VOLUME 38, NUMBER 1

1 JULY 1988

New theory of strong-coupling superconductors and high-temperature superconductivity of metallic oxides

A. S. Alexandrov

Moscow Physical Engineering Institute, Moscow, U.S.S.R. (Received 29 October 1987; revised manuscript received 22 February 1988)

An explanation of some of the anomalous properties of La-Ba-Cu-O, La-Sr-Cu-O, and Y-Ba-Cu-O superconductors on the basis of the small bipolaron theory of Alexandrov and co-workers is proposed.

Tunnel spectroscopy, heat measurements, and bandstructure calculations favor a strong electron-phonon coupling in the new metallic oxide superconductors. However, the traditional theory of electron-phonon interaction in metals hardly explains high values of $T_c \sim 100$ K. On the other hand, it is well known¹ that in *d*- and *f*-

On the other hand, it is well known¹ that in *d*- and *f*bands metallic oxides with sufficiently narrow electronic bands $-D \lesssim 1$ eV (*D* is a half-bandwidth) the polaron narrowing of the band and corresponding mass enhancement occur:

$$W = D \exp(-g^2), \ m^*/m = \exp(g^2)$$
 (1)

The traditional theory of metals and superconductors does not take into account the polaron narrowing of the band Eq. (1). But the many-polaron theory shows that the taking into account of the polaron effects qualitatively changes the nature of the superconducting state: In the intermediate coupling region $\lambda \approx 1$ the ordinary Bardeen-Cooper-Schrieffer (BCS) superconductivity is replaced by polaron² and bipolaron superconductivity in the strong coupling limit $\lambda \gg 1$.³ Here $g^2 = \lambda D/2z\omega$, ω is a characteristic phonon frequency, and z is the nearest neighbor's number.

In the polaron superconductors the Cooper pairs are formed by small polarons. The critical temperature of a polaronic superconductor is much greater than the BCS value as a consequence of the polaron enhancement Eq. (1) of the electron density of states:²

$$T_{c} = 1.14W(1 - \varepsilon_{F}^{2}/W^{2})^{1/2} \exp\left[-\frac{2W}{v_{0} + Zv_{1}\varepsilon_{F}^{2}/W^{2}}\right], \quad (2)$$

where v_0 , v_1 are the on-site and the intersite effective polaron-polaron interaction correspondingly, ε_F is the Fermi level in relation to the middle of the band.

In the case of bipolaron superconductors $(\lambda \gg 1)$ the localized real-space pairs are formed at ambient or high temperatures which are influenced by superfluid transitions as in liquid helium at the critical temperature:³

$$T_c \simeq 3.3(n/2)^{2/3}/m^{**}$$
, (3)

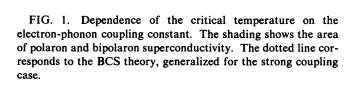
where *n* is the electron concentration and m^{**} is a bipolaron effective mass, $m^{**} \gtrsim m^* \Delta/W$, Δ is a bipolaron binding energy.³

As a result, instead of a monotonous rise of T_c with the increase of the constant of the electron-phonon coupling, predicted by the BCS theory and generalized for the case

of strong coupling, the many-polaron theory predicts a rather narrow maximum of the dependence of $T_c(\lambda)$ (Fig. 1).

Notably, the T_c maximum is considerably higher than that predicted by the BCS theory (≤ 30 K) resulting from the polaron effect, which causes an enormously high electron density of states.

Assuming $m^{**} = 100m_e$, $\frac{1}{2}n = 10^{22}$ cm⁻³, and using Eq. (3), we have $T_c \simeq 130$ K.


As we previously mentioned⁴ (see also Refs. 1 and 5), the new high-temperature superconductors La-Ba-Cu-O, La-Sr-Cu-O, Y-Ba-Cu-O, and others could be bipolaronic by nature.

Here we propose a qualitative explanation of some of their properties based on the assumption of the strong electron-phonon interaction and on our theory of bipolarons.^{2,3}

The high resistivity in the normal state $\rho \sim 100 \ \mu \Omega \text{ cm}$ with the carriers density $n \simeq 10^{22} \text{ cm}^{-3}$ indicates a low

YBCO

LSCO

<u>38</u> 925

Te(K)

60

30

 $\lambda^{1/2}$ (BCS)

Ce Cu_nSi

926

mobility which could be a consequence of polaron mass enhancement [Eq. (1)].

Soft phonon modes make the main contribution to the electron-phonon constant $g^{2,13}$ This fact explains the linear dependence of $\rho(T)$.

The high value of the thermoelectric power at a sufficiently low temperature $[a=20 \ \mu V/K, T=40 \ K \ La-Ba-Cu-O \ (Ref. 6)]$ indicates a low value of the characteristic kinetic energy of the carriers and gives

$$m^*/m_e \gtrsim 20 \quad . \tag{4}$$

Low-temperature measurements of the heat capacity ' gives an enormously high value of γ , which exceeds the values for A15 compounds, and sufficiently low Debye temperature Θ_D :

La_{1.8}Sr_{0.2}CuO₄:
$$\gamma = 39 \text{ mJ/mol } \text{K}^2$$
, $\Theta_D = 186 \text{ K}$,
(5)
La_{1.85}Ba_{0.15}CuO₄: $\gamma = 71 \text{ mJ/mol } \text{K}^2$, $\Theta_D = 188 \text{ K}$.

It must be mentioned that the first estimations of $\gamma \approx 6$ mJ/mol K² (Ref. 8) based on the temperature dependence of the upper critical field and on the value of residual resistivity seem to be insufficient because of the nonlinear $H_{c2}(T)$ dependence near T_c and the great error in the determination of the value of ρ .

At present we have the muon-spin-relaxation measurements of magnetic-field penetration depth on $La_{1.85}$ $Sr_{0.15}CuO_4$ (Ref. 9):

$$\lambda_H = 2500 \text{ Å} . \tag{6}$$

Taking into account that $\gamma \sim m^* n^{1/3}$ and $\lambda_H \sim (m^*)^{1/2} n^{-1/2}$, one obtains [Eqs. (5) and (6)]

$$m^*/m_e \gtrsim 29, \ n \gtrsim 1.2 \times 10^{22} \,\mathrm{cm}^{-3}$$
 (7)

These values agree well with the assumption of the polaron mass enhancement Eq. (1) and with the Hall effect measurements.

As was shown in Ref. 10, the anomalous pressure dependence $T_c(p)$ of the lanthanium and yttrium ceramics rules out the BCS as well as Anderson's resonating valence bond (RVB)¹¹ models, but can be explained in the framework of bipolaronic superconductivity.³

We have mentioned⁴ that the temperature dependences of the magnetic susceptibility suggest that lanthanium ceramics are bipolaronic superconductors with $\lambda \gtrsim 2$ while yttrium ones are polaronic with $\lambda \approx 1$.

Using Eqs. (2) and (3) one can obtain a great value of dT_c/dp easily for bilpolaronic superconductors¹⁰ and a much lower value for polaronic ones [Eq. (3)].

Since the soft modes make the main contribution to g^2 (Ref. 3), the isotope effect could be negligibly small in the polaronic case [Eq. (2)] and greater but rather small in the bipolaronic one [Eq. (3)].

Near the maximum on the curve of the dependence of $T_c(\lambda)$ (Fig. 1) the isotope effect tends to zero.

As was mentioned by Mott¹ the observation of the Anderson localization effects, which is unlikely unless the effective mass of the carriers is enhanced, a layer structure, as well as mixed valence states of Cu favor the bipolaron picture of the new high-temperature superconductors.

The main purpose of this paper is to show that the ordinary electron-phonon interaction can produce high T_c as a result of polaron narrowing of the band, which is not considered by the traditional theory of strong-coupling superconductors, based on Migdal-Eliashberg equations. Even in the range of moderate values of $\lambda = 1$ one is in the socalled antiadiabatic limit

 $\varepsilon_F \sim W \lesssim \omega$, (8)

so the traditional theory is inapplicable.

It is interesting to point out that according to the polaron theory of superconductivity^{2-4,12} the substantial different values of T_c of various *d*- and *f*-band metallic compounds, like A15 (Nb₃Sn, V₃Si), "heavy-fermion" systems (CeCu₂Si₂), and new superconducting lanthanium and yttrium cuprates are explained exclusively by the different values of bandwidth *D* and of electron-phonon coupling λ , resulting in the different values of the polaron (m^*) and bipolaron (m^{**}) effective masses. As an example, in CeCu₂Si₂ the *f*-band is very narrow, so $m^{**} \gtrsim 1000 m_e$. As a result, according to Eq. (3), $T_c < 10$ K (see also Fig. 1).

It seems that La-Sr-Cu-O and Y-Ba-Cu-O have intermediate values of D and λ and are in the vicinity of the maximum of $T_c(\lambda)$ (Fig. 1).

Near the maximum of $T_c(\lambda)$, $T_c \simeq W$, so ε_F is of the same order as T_c . Consequently, all the electrons of the polaronic superconductor participate in the formation of the Bose condensate. As a result, the value of the specific heat jump per one carrier $\Delta C/n$ for $T = T_c$ is of the order of the Bolzmann constant k_B .

According to Ref. 13 in Y-Ba-Cu-O

$$\Delta C \simeq 5 \, \mathrm{J/mol} \, \mathrm{K} \, ,$$

so

$$\Delta C/nk_B \simeq 0.5 . \tag{9}$$

It seems that the result [Eq. (9)] presents a direct proof of the polaronic nature of the new high- T_c superconductors.

In conclusion, we summarize our main results. (a) The polaronic effect leads to the substantial enhancement of T_c . (b) The polaronic enhancement of the mass of carriers explains the extraordinary high values of λ_H , γ , α , ρ , and dT_c/dp . (c) The anomalous value of $\Delta C/nk_B$ in La-Ba-Cu-O, La-Sr-Cu-O, and Y-Ba-Cu-O demonstrates the nonadiabatic character of the motion of carriers $\varepsilon_F \lesssim \omega$.

¹N. Mott, Nature **327**, 185 (1987).

- ²A. S. Alexandrov, J. Phys. Chem. 57, 273 (1983).
- ³A. S. Alexandrov and J. Ranninger, Phys. Rev. B 23, 1796 (1981); A. S. Alexandrov, J. Ranninger, and S. Robaszkie-

wicz, ibid. 33, 4526 (1986).

- ⁴A. S. Alexandrov, Pis'ma Zh. Eksp. Teor. Fiz. 46, 128 (1987) [JETP Lett. (to be published)].
- ⁵P. Prelovêk, T. M. Rice, and F. C. Zhang (unpublished); T. M.

Rice and L. Sneddon, Phys. Rev. Lett. 47, 689 (1981).

- ⁶J. T. Chen, C. J. Ewan, L. E. Wenger, and E. M. Logo, Phys. Rev. B 35, 7124 (1987).
- ⁷M. E. Reeves, T. A. Friedman, and D. M. Ginsberg, Phys. Rev. B 35, 7207 (1987).
- ⁸D. K. Finnemore et al., Phys. Rev. B 35, 5319 (1987).
- ⁹G. Aeppli, R. J. Gave, E. J. Ansaldo, and R. F. Kie, Phys. Rev. B 35, 7129 (1987).
- ¹⁰A. Driessen, R. Griessen, N. Koeman, E. Salamons, R. Bronwer, D. G. de Groot, K. Heeck, and J. Rector, Phys. Rev. B 36, 5206 (1987).
- ¹¹P. W. Anderson, Science 235, 1196 (1987).
- ¹²A. S. Alexandrov, J. Ranninger, and S. Robaszkiewicz, Phys. Rev. Lett. 56, 949 (1986).
- ¹³M. V. Nevitt, G. W. Grabbtree, and T. E. Klippert, Phys. Rev. **B 36**, 2398 (1987).