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It is argued that flux motion near threshold in a macroscopic, two-dimensional lattice with a
random potential, under the influence of an external driving force, always involves plastic flow of
moving portions of the lattice past regions that are pinned. Convincing evidence for this picture is

obtained from a comparison of experimental measurements to computer simulations of the non-

linear curent-voltage characteristics of finite systems.

Over the past year we have undertaken an extensive
series of numerical simulations of a system that models
flux pinning and flux flow in two dimensions. As a result
of these studies it has become apparent that two-
dimensional flux flow near threshold in macroscopic sys-
tems always involves plastic motion in which some regions
of the flux lattice move with respect to other regions which
remain pinned. We have described this motion in an ear-
lier work' as pulsating flow through channels.

This qualitative picture is quite different from the well-
known analytic theory of Larkin and Ovchinnikov~ (LO)
which was thought to apply at least for the case of weak
pinning. According to LO theory, correlated regions of
the flux lattice arrange themselves in local minima of the
random potential. The bulk pinning force is then given by
the sum of the fluctuations of the random force over each
of the correlated regions. Their analysis is based on elasti-
city theory and is inapplicable when the mechanical prop-
erties of the lattice are affected by dislocations or other
defects. Above threshold, LO theory corresponds to the
situation in which the lattice jumps from one metastable
elastic minimum to another, without plastic deformation
(i.e., maintaining the association of nearest neighbors).
We refer to this type of flow as the "elastic instability re-
gime,

" and our simulations show that such behavior
occurs only for systems of finite size. Specifically we have
found that, for a system of size L, there is a critical
strength of the random potential, Apl„-I/(InL), above
which dislocations and higher order defects such as dis-
clinations appear. For pinning strengths larger than Ap~„
and, presumably, for arbitrary pinning strength in infinite
systems, flux flow proceeds by plastic deformation of the
disordered lattice.

It is by no means surprising that a two-dimensional lat-
tice in a random potential should be unstable against the
formation of dislocations and disclinations. In fact the
disclinations are required to destroy long-range bond
orientational order since, according to a theorem of Imry
and Ma, long-range order corresponding to the breaking
of a continuous symmetry is destroyed by a random poten-
tial. Our observation that the strength of the random po-
tential that nucleates lattice defects scales as 1/(lnL) im-
plies, by finite-size scaling, that the average distance be-
tween defects has the form

&(A ) &p exp(Ae/A ),

where A v is the nucleation energy for a defect and A is the
strength of the random potential. A~~„ is then given by

& (A p)zs) L .

For a two-dimensional (2D) crystal with no random po-
tential at finite temperature, the shear restoring force van-
ishes at the Kosterlitz-Thouless temperature at which
dislocation pairs unbind. For the 2D lattice in a random
potential at T 0, we expect that unbound dislocations
are always present and that they dominate the mechanical
properties and the nature of the flow when the lattice is
moved by an external force.

This simple and self-contained description that emerged
from our early work is quite appealing, but it is still neces-
sary to make convincing contact with experiment. This
has now been accomplished through simulations of the
nonlinear current-voltage relations for the 2D system in a
random potential. We find that for weak random poten-
tials for finite systems, i.e., in the elastic instability re-
gime, the voltage above threshold is hnear in the current,
unlike the experimental results, while for A & Apf„, the
nonlinear behavior above threshold is strikingly similar to
the experimental data. ' We interpret the nonlinear
current as resulting from a fluidlike flow of the flux lines.
This motion is associated with the depinning of more and
more flux lines as the current is increased until eventually
most or all of the flux becomes unstuck. The analytic
form of the current above threshold is difficult to deter-
mine, but our data are consistent with I-

~
V —V, ~

~ with
the value of (about —', .

Our system consists of W, vortices with positions
r;(t) (x;(t),y;(t)) and Np attractive pins with random
fixed positions r/' in an area A L„Ly with periodic
boundary conditions. ' The potential energy is given by

U —,
' g V„( ) r; —rj ( ) +g Vp (

~
r; —rJP ( ) gr;. Fd, , —

V„,(r) =A„,v(r/R, , ), V (r) = Av(r/R ), —

where v(p) is a Gaussian-type potential and Fd, is an
homogeneous external driving force. The units are fixed
by the choice A, 1 and the ideal triangular vortex lattice
spacing ao 1. Our simulations are made on a system
consisting of 1020 vortices and 219 or 438 pins. The
range of the vortex-vortex interaction is R, =0.6, corre-
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sponding to a shear modulus C66 0.2695 and a compres-
sion modulus C~~ 1.9943. The range of the vortex-pin
interaction is R~ 0.25. The vortices follow a diffusive
equation of motion

dr(
q dt 8r;

' (2)

The time scale is set by choosing the friction coeScient
g 1.

The simulations are run as follows: We first set the
driving force to zero and relax an ideal triangular lattice
to the random potential by using molecular-dynamics an-
nealing. ' We then apply a constant homogeneous driving
force larger than the threshold force FT and follow the
vortex system as it evolves according to Eq. (2). The sys-
tem is followed until the center of mass (c.m. ) has shifted
at least three lattice spacings . The c.m. velocity (v) time
averaged over the run, is then measured. This corre-
sponds to measuring the I-V characteristic of a type-II su-
perconductor in which case the average center-of-mass ve-
locity of the flux lines is proportional to the voltage and
the driving force is proportional to the current.

We have summarized our results in Fig. 1. The velocity
versus driving force are shown for a range of values of the
amplitude of the pinning centers. One can clearly see how
a nonlinear region starts to develop for Az ~ A„=0.04.
The value of A« is indistinguishable from A~~„, the value
of A~ at which the random potential becomes able to in-
duce plastic deformations in the vortex lattice. ' Above
Apf ', some vortices remain trapped on pins as the rest of
the vortex system begins to flow. The crossover at A«also
coincides with a steep increase in the threshold pinning
force. In the linear regions of the &v&

—Fd, curves, i.e.,
for all driving forces for A~ ~ A«and for large driving
forces in the regime Az ~ A„, the moving vortices form a
well-defined lattice. A fluidlike form of the radial distri-
bution function G(r) is observed in the nonlinear regions

of the (U) —Fd, curves, whereas G(r) is always solidlike in

the linear regions. Figure 2 shows an example of the flow

pattern in the nonlinear region. These findings agree well
with neutron scattering experiments on moving FL lattices
in type-II superconductors. All this strongly indicates
that the random potential induces defects in the vortex
lattice when the potential reaches a certain strength,
A A p& It should be emphasized that the amplitude
A« is much smaller than the amplitude needed for a sin-

gle pin to be able to induce elastic instabilities or trapping
of vortices.

It is worth noticing the similarity between the curves in

Fig. 1 for which A~ & A„and the I-V characteristics for
type-II superconductors. An example of the latter (from
Huebener ) is shown in Fig. 3. The field dependence of
the I-V characteristics is consistent with the A~ depen-
dence of the curves in Fig. 1. The pinning potential in a
type-II superconductor scales with magnetic field as 1 —b,
where b 8/8, , is the reduced field, 8 the internal field,
and 8,, the upper critical field. ' The shear modulus C66
of the flux line lattice depends on the magnetic field as
b(1 —b) (see Ref. 11). So the pinning strength becomes
relatively weaker as b is increased as long as b is not too
high.

It has recently been suggested by Fisher'2 that the non-
linear behavior connected with the depinning phenomena
in the case of weak pinning, at least in the case of charge-
density waves (CDW), might be an example of a dynami-
cal critical phenomenon, and experiments on nonlinear I-
V characteristics in type-II superconductors have been in-

terpreted along these lines. If such an interpretation is
correct one would expect the correlation length of the
velocity-velocity correlation function to diverge as the
threshold force is approached from above. '2 We have not
been able to find any sign of an increase in the velocity-
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FIG. 1 . Center-of-mass velocity vs applied driving force for
different values of the pinning strength: ~ Ap 0.025'
Ap 0 04' Ap 0,05' & Ap 0 07' & Ap O. 1 and

0.5. The system parameters are N„ 1020, R, 0.6,
Np 438, and Rp 0.25.

FIG. 2. A portion of the flow pattern in the nonlinear part of
the (v) —Fd, curve. The lines show the trajectories of the vor-

tices as they respond to the driving force. Short lines, resem-
bling dots, occur in trapped regions. Crosses are the pinning
centers. The system parameters are as in Fig. 1, and A~ 0.07
and Fd, 0.04.
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FIG. 3. Experimental I-V characteristics for di8'erent values
of the magnetic field. The signature is as follows: , b 0.74; &,
b 0.55; 0, b 0.46; &, b 0.41; and a, b 0.37.

velocity correlation length. The absence of any critical
behavior in this regime might not be surprising, given the
fluidlike flow in the nonlinear regions. '3 Nor did we find
any critical behavior in the weak pinning regime below
A„; which is again not surprising, as there are no non-
linear regions in the (v) —Fd, curves in this regime. We
would therefore rather interpret the experimentally ob-
served nonlinear I-V characteristics as an indication of
the presence of pinning which is strong in the sense that
the flux line lattice is plastically deformed and flows in a
fluidlike manner with some vortices remaining pinned.

The situation may be different in the charge-density-
wave case, ' where the order parameter, the phase p, has
a single component, compared to our two-component or-
der parameter, the positions, r;. In addition, the CDW
systems which have been studied so far experimentally in-
volve bulk three-dimensional crystals, rather than two-
dimensional films which would be the analogs of the sys-

tern we have considered. It is worth mentioning, however,
that plastic flow has been observed in CDW systems, '

and the importance of "phase vortices" for plastic flow in
CD% conductors has been emphasized by Maki and co-
workers. '

It is clear from Fig. 1 that the curves flatten out and
that the width of the nonlinear region increases with
stronger pinning. However, it is difficult to analyze the
form of the (v) Fd,—curves near the threshold. The
mean-field calculation in Ref. 12 suggests that near
threshold (v) 8(Fd, —FT)~ with the mean-field value of
g equal to 2 and 8 depending on the random pinning po-
tential. We have tried to fit our data to this form and also
to the parabolic shape a (Fd, —FT ) +b (Fd, —FT ). Both
forms fit equally well, as was also found experimentally.
Consistent fits can be made to the power law, with 8 de-
creasing with increasing pinning strength and g about 1.5,
or to the parabola with a and b decreasing with increasing
A~. It should be noted though, that there is a considerable
uncertainty in the fitted parameters, 8, FT, g, and a, b,
FT, respectively, for the present data.

In summary we have studied a model which contains all
the relevant qualitative physics of two-dimensional viscous
flow of flux lines in type-II superconducting films. It is
found that a nonlinear I-V characteristic is always caused
by a fluidlike flow of the vortex system. This happens
when the random pin potential is strong enough to induce
defects in the vortex system which destroy the vortex lat-
tice. We infer that the observation of nonlinear I-V
characteristics in superconducting thin films is evidence
for plastic flow in these systems.
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