracking rather than by the growth of a dominant crack. Nu-

merical simulations of two-dimensional random resistor networks indicate that the transition be-
tween these two regimes occurs near R-35 for p 0.75, where R is the ratio of the residual

resistance to the original resistance.
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where c is the crack length. Similarly, in electrical net-
works, the current enhancement at the tip of an isolated
void grows as

I 'p C /' . (lb)
However, if there is residual bonding (residual resistance
after fuse failure) behind the crack tip the stress enhance-

Once crack propagation has begun in brittle materials,
it often proceeds to the complete fracture of the material.
This is an undesirable feature, as although they are often
very strong, this type of material is susceptible to sudden
and rapid fracture —they are not very durable. Fiber
reinforcement, transformation toughening, and mixtures
of tough and strong materials are all ways of reducing
brittleness. '

Random flaws play an important role in electrical and
mechanical strength, and it has been difficult traditionally
to analyze theoretically the strength of materials with ran-
domness. This situation has been recently improved by
the introduction of simple network models, ' and
methods which are extensions of those used to study trans-
port and elastic properties in random media. This class of
model also provides a unified framework for understand-
ing both electrical and mechanical breakdown, a novel
and fruitful development. In this paper, we use these new
ideas to study the onset and suppression of brittle fracture
in materials with randomness. In particular, using ran-
dom spring and resistor networks' we introduce a simple
mechanism that leads to the arrest of even a single propa-
gating crack in both electrical and mechanical networks.
In the presence of random flaws, we show that in some
cases, materials which exhibit this type of crack arrest lo-
cally are toughened by nonlocal microcracking in which
well-separated regions scattered throughout the sample
fail before macroscopic fracture occurs. We introduce an
"order parameter" that distinguishes between the brittle
and toughened regimes.

Fracture of solids is often analyzed in terms of the
stress enhancement at the tip of a growing crack. If
there is no bonding behind the crack tip or any other
toughening mechanism operating in the material, this
stress grows as

ment is reduced, and in some cases crack arrest may
occur. Although this has been realized before in the con-
text of the failure of ceramics (where it is called ligamen-
tary bonding"' ), it is difficult to include the effect of dis-
order and nonlocal effects into a continuum analysis. We
have thus introduced numerically tractible models of re-
sidual bonding in spring and resistor networks. They are
defined as follows. We take random networks with a per-
colation distribution of random voids and with p )p, so
that the networks are geometrically connected. In the
resistor case, present bonds are circuit elements that
change from resistance 1 to resistance R when a current of
1 A passes through them. If R ~, the fuse network3
is recovered, and the network typically fails in a brittle
manner. In the mechanical problem, present bonds are
springs that change from an elastic constant of 1 to I/R
when they are extended beyond a threshold strain. The
bonds of lower elastic constant (or higher resistance) are
the ligamentary bonds that provide the residual bonding.
In physical situations, there is a second strain (current)
level at which the residual bonds fail, and here we study
the case where a great deal of microcracking has occurred
before this second threshold is reached.

To demonstrate the effect of residual bonding on the
propagation of an isolated crack in two-dimensional net-
work models, consider Fig. 1(a). In this figure, there is an
intrinsic flaw (crack) of size 3 a.u. in the center of a lat-
tice whose present bonds are central-force springs with
unit spring constant. An external tensile stress is applied
in the y direction. We solve the force equilibrium equa-
tions for the network, and calculate the stress in the bond
at the crack tip. We then fail the bond at the crack tip,
resolve the network equations and find the stress in the
bond at the tip of the extended crack. In the zero-
ligamentary-bonding case, a failed bond has zero elastic
constant, and carried no load. In this case, the stress at
the crack tip increases with the law given in Eq. (1). In
the residual bonding case, the failed bond does not
separate completely, but rather has a reduced elastic con-
stant in comparison to that in the bulk. The ratio of the
spring constant for the bulk as compared to that for the li-
gamentary bonding is held constant and is denoted by R.
As R goes to infinity, Eq. (1) is recovered. (In polymer
composites this model may be directly applicable. There,
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(a)

stress required io initiate the crack propagation .At a
constant external stress, this crack then exhibits crack
arrest, at the length indicated in the figure. (The increase
in stress enhancement for the largest crack sizes shown in
the figure is due to the finite size of the network used in
the simulation. In an infinite system Ot p is expected to de-
crease monotonically from the crack arrest point on-
wards. ) It is easy to understand qualitatively why the
nonmonotonic behavior of Fig. 1(b) occurs for finite R, by
considering the behavior for R ~ given in Eq. (1), and
the R 1 limit where the stress decays for large c as
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FIG. l. (a) A square network with three bonds missing in the
center of the lattice is shown before relaxation. A fixed external
stress is applied in the y direction, and the two edges at which
the stress is applied are held rigid. (b) The stress at the crack
tip crt,~ as a function of the size of the crack, calculated on a
40x40 network and with R 20.0, for initial crack sizes: 6
bonds (&); and 8 bonds (&). When the external stress is just
large enough to initiate crack growth, crack arrest occurs at
lengths a6 and as, respectively.

the crosslinks between polymers are broken at lower loads,
after which the polymer chains across a crack uncoil with
a low elastic constant until they finally form extended
chains or fibrils across the crack. This phenomenon,
called crazing, ' occurs at much lower loads than the
failure of the macroscopic sample. )

In Fig. 1(b), the stress at the crack tip of a network
with residual bonding R is plotted as a function of crack
size. The important feature of this figure is that after an
initial rise in stress enhancement with increasing crack
length, the enhancement decreases and goes belo~ the

where D is the space dimension. (This may be deduced
from the long-distance behavior of the stress near an ellip-
tical void in an isotropic elastic background. '4)

For intermediate R, the tip enhancement thus crosses
over from a monotonically decreasing behavior for R =1
[see Eq. (2)] to a monotonically increasing behavior for
R ~ [see Eq. (1)], and so the intermediate behavior
found in Fig. 1(b) is not surprising. In electrical net-
works, a precisely analogous crossover occurs for the
current at the tip of a region of electrically failed bonds.
There R measures the ratio of the resistance of a bond
after failure to that before failure. In dielectric problems,
an analogous effect occurs in two dimensions where the
metal inclusion that induces failure is in the direction of
the applied field, and the residual resistance is less than
one. (The R 0 limit recovers the dielectric breakdown
limit usually studied. ) In three-dimensional dielectrical
problems, the behavior is expected to be somewhat
different than for the fuse or mechanical problems, as
there, the critical defects are finger-shaped rather than
penny-shaped. i This makes it more difficult to induce
crack arrest in three-dimensional dielectric networks than
for three-dimensional fuse or mechanical networks.

Once crack arrest occurs locally, it is possible that
many local regions may exhibit some degree of cracking
before the entire network fails. This is in contrast to
the R ~ limit of the electrical problem where most of
the failed bonds lie on the eventual-failure path, or brittle
fracture where a single dominant crack often propagates
to induce macroscopic failure. As R is reduced, we expect
that more local failure occurs, and that eventually, the
system fails by microcracking rather than by single-crack
propagation. In this case, we say that the material is
tough as the failure of many bonds implies that a large
amount of energy must be added to the system to produce
the global fracture. To demonstrate the crossover from
brittle to tough behavior, we study the fracture of random
electrical networks in two dimensions. For a fixed initial
configuration of the random resistor network (with frac-
tion p of present bonds) and different ratios R, we solve
Kirchhoff's equations and find the hottest bond and the
external voltage needed to switch it. The resistance of the
hottest bond is changed from 1 to R, and the solutions to
Kirchhoff's equation is found using the new network
configuration. This procedure is iterated. until the net-
work has failed (i.e., a connected path of resisters of size
greater than or equal to R exists across the network). A
clear indication of the difference in the failure mechanism
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Q Q FIG. 3. A plot of Ns/L as a function of R for p 0.75 and
L 10 (0); L 20 (&); L 30 (+); and L 40 (0). Each point
represents an average over 20 realization s of the initial
configuration.
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FIG. 2. The failure configuration for a 31&30 square lattice
with the same initial configurations (with p 0.75), but
different values of R used in the crack propagation. Dots are
bonds which fail, and which lie on the final fracture path.
Squares are bonds which fail, but do not lie on the final failure
path (a) R 2. .0; (b) R 1000.0.

that occurs in the large as opposed to small R regimes is
given in Fig. 2, where we show the final (failure)
configurations for R 2 [Fig. 2(a)] and R 1000 [Fig.
2(b)] for the same initial configuration, on a 31 x 30 array
at p-0.75. For R 1000 [Fig. 2(b)], we needed to
switch only eleven bonds to induce failure and all of the
broken bonds contribute to the final breakdown path. But
for R =2 [Fig. 2(a)], we have to switch 83 bonds that are
throughout the network to induce failure. In the large R

regime the system fails as soon as a few critical bonds are
broken. In the small R regime, however, the failure of a
bond rarely leads to the failure of neighboring bonds, and
so a deterministic crack propagation does not occur.

To distinguish quantitatively the different regimes, we
introduce the variable Na which is equal to the number of
bonds broken in the global failure process. In the brittle
fracture (dominant crack) case, Ntt -L, the linear dimen-
sion of the network. In the case where a great deal of re-
sidual resistivity (ligamentary bonding) is present howev-

er, Ntt-L' (where x )D- 1). To illustrate the crossover
between these two limiting behaviors, we have calculated
Ntt for a series of square lattices and for various values of
R. The results are shown in Fig. 3 for p 0.75. From this
figure, we deduce that for R ) 35 the networks fail by
brittle fracture, while for R ( 35 they are toughened by a
residual bonding. The numerical simulations show that
the transition is sharper with increasing system size, and
that x-2 for R sufficiently small. At present, it is beyond
our numerical accuracy to determine whether the transi-
tion becomes a single singular point in the thermodynamic
limit.

In conclusion, we have shown that residual bonding
leads to crack arrest in both electrical and mechanical
networks, and that in random electrical networks this
leads to toughening if the residual bonding is sufficiently
strong. It is important to note that this toughening mech-
anism is nonlocal in that all parts of the network partici-
pate in increasing the work of fracture. In this sense, it is
essential to discuss the process using statistical methods,
rather than trying to treat the effect by an expanded zone
near the crack tip. This nonlocality makes analytical and
numerical analysis diScult, and makes the use of novel

ideas from statistical mechanics and statistics necessary.
Toughening (or ductility) induced by suitable distribu-
tions of bond fracture strengths, ' is also nonlocal and,
hence, is similarly difBcult to analyze in detail.
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