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Atomic kinetic energies in bcc 'He
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The kinetic energy of atoms in solid 'He is evaluated using self-consistent phonon methods.
The results show that the high-frequency tails in the anharmonic response functions make most
important contributions to the atomic kinetic energy. The high-frequency tails result from intera-
tomic interactions via the steeply repulsive core of the interatomic potential.

I. INTRODUCTION

Helium atoms interact via a pair potential having a
steeply repulsive core. ' Since atoms in quantum crystals
are not highly localized, two atoms can approach closely
enough to be strongly repelled from each other by the
repulsive core. This strong repulsion introduces high-
energy components into the dynamics and high-energy
tails into the dynamical response functions. ~ In a previous
Letter, 3 we showed that these high-frequency tails, for ex-
ample in the one-phonon response function A(q, k;to),
contribute significantly to the kinetic energy, Ek, of atoms
in solid He.

For example, in a harmonic approximation such as the
self-consistent harmonic (SCH) approximation, the
A(q, &;to) is a b function at the SCH frequency taqz. Thus
the SCH A(q, k:,ta) does not have high-frequency tails.
Similarly, in an empirical Debye model the density of
phonon states is cut off at to taD, where taD is the Debye
frequency. Tails are introduced into A(q, k;to) when cu-
bic and higher-order anharmonic terms are included in
the dynamics. 2 For solid "He we showed these tails
double the Ek beyond that predicted by an empirical De-
bye model using the observed Debye temperature
eD htaD/k and bring Ek close to the observed value.
Thus the large Ek observed in solid He may be regarded
as a direct manifestation of the highly anharmonic nature
of solid helium.

Sokol, Skold, Price, and Kleb and Carlson et al. have
come to similar conclusions in liquid He. They show that
the high-momentum (high-energy) components in the
momentum distribution n(p) contribute significantly to
the kinetic energy of atoms in liquid He. Indeed, the tail
of n(p) for momentum values p~ 2pF, where pF is the
Fermi momentum, contributes s approximately one-half
of Ek. The existence of high-frequency tails in the dy-
namic structure factor S(g, to) of liquid helium and the
relation of these tails to the repulsive core of the potential
has been discussed by several authors.

In this note we evaluate Ek in bcc He at T 0 K and
four volumes using the self-consistent phonon (SCP)
theory. The calculations show that high-energy tails are
again most important and that including them leads to Ek
values close to those obtained using Monte Carlo (MC)

methods. The Et, values obtained using T-matrix short-
range correlation functions2 3 are significantly higher than
those obtained using the Nosanow-Jastrow short-range
correlation function. '0 Measurement of Ek could be
used to distinguish between these two functions.

II. DYNAMICS OF SOLID HELIUM

To evaluate Ek we use the SCP theory of bcc 3He as set
out by Glyde and Hernadi. This theory begins with the
SCH approximation. Short-range correlations in the
atomic motion are included in the SCH approximation
here using both a T-matrix method and the Nosanow-
Jastrow method' to explore different treatments of these
correlations. The SCH frequencies, taq&, are given by the
usual harmonic expression with force constants obtained
by averaging the second derivative of the potential over
the vibrational distribution of the atoms. To evaluate this
average we need the expectation values of the relative dis-
placements of atoms, labeled i and j, of the form 2

fO (XI

&u;ul) - ge'q "eq~eq~ A(q, k;to) . (I)
NM q, z coqz 4 0 2x

This expresses (u;ut) in terms of the one-phonon response
function A(q, l,;to) for T 0 K. Here q is the phonon
wave vector, X the branch index, and e'qq is the polariza-
tion vector. In the SCH limit, the one-phonon response
function is

3 (q, );to) -2tt[b(co —toq&) —b(ta+ coq~)], (2)

and (I) reduces to the usual form,

(3)
%M q,z Nq

The cubic anharmonic term is then added as a pertur-
bation to the SCH theory. With the cubic term included,
the one-phonon response function is

( to'+ toq'g+2to—„a)'+ (2toq, r) ' '

where A (q, A, ;to) and I (q, k;to) are the real and imaginary
parts of the self-energy due to the cubic term. The cubic
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FIG. 1. The one-phonon response function dt(q, )(„ko) for a
longitudinal phonon having wave vector Q (2)r/a)(0. 7,0,0) in

bcc He at V 24cm mal.
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The k()q)( are the mean frequencies of p (q, X;ko), i.e.,

aid, dmmW(q, ),;m)/d dud(q, ).;m)

dmruSi(g, ru)/ AS|(g,m).

(5)

(6)

The equivalence of (5) and (6) follows from the one-

phonon dynamic structure factor

term can be incorporated in an iterative scheme, at least
approximately, by substituting the anharmonic A(q, )I.;ko)
of (4) into (I). The resulting (u;uj) can be expressed in
the usual SCH form (3) if we define a new frequency koq)„

as"

tion of the displacement correlation function (I) for i j,
g(u. (t)u. (t'))

"" "~( )I.
. ) (7)

qZ ~~0
By differentiating (7) with respect to t and t' we obtain
the velocity correlation function, (v, (t)v, (t')). Taking the
limit t' t we obtain the equal-time velocity expectation
value of an atom, (v, ), and the atomic kinetic energy as

E„- g(v.')- g ko'A(q, )(,;ko) .M I't I ' dko

2, 4N q, z koq)(~ o 2tk

This is the basic relation we use.
In the SCH theory, the phonons have infinite lifetime

and A(q, k;ko) is a b function given by (2). The corre-
sponding SCH kinetic energy is then

Ek g rod,

where koq& are the SCH frequencies. Similarly if we again
approximate the full A(q, )I,;ko) by a b function, now at the
mean frequency koqz, given by (6), the corresPonding ki-

netic energy is

Ek g koq)(. (IO)
4M

These two kinetic energies are shown in Fig. 2. The SCH
frequencies lie significantly (approximately 20%) above
the observed frequencies (for all branches except the Tq

SI(q, ko) - tF(Q;q, X)j'A(q, Z;ko)a(Q —q),1

where F(Q;q, X) is the one-phonon form factor and the
Ambegaokar, Conway, and Baym

'~ sum rule,

I
t

I

Ek bcc~He
T MATRlX

„ckokoSI(Q, ko) koq), [F(Q;q,z)]',
which gives

Cko Ako(q, );ko) 2xkoq), .

OAlC

We may view the koq), as improved, infinite lifetime pho-
non frequencies given by the mean of the anharmonic
resPonse function A(q, )I.;ko). The koqz are useds as new

propagator frequencies to reevaluate (u;, ui), the
A(q, )I,;ko), the I (q, X;ko), and the response function
A(q, k;ko). This corresponds to the first iteration of an ap-
proximate iterative scheme including the cubic term. The
resulting A (q, X;ko) for a typical phonon is shown in Fig. I
along with the original SCH frequency and the input mqz.
The A(q, );ko) clearly has high-frequency tails. These
A (q,X;ko) are used to evaluate Ek as discussed below.

III. THE KINETIC ENERGY

To obtain a general expression for Ek in terms of
A(q, l„ko) we begin with the time-dependent generaliza-

l8 22
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FIG. 2. Atomic kinetic energy calculated using (a) the full

anharmonic response function in (8), (b) the self-consistent har-
monic (SCH) frequencies in (9), (c) infinite lifetime phonons of
frequency k() in (10), and (d) the Debye model Ek —,', Bv with

8D from Ref. 13.
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branch in the bcc structure) in solid helium. Thus if a 8
function A(q, A, ;nt) is reasonably valid we would expect
the SCH Ek to lie above the observed value. In bcc He
the mq& lie close to the observed values. Also shown in

Fig. 2 is the kinetic energy in the Debye model

Ek =
&g R8D

30—

I ~' I

E& bcc He

obtained using observed values' of 8D. Since observed
values of 8D are used, this should give a reasonable esti-
mate of Ek if it is a reasonable approximation to cutoff the
density of states [i.e., each A(q, l„co)] at the Debye fre-
quency coD k8D/h, . From Figs. 2 and 3 we see the De-
bye Ek is only one half the enharmonic value and the
Monte Carlo (MC) value suggesting the high-frequency
components of A (q, );co) are most important.

In Figs. 2 and 3 we show the full anharmonic Ek evalu-
ated using (8) and anharmonic response functions
A(q, k;at) of the form given by (4). Since this Ek lies
above those given by (9), (10), or (11), the high-
frequency tails in A(q, A, ;nt) depicted in Fig. I clearly
make important contributions to Ek. The tails arise from
including the cubic enharmonic term. From Fig. 3 we see
that the Ek calculated using the T-matrix method lies
close to the MC values. Thus the large Ek of atoms in bcc

He (above the Debye value, for example) may be viewed
as a direct manifestation of the highly enharmonic nature
of quantum solids.

The T-matrix Ek still lies below the MC value, suggest-
ing that higher enharmonic terms' beyond the cubic term
contribute further to the tails in A(q, k„co).

Similarly, solid hydrogen is a quantum solid but less
enharmonic than solid helium. In solid H2, observed
values' ' of Ek lie approximately 50% above the corre-
sponding Debye value given by (11). We expect that in
solid H2 the high-frequency tails of the anharmonic
response function will also make significant contributions
to Ek.

It is also interesting that the Ek calculated using the
T-matrix short-range function lies above that obtained us-

ing the Nosanow- Jastrow function. In the T-matrix
method, the short-range function is obtained by solving a
differential equation in the interatomic potential. On the
other hand, the Nosanow function is a postulated trial
function. ' The Nosanow function cuts off the pair wave
function quite sharply when two atoms approach closely.
This reduces the impact of the enharmonic hard core of
the interatomic potential. As a result, the cubic anhar-
monic term is much smaller for the Nosanow-Jastrow
function than for T-matrix function. ' A measurement
of Ek could distinguish between the two Ek values and the
two short-range functions. Since the MC values should
be accurate the T-matrix Ek is favored. This does not say
that the T-matrix method is better than the Nosanow-
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FIG. 3. Monte Carlo (MC) calculations of the atomic kinetic
energy from Ref. 9 compared with present full anharmonic
values from (8) using T-matrix and Nosanow-Jastrow short-
range methods.
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Jastrow method but rather that a short-range function ob-
tained by solving a differential equation is more accurate
than a postulated one. Such a function could be readily
incorporated in the Nosanow-Jastrow method.

In summary, we find that the high-frequency tails of the
response functions in quantum crystals make most impor-
tant contributions (-50%) to the atomic kinetic energy.
These high-energy (momentum) tails arise from interac-
tions between atoms via the highly repulsive enharmonic
core of the interatomic potential. In this sense the large
kinetic energy (above the predicted Debye value) is a
direct measure of the highly anharmonic nature of quan-
tum crystals beyond that predictable by an effective har-
monic model.
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