Resistivity studies on low- T_c A 15 compounds

S. Ramakrishnan and Girish Chandra

Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Bombay 400005, Maharashtra, India

(Received 10 December 1987)

We report the low- and high-temperature resistivity studies of A15 compounds that have a low electron-phonon coupling constant (λ). The results do not agree with the model proposed by Gurvitch recently. We suggest further investigations before one starts using the universal plot of λ vs $\rho(0)$, where $\rho(0)$ is the residual resistivity.

The resistivity $\rho(T)$ of A15 compounds has an unusual temperature dependence.¹⁻³ At high temperatures (T > 200 K) their $\rho(T)$ deviates from linearity in T that is expected of a normal metal. However, the real puzzle is their $\rho(T)$ behavior at low temperatures $(T < 0.1\Theta_D)$, where Θ_D is the Debye temperature of the compound). The $\rho(T)$ of many A15 compounds with "high" superconducting transition temperature $(T_c > 15 \text{ K})$ shows a T^2 dependence at this temperature range $(T_c < T < 0.1\Theta_D)$. Further, by studying⁴ a few low- T_c A15 compounds, it was concluded that the $\rho(T)$ of these compounds shows⁵ a higher power-law dependence of $T(T^3 - T^5)$. Although there are many theories that try to account for this behavior, we have already pointed out⁶ the inadequacy of some of these models.

Recently, Gurvitch⁷ has speculated that there is a universal disorder-induced resistivity behavior of strongly coupled metals (with large electron-phonon coupling constant λ) at low temperatures ($T_c < T < 0.1\Theta_D$). According to Gurvitch,⁷ the power-law behavior of $\rho(T)$ with temperature changes from T^n (n=3-5) to a T^2 as disorder increases provided their λ is sufficiently large ($\lambda > 0.8$). He has also suggested that the physics of this effect is probably due to nonconservation of momentum in the electron-phonon scattering at low temperatures. Further, he adds that such a universal correlation allows independent estimates of λ . Although Gurvitch has carefully studied a large number of A15 compounds, we have already pointed out⁸ an exception to his correlation.

Gurvitch has answered⁹ most of our questions except the fact that the $\rho(T)$ data of Ti₃Sb does not agree with his model. In this Brief Report, we report new resistivity studies on Ti₃X (X=Au, Ir, and Pt) compounds whose resistivity behavior at low temperatures cannot be explained by his correlation. We also report the resistivity data of Cr₃Si from 8 to 300 K. These compounds are made by melting the individual constituents (purity 99.9%) in an arc furnance under a high-purity argon atmosphere. X-ray powder diffraction revealed that each sample is a single-phase A15 structure. Their structural and superconducting properties are given in Table I. The low-temperature resistivity can be written as

$$\rho(T) = \rho_0 + AT^n , \qquad (1)$$

where ρ_0 is the residual resistivity and A and n are constants. The quality of the fit is determined by a parameter called percentage deviation (D) and it is given by the expression

$$D = 100 \left(\sum_{i=1}^{N} \frac{\chi_i^2}{N} \right)^{1/2} , \qquad (2)$$

where χ_i is given by

$$\chi_i = [\rho_i(\text{obs}) - \rho_i(\text{fit})] / \rho_i(\text{obs}) .$$
(3)

We have used a program called MINUITS developed by James¹⁰ to fit Eq. (1) to our resistivity data. Here, ρ_0 , A, and n are treated as variable parameters and their values are determined using an error analysis.¹⁰ A log-log plot is given in Fig. 1 to guide the eye. The fitting analysis for the low-temperature resistivity data $(T_1 < T < T_2)$ is given in Table II.

From this table we find, regardless of their T_c or λ , $\rho(T)$ of all Ti₃X (X = Au, Ir, and Pt) alloys show a T^2 dependence in this temperature range ($T_1 < T < T_2$). One can also see that the maximum value of λ of these compounds is less than 0.8 and should not show any T^2 dependence of $\rho(T)$ according to Gurvitch's correlation. Hence, we find that our experimental results are in contradiction with his idea. According to Gurvitch the T^2 term is traceable to momentum nonconservation in electron-phonon scattering at low temperatures. He found that the value of A in Eq. (1) is 5-10 times larger than the predicted value. He suggested that the high

TABLE I. Structural superconducting properties of some low- $T_c A$ 15 compounds.

Sample	Lattice constant (Å)	<i>Т</i> с (К)	ρ _{300 K} (μ Ω cm)	<u>рзоок</u> р _{8 к}
Ti₃Au	5.095		89.242	6.1
Ti₃Pt	5.029	0.48	91.361	7.2
Ti₃Ir	5.007	4.25	119.142	2.6
Cr ₃ Si	4.554		66.128	54.2
(annealed at 900°C)				

38 9245

FIG. 1. A log-log plot of resistivity vs temperature of low- $T_c A 15$ compounds at low temperatures.

values of λ promote the transition $(T^n \text{ to } T^2)$ at lower values of ρ_0 and also stated that the value of λ was not addressed in the theoretical analysis.

However, in the recent work of Al'tshuler,¹¹ the kinetic properties of conduction electrons are considered at low temperatures where the wavelength of the thermal phonons exceeds the electron mean-free path for elastic collisions with the impurities. Since the impurities influence the electron-phonon interaction, the usual kinetic equation is not valid and also Matthiessen's rule is violated. According to Al'tshuler, the modified kinetic equation yields a T^2 dependence of resistivity when $T > (\Theta_D/\mu\tau)$ where μ is the chemical potential and τ is the impurity lifetime of the electron. Such power-law dependence was obtained

TABLE II. Resistivity analysis of low- $T_c A 15$ compounds.

Sample	ρ(0) (μΩcm)	A	n	<i>T</i> ₁ (K)	T ₂ (K)	D	λ	Θ_d^a (K)
Ti ₃ Au	14.45	$1.74 \times 10^{-3} \mu \Omega \text{ cm/K}^2$	1.95	8	40	0.13		385
Ti ₃ Pt	12.50	$2.40 \times 10^{-3} \mu \Omega \text{ cm/K}^2$	1.95	8	40	0.12	0.39	376
Ti ₃ Ir	49.45	$5.6 \times 10^{-3} \mu\Omega\mathrm{cm/K^2}$	2.00	8	32	0.13	0.65	238
Cr ₃ Si	1.24	$0.6 \times 10^{-5} \mu\Omega\mathrm{cm/K^{3.2}}$	3.21	8	40	0.32		670

^aData taken from Ref. 12.

FIG. 2. Temperature dependence of resistivity of low- T_c A15 compounds.

without any assumption on the actual value of λ . However, one does not know whether this is the only mechanism operating at low temperatures which is responsible for the apparent T^2 behavior of $\rho(T)$. Also it is not very clear from this theory, why the $\rho(T)$ of other low- T_c compounds [including that of Cr₃Si where $\rho(T) \sim T^{3.2}$] shows a different power law at these temperatures. A log-log plot of the low-temperature resistivity with temperature is shown in Fig. 1. The overall resistivity curves for all these samples are shown in Fig. 2. Although $\rho(T)$ of Ti₃Ir shows a deviation from linear temperature dependence at high temperatures, the resistivities of Cr₃Si and Ti₃Au (which are nonsuperconducting down to 10 mK with very low λ) do not show such distinct deviation.

Finally, Gurvitch⁷ has pointed out the importance of spin-fluctuation effects in the estimate of λ in certain

vanadium compounds. Although it is true that these effects are important in vanadium-based A15 compounds, ¹² we believe the contributions from this effect are negligible in low- $T_c A15 \operatorname{Ti}_3 X$ compounds. Previous studies indicate ^{12,13} that the values of the densities of states for $A15 \operatorname{Ti}_3 X$ compounds are low and this combined with the susceptibility studies ¹⁴ show the contribution from spin fluctuation is too small to account for the T^2 dependence of $\rho(T)$ at low temperatures.

In conclusion, we would like to point out that it may be premature to completely believe the plot given by Gurvitch to estimate λ of strongly coupled metals based on the resistivity analysis. One needs further experimental data on various other compounds (non-A15 compounds with large and small λ) to verify this universality at low temperatures.

- ¹M. Gurvitch, A. K. Ghosh, B. L. Gyorffy, H. Lutz, O. F. Kammerer, J. S. Rosner, and M. Strongin, Phys. Rev. B 22, 128 (1980).
- ²R. Caton and R. Viswanathan, Phys. Rev. B 25, 179 (1982).
- ³P. B. Allen, in *Superconductivity in d and f Band Metals*, edited by M. B. Maple (Plenum, New York, 1980), p. 128.
- ⁴M. Gurvitch, A. K. Ghosh, B. L. Gyorffy, H. Lutz, O. F. Kammerer, J. S. Rosner, and M. Strongin, Phys. Rev. Lett. 41, 1616 (1978).
- ⁵M. Gurvitch, Ref. 3, p. 317.
- ⁶S. Ramakrishnan, A. K. Nigam, and Girish Chandra, Phys. Rev. B 34, 6166 (1986).
- ⁷M. Gurvitch, Phys. Rev. Lett. **56**, 647 (1986).

- ⁸S. Ramakrishnan and Girish Chandra, Phys. Rev. Lett. 57, 1961 (1986).
- ⁹M. Gurvitch, Phys. Rev. Lett. 57, 1962 (1986).
- ¹⁰F. James, computer code MINUITS (CERN program library D 506, Geneva, Switzerland, 1971).
- ¹¹B. L. Al'tshuler, Zh. Eksp. Teor. Fiz. **75**, 1330 (1978) [Sov. Phys. JETP **48**, 670 (1978)].
- ¹²J. L. Staudenmann, B. DeFacio, L. R. Testardi, S. A. Werner, R. Flukiger, and J. Muller, Phys. Rev. B 24, 6446 (1981).
- ¹³A. Junod, R. Flukiger, and J. Muller, J. Phys. Chem. Solids 37, 27 (1976); A. Junod (private communication).
- ¹⁴D. I. Bardos, R. M. Waterstrat, T. J. Rowland, and J. B. Darby, Jr., J. Low Temp. Phys. 3, 509 (1970).