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The energy width of the states of slow ions interacting with an electron gas has been calculated
using the density-functional formalism to calculate an effective one-electron potential. Our results
show the same behavior as the stopping power and straggling parameter when comparisons with

dielectric theory are made.

The agreement between the dielectric and nonlinear density-

functional results is improved when a local-field correction is taken into account in the dielectric

formalism.

The problem of slow ions moving with constant velocity
v (v <vF, vr being the Fermi velocity of electrons in the
conduction band) is of special interest in cases such as the
slowing and reflection of hydrogen atoms impinging on the
inner wall of a controlled thermonuclear reactor! as well
as in astrophysical studies and in surface analytical tech-
niques. A many-body formalism?? is needed to treat the
complicated nature of the interaction. Because of this
complexity, approximations must be made to solve the
problem in a tractable way.*~® An essential step is to in-
troduce an appropriate local potential to describe the in-
teraction of the electrons with the incoming ion.” ~'4

Using linear response theory it is easy to obtain the
basic quantities that characterize the composite system. !>
These are the width of the particle states I, the stopping
power dE/dR, and the straggling parameter W. The
width of the particle states is essentially the integrated
value of the differential probability for energy transfer w
in a single inelastic excitation process. For slow, heavy
ions this elementary process is the particle-hole genera-
tion. Furthermore, by weighting @ and w? with the above
differential probability, dE/dR and W, respectively, can
be obtained. Thus, although I' (related to the imaginary
part of the self-energy) is not a directly observable quanti-
ty, a systematic development of the theoretical description
requires its knowledge.

The low-velocity expression for I in dielectric theory is
given by (atomic units are used throughout this paper)

where V(q) is the Fourier transform of the bare Coulomb
potential, e(g) is the electron dielectric function,® and v is
the ion velocity. In this case the elastic scattering between
the electron and the screened ion is described in the first
Born approximation. If we interpret this result in terms of
nonrelativistic scattering theory and make the substitution

V@ . _y

e(q) nf(6),
where f(6) is the scattering amplitude and g =2vF
xsin(6/2) is the momentum transfer, we obtain for the
width of the states

= %nvj;'do(e,w)sin [%] . )

Here n is the electron gas density, and do is the dif-
ferential cross section at the Fermi energy.

Similarly (see the Appendix), the well-known results
for the stopping power'!!$ and straggling parameter!’
can be obtained:

% -2nvvpj;”dcr(9,vp)sin2 l% ] , 3)
W‘3(va)zj:)nd6(9,vp)si03 {%] . 4)

Equation (2) allows us to calculate I in terms of the

20 V@) 2 phase shifts for the elastic scattering of an electron by the
= 3 f dqq? =47 (1)  self-consistent potential of the ion in the electron gas.
(27)° 0 e(q) One finds
J
r==22_ '3 +1)@m+1){l = c05(28)) — cos(26,) +cos[2(8) = 8) BT , (5)
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where 6; are the phase shifts at the Fermi energy and the
quantity Jin, is defined by

1

Jin=J_ dx(1=x) 2Py (x) P (x), )
and the P;’s are the Legendre polynomials. We have used
the phase shifts calculated by Puska and Nieminen'®!?
using density-functional theory (DFT) with the parame-
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trization given by Gunnarsson and Lundqvist?° for the lo-
cal exchange and correlation potential. The results ob-
tained for the width of the states for r; =1.5 and r, =3.0
[r; =(3/42n) )] are shown in Fig. 1, where we have
plotted I'/v as a function of the ion charge Z,. The curves
show the characteristic Z; oscillations that can be ex-
plained in terms of the ion effective charge.?! “2*> These
oscillations have also been found for the stopping
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FIG. 1. Width of the particle states for a slow ion interacting with an electron gas of density parameter r, =1.5 and r; =3.0. We
have plotted I'/v as a function of the ion charge Z;. The curves show the characteristic Z, oscillations.

power?? and straggling parameter.? If an effective

charge Z? is defined in an operational manner

dE/dR|z, "?
: ] : Q)

dE/dR |z, =
we find that T/v(Z})? is about 0.31 within 30% for
rs=1.5 and for r; =3.0 it is about 0.28 within 15%. Simi-
lar behavior has been found for the straggling parame-
ter.?226 That is, most of the oscillatory behavior in I'/v
shown in Fig. 1 is due to the variation in ion effective
charge as defined by Eq. (7).

1 -

In Fig. 2 we have plotted I'/v as a function of r; for
Z,=1 and Z,=2 and compare with dielectric-theory
(DT) results without local-field correction [random-phase
approximation (RPA)] and with a local-field correc-
tion.®?” The DFT results are given by the curves labeled
Z, =1 for a proton and Z, =2 for a helium nucleus. The
width of the states is smaller for a helium nucleus than
that for a proton with the same velocity for 7, = 2.5. The
curves labeled DT1 (without local-field correction) and
DT2 (with local-field correction) in Fig. 2 are the dielec-
tric theory results for a proton calculated from Eq. (1).
These are about 0.2 and 0.3 respectively for 1.5=<r;
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FIG. 2. Width of the particle states for a slow ion interacting with an electron gas as a function of r,. Curve labeled DT1 is the
dielectric-theory result, without local-field correction, for a proton and DT2 with local-field correction. The curve labeled Z; =1 is
the nonlinear DFT result for a proton. (The one labeled Z, =2 is the nonlinear DFT result for a helium nucleus.)



38 BRIEF REPORTS 9193

=<4.0. If we compare the DFT result with DT1 we see
that it is about 50% greater when 1.5 <r; < 3.0. In this
density range the agreement with DT2 is better. Never-
theless, it is clear that significant correction to the RPA
results are to be expected when refined descriptions of ex-
change and correlation (local field factor?’) are included
in the response function. For high r; values the nonlinear
DFT result is smaller than the dielectric theory one.
Lowest-order perturbation theory must obviously break
down when the projectile can bind an electron.?® For the
straggling parameter and the stopping power the same be-
havior have been found?**? in this region of r, values. For
very small ry (r; <Z "2) values the two theories (DT and
DFT) tend toward agreement independently of the charge
of the projectile.
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APPENDIX

Equation (2) has been derived in a heuristic didactic
way. From the general theoretical results of Ref. 4, with

the substitution
®™=QqQ'V=qgvCcoso,

and taking into account that for low ion velocities
g =2vrsin(6/2) it is easy to obtain an expression, L(n),
for the determination of the basic quantities

2
- L U_F 2 1
L(n) =3 [ - ] J; d¢sing

xj:)”da(O,vp) [2vvpsin [—g—]cow] .
(A1)
From Eq. (A1)
Fr=L(n=1),
dE _1dE _1 ., _
AR o di ol

we=L 4 ((AE—ENDI =L L(n=3).
nv dt nv

Neglect of recoil is the major approximation that has
been made in deriving Eq. (A1). Such an approximation
is justified when the impulse of the slow heavy ion is much
bigger than the Fermi impulse. In this case the center-
of-mass velocity corresponds to the velocity of the in-
truder.
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