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By giving the direct correlation function a form consistent with features of the one-component
plasma (OCP), a simple analytic expression for the static structure factor S(k) of the OCP is de-
rived. This expression yields results, for dense plasma, that compare well with the numerical solu-
tions of the modified hypernetted-chain equation as well as with computer-simulation data.

In liquid alkali metals, where the electron-ion interac-
tion is known to be extremely weak, the Coulomb interac-
tion between the positive ions is a dominant feature in
determining the static structure. Therefore, to describe
the structure factor of such charged particles, the model
of the one-component plasma (OCP) has received special
attention.! The OCP reference system is an idealized sys-
tem of pointlike charges moving in a neutralizing uniform
background of opposite charges. An equilibrium state of
the OCP system with the number density p and the tem-
perature T may be characterized by a dimensionless plas-
ma parameter I'=(Ze)?/(akpT), where Ze is the charge
of an ion and a =[3/(47p)1'7 represents the ion-sphere
radius.

Determination of the structure factor and the thermo-
dynamics for the OCP system has been lar§ely accom-
plished by Monte Carlo (MC) calculations.>> Neverthe-
less, it is of interest that there is an approximate theory
which can be carried out analytically for such a system.
Analytic expressions for the excess internal energy as well
as for specific heat and for isothermal compressibility
have already been found by fitting MC numerical data.>*
It has also been possible to describe the OCP structure
factor on the basis of the numerical solutions of the
hypernetted-chain (HNC) and modified HNC (MHNC)
integral equations.’> ™’

In the spirit of studying model systems, we have derived
a simple analytic expression for the OCP static structure
factor, consistent with the form of the direct correlation
function ¢ (r) of the OCP system. For this purpose, we as-
sume that ¢(r) may be adequately described by

- (C—Dx?), 0<x<a,
c(x)=4—-T(4—Bx), ay<x<ay, 1)
—I/x, ay<x,

for a suitable choice of the constants. The direct correla-
tion function goes to zero as x (=r/a) approaches to
infinity, and it behaves reasonably well for small x,? but
the salient feature of this formulation lies in the fact that
c(x) is written as a linear relation, at intermediate range.
This characteristic has already been observed in the MC
data.’

In order to reduce the number of constants we have ad-
justed them until the logarithmic derivatives of c(x)
match at a; and a;. Thus, we can express four of them by

38

the following relations

A=2/a;, B=1/a},
2)
C-(4a2—a1)/2a22, D I‘1/2(11(12 .

By using the Fourier transform of Eq. (1), we obtain
the static structure factor under the simple analytical
form

r

S(k) = 1—_—_(k4a4a§)

[cos(kaa;) +2cos(kaas)

-1
—3sin(kaa;)/(kaa;)] ,

3)

and we can observe that S (k) satisfies the perfect screen-
ing condition, which is a typical OCP feature, i.e.,

S(k)=(ka)?/(3T) ask— 0. “)

Relation (3) was fitted to the MHNC data of the OCP
structure factor, tabulated by Rogers, Young, Dewitt, and
Ross’ because MHNC is the most accurate description of
the OCP static structure properties presently available,
when compared with MC results.
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FIG. 1. Effect of the parameter a; on the structure factor.
la2=1.35 (@); 1.45 (—); 1.55 (+) and a;=0.7828, for
r=120.]
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FIG. 2. Effect of the parameter a; on the structure factor.
[a1 =0.6528 (@); 0.7828 (—); 0.8128 (+) and a,;=1.45, for
r=120.]

Results for the behavior of the structure factor relative
to variations of a; and a, are presented in Figs. 1, 2, and
3. Examining Figs. 1 and 2 shows that the parameter a, is
mainly related to the height of the first peak of S(k),
whereas a; is related to the location of the successive
peaks. It follows from the great stability of the main peak
position of S(k) that the best value of a5 is 1.45. As far
as the parameter a, is concerned, it may be seen that the
magnitude of the main peak increases as a; increases. In
order to obtain a;, expression (3) was adjusted to the first
peak structure factor tabulated by Rogers etal.,” in the
range of " between 100 and 160 where the liquid metal
comes into existence. The parameter was found to be

a;=—0.1455%x10 "r+0.9574. (5)

Figure 2 shows the role played by the purely parabolic
portion of the direct correlation function since the hyper-
bolic branch as well as the linear part are not modified,
when a; is a constant. Thus, it is the variation of ¢(r) at
very small distances, correlative to the variation of a,
which induces a change of the first peak height of S(k).
We can also see the effect of the short range of ¢(r) on the
structure factor, in Fig. 3, where both @; and a; are
brought to vary, while ¢(0) (= —TC) is kept constant to
preserve Eq. (2). It clearly appears that, when a; and a;
are drawn closer together, the first peak of S(k) increases
and moves towards the large g. If a; is equal to a;, we ob-
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FIG. 3. Influence of the linear part of c(r) on the structure
factor. [a) and a; are, respectively, 0.6528 and 1.50 (@); 0.7828
and 1.45 (—); 0.8128 and 1.40 (+), for ' =120. O represents
the results of Ref. 7.]

serve a divergence of the main peak, for the range under
consideration, which is not the signature of a phase transi-
tion but which is only related to the unphysical description
of the short-range correlation.

On the other hand, a good value of ¢(0) can be ob-
tained from the exact relation '°

U 9
c(0)= 2'BN -8 [—#]T —%fd3rg(r)[c(r)+ﬂu(r)] ,

(6)

where we recognize the standard relations for internal en-
ergy, compressibility, pair correlation function, effective
pair potential and f=1/(kzT). From this relation, one
finds that ¢(0) = — 122, with HNC equation, for I =100
while our model gives c(0) = —118.5.

The model predictions provide a knowledge of the crud-
est features of the structure which could be useful in the
refined theories. Besides, as expected, the model repro-
duces the first peak of the Rogers et al.” structure factor
with an optimum agreement and, in the low-q region, the
corresponding values of S (k) are very close to each other.
Even if beyond the main peak of S(k) the difference still
remains significant, our expression for S(k) is convenient
to perform calculations, on liquid metals, which require
the integration of S (k).
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